

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 28x10b; D/A 1x5b, 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1717t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	
2.0	Enhanced Mid-Range CPU	
3.0	Memory Organization	
4.0	Device Configuration	55
5.0	Resets	60
6.0	Oscillator Module (with Fail-Safe Clock Monitor)	
7.0	Interrupts	
8.0	Power-Down Mode (Sleep)	
9.0	Watchdog Timer (WDT)	102
10.0	Flash Program Memory Control	106
11.0	I/O Ports	122
12.0	Peripheral Pin Select (PPS) Module	150
13.0	Interrupt-On-Change	156
14.0	Fixed Voltage Reference (FVR)	163
15.0	Temperature Indicator Module	166
16.0	Comparator Module	168
17.0	Pulse Width Modulation (PWM)	177
18.0	Complementary Output Generator (COG) Module	184
19.0	Configurable Logic Cell (CLC)	218
20.0	Numerically Controlled Oscillator (NCO) Module	233
21.0	Analog-to-Digital Converter (ADC) Module	
22.0	Operational Amplifier (OPA) Modules	255
23.0	8-Bit Digital-to-Analog Converter (DAC1) Module	258
24.0	5-Bit Digital-to-Analog Converter (DAC2) Module	
25.0	Zero-Cross Detection (ZCD) Module	
26.0	Timer0 Module	
27.0	Timer1 Module with Gate Control	
28.0	Timer2/4/6 Module	282
29.0	Capture/Compare/PWM Modules	
30.0	Master Synchronous Serial Port (MSSP) Module	295
31.0	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)	351
32.0	In-Circuit Serial Programming (ICSP™)	381
33.0	Instruction Set Summary	383
34.0	Electrical Specifications	397
35.0	DC and AC Characteristics Graphs and Charts	
36.0	Development Support	454
37.0	Packaging Information	458
Appe	endix A: Data Sheet Revision History	479

Name	Function	Input Type	Output Type	Description
OUT ⁽²⁾	C1OUT		CMOS	Comparator 1 output.
	C2OUT		CMOS	Comparator 2 output.
	CCP1		CMOS	Compare/PWM1 output.
	CCP2		CMOS	Compare/PWM2 output.
	NCO10UT		CMOS	Numerically controlled oscillator output.
	PWM3OUT		CMOS	PWM3 output.
	PWM4OUT		CMOS	PWM4 output.
	COG1A		CMOS	Complementary output generator output A.
	COG1B		CMOS	Complementary output generator output B.
	COG1C		CMOS	Complementary output generator output C.
	COG1D		CMOS	Complementary output generator output D.
	SDA ⁽³⁾		OD	I ² C Data output.
	SCK		CMOS	SPI clock output.
	SCL ⁽³⁾		OD	l ² C clock output.
	SDO		CMOS	SPI data output.
	TX/CK		CMOS	EUSART asynchronous TX data/synchronous clock out.
	DT ⁽³⁾		CMOS	EUSART synchronous data output.
	CLC10UT		CMOS	Configurable Logic Cell 1 output.
	CLC2OUT		CMOS	Configurable Logic Cell 2 output.
	CLC3OUT		CMOS	Configurable Logic Cell 3 output.
	CLC4OUT		CMOS	Configurable Logic Cell 4 output.

TABLE 1-3: PIC16(L)F1717/9 PINOUT DESCRIPTION (CONTINUED)

 Legend:
 AN = Analog input or output
 CMOS = CMOS compatible input or output
 OD = Open-Drain

 TTL = TTL compatible input
 ST = Schmitt Trigger input with CMOS levels
 I²C = Schmitt Trigger input with I²C

 HV = High Voltage
 XTAL = Crystal levels

Note 1: Default peripheral input. Alternate pins can be selected as the peripheral input with the PPS input selection registers.

2: All pin digital outputs default to PORT latch data. Alternate outputs can be selected as the peripheral digital output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

3.2.1 READING PROGRAM MEMORY AS DATA

There are two methods of accessing constants in program memory. The first method is to use tables of RETLW instructions. The second method is to set an FSR to point to the program memory.

3.2.1.1 RETLW Instruction

The RETLW instruction can be used to provide access to tables of constants. The recommended way to create such a table is shown in Example 3-1.

EXAMPLE 3-1: RETLW INSTRUCTION

constants	
BRW	;Add Index in W to
	;program counter to
	;select data
RETLW DATA0	;Index0 data
RETLW DATA1	;Index1 data
RETLW DATA2	
RETLW DATA3	
my_function	
; LOTS OF CODE	
MOVLW DATA_IN	DEX
call constants	
; THE CONSTANT IS	IN W

The BRW instruction makes this type of table very simple to implement. If your code must remain portable with previous generations of microcontrollers, then the BRW instruction is not available, so the older table read method must be used.

3.2.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.

The high directive will set bit<7> if a label points to a location in program memory.

EXAMPLE 3-2: ACCESSING PROGRAM MEMORY VIA FSR

constants
DW DATAO ;First constant
DW DATA1 ;Second constant
DW DATA2
DW DATA3
my_function
; LOTS OF CODE
MOVLW DATA_INDEX
ADDLW LOW constants
MOVWF FSR1L
MOVLW HIGH constants;MSb sets
automatically
MOVWF FSR1H
BTFSC STATUS, C ;carry from ADDLW?
INCF FSR1H, f ;yes
MOVIW 0[FSR1]
;THE PROGRAM MEMORY IS IN W

3.3 Data Memory Organization

The data memory is partitioned in 32 memory banks with 128 bytes in a bank. Each bank consists of (see Figure 3-3):

- 12 core registers
- 20 Special Function Registers (SFR)
- Up to 80 bytes of General Purpose RAM (GPR)
- 16 bytes of common RAM

The active bank is selected by writing the bank number into the Bank Select Register (BSR). Unimplemented memory will read as '0'. All data memory can be accessed either directly (via instructions that use the file registers) or indirectly via the two File Select Registers (FSR). See **Section 3.7** "Indirect Addressing" for more information.

Data memory uses a 12-bit address. The upper five bits of the address define the Bank address and the lower seven bits select the registers/RAM in that bank.

3.3.1 CORE REGISTERS

The core registers contain the registers that directly affect the basic operation. The core registers occupy the first 12 addresses of every data memory bank (addresses x00h/x08h through x0Bh/x8Bh). These registers are listed below in Table 3-2. For detailed information, see Table 3-11.

TABLE 3-4:PIC16(L)F1717/9 MEMORY MAP (BANKS 0-7)

	BANK 0		BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h		080h		100h		180h		200h		280h		300h		380h	
	Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers
	(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	WPUA	28Ch	ODCONA	30Ch	SLRCONA	38Ch	INLVLA
00Dh	PORTB	08Dh	TRISB	10Dh	LATB	18Dh	ANSELB	20Dh	WPUB	28Dh	ODCONB	30Dh	SLRCONB	38Dh	INLVLB
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	ANSELC	20Eh	WPUC	28Eh	ODCONC	30Eh	SLRCONC	38Eh	INLVLC
00Fh	PORTD	08Fh	TRISD	10Fh	LATD	18Fh	ANSELD	20Fh	WPUD	28Fh	ODCOND	30Fh	SLRCOND	38Fh	INLVLE
010h	PORTE	090h	TRISE	110h	LATE	190h	ANSELE	210h	WPUE	290h	ODCONE	310h	SLRCONE	390h	INLVLE
011h	PIR1	091h	PIE1	111h	CM1CON0	191h	PMADRL	211h	SSP1BUF	291h	CCPR1L	311h	—	391h	IOCAP
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	PMADRH	212h	SSP1ADD	292h	CCPR1H	312h	—	392h	IOCAN
013h	PIR3	093h	PIE3	113h	CM2CON0	193h	PMDATL	213h	SSP1MSK	293h	CCP1CON	313h	_	393h	IOCAF
014h	—	094h	—	114h	CM2CON1	194h	PMDATH	214h	SSP1STAT	294h	-	314h	-	394h	IOCBP
015h	TMR0	095h	OPTION_REG	115h	CMOUT	195h	PMCON1	215h	SSP1CON1	295h	-	315h	-	395h	IOCBN
016h	TMR1L	096h	PCON	116h	BORCON	196h	PMCON2	216h	SSP1CON2	296h	-	316h	-	396h	IOCBF
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	VREGCON ⁽¹⁾	217h	SSP1CON3	297h	_	317h	_	397h	IOCCP
018h	T1CON	098h	OSCTUNE	118h	DAC1CON0	198h	—	218h	—	298h	CCPR2L	318h	—	398h	IOCCN
019h	T1GCON	099h	OSCCON	119h	DAC1CON1	199h	RC1REG	219h	—	299h	CCPR2H	319h	_	399h	IOCCF
01Ah	TMR2	09Ah	OSCSTAT	11Ah	DAC2CON0	19Ah	TX1REG	21Ah	—	29Ah	CCP2CON	31Ah	—	39Ah	—
01Bh	PR2	09Bh	ADRESL	11Bh	DAC2CON1	19Bh	SP1BRGL	21Bh	—	29Bh	_	31Bh	_	39Bh	—
01Ch	T2CON	09Ch	ADRESH	11Ch	ZCD1CON	19Ch	SP1BRGH	21Ch	—	29Ch	_	31Ch	_	39Ch	—
01Dh	—	09Dh	ADCON0	11Dh	—	19Dh	RC1STA	21Dh	—	29Dh	_	31Dh	_	39Dh	IOCEP
01Eh	—	09Eh	ADCON1	11Eh	_	19Eh	TX1STA	21Eh	—	29Eh	CCPTMRS	31Eh	_	39Eh	IOCEN
01Fh	_	09Fh	ADCON2	11Fh	_	19Fh	BAUD1CON	21Fh	—	29Fh	—	31Fh	—	39Fh	IOCEF
020h		0A0h		120h		1A0h		220h		2A0h		320h		3A0h	
	General		General		General		General		General		General		General		General
	Purpose		Purpose		Purpose		Purpose		Purpose		Purpose		Purpose		Purpose
	Register		Register		Register		Register		Register		Register		Register		Register
	80 Bytes		80 Bytes		80 Bytes		80 Bytes		80 Bytes		80 Bytes		80 Bytes		80 Bytes
06Fh		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
070h		0F0h		170h		1F0h		270h		2F0h		370h		3F0h	
	Common RAM		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses
	70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh						
07Fh		0FFh		17Fh		1FFh		27Fh		2FFh		37Fh		3FFh	

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: Unimplemented on PIC16LF1717/8/9.

8.3 **Register Definitions: Voltage Regulator Control**

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-1/1	
	_		_	_	—	VREGPM	Reserved	
bit 7							bit 0	
Legend:								
R = Readable b	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is uncha	u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					

VREGCON: VOLTAGE REGULATOR CONTROL REGISTER⁽¹⁾ **REGISTER 8-1:**

bit 7-2 Unimplemented: Read as '0'

hit	1
DIL	

- VREGPM: Voltage Regulator Power Mode Selection bit 1 = Low-Power Sleep mode enabled in Sleep⁽²⁾
 - Draws lowest current in Sleep, slower wake-up
- 0 = Normal-Power mode enabled in Sleep⁽²⁾
- Draws higher current in Sleep, faster wake-up

bit 0 Reserved: Read as '1'. Maintain this bit set.

Note 1: PIC16F1717/8/9 only.

2: See Section 34.0 "Electrical Specifications".

TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
STATUS				TO	PD	Z	DC	С	28
VREGCON ⁽¹⁾	_	—	_	_	_		VREGPM	Reserved	101
WDTCON				WDTPS<4:0> SWDTEN					

Legend: — = unimplemented location, read as '0'. Shaded cells are not used in Power-Down mode. Note 1: PIC16F1717/8/9 only.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
ODD7	ODD6	ODD5	ODD4	ODD3	ODD2	ODD1	ODD0		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'						
u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets						

REGISTER 11-30: ODCOND: PORTD OPEN-DRAIN CONTROL REGISTER

bit 7-0 **ODD<7:0>:** PORTD Open-Drain Enable bits For RD<7:0> pins, respectively 1 = Port pin operates as open-drain drive (sink current only) 0 = Port pin operates as standard push-pull drive (source and sink current)

'0' = Bit is cleared

REGISTER 11-31: SLRCOND: PORTD SLEW RATE CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| SLRD7 | SLRD6 | SLRD5 | SLRD4 | SLRD3 | SLRD2 | SLRD1 | SLRD0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SLRD<7:0>: PORTD Slew Rate Enable bits

For RD<7:0> pins, respectively

1 = Port pin slew rate is limited

0 = Port pin slews at maximum rate

REGISTER 11-32: INLVLD: PORTD INPUT LEVEL CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLD7 | INLVLD6 | INLVLD5 | INLVLD4 | INLVLD3 | INLVLD2 | INLVLD1 | INLVLD0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

1' = Bit is set

INLVLD<7:0>: PORTD Input Level Select bits

For RD<7:0> pins, respectively

1 = Port pin digital input operates with ST thresholds

0 = Port pin digital input operates with TTL thresholds

17.0 PULSE WIDTH MODULATION (PWM)

The PWM module generates a Pulse-Width Modulated signal determined by the duty cycle, period, and resolution that are configured by the following registers:

- PR2
- T2CON
- PWMxDCH
- PWMxDCL
- PWMxCON

Figure 17-1 shows a simplified block diagram of PWM operation.

Figure 17-2 shows a typical waveform of the PWM signal.

For a step-by-step procedure on how to set up this module for PWM operation, refer to Section 17.1.9 "Setup for PWM Operation Using PWMx Pins".

17.1.5 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 17-4.

EQUATION 17-4: PWM RESOLUTION

Resolution = $\frac{\log[4(PR2 + 1)]}{\log(2)}$ bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 17-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	0.31 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	64	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 17-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	0.31 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	64	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

17.1.6 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the PWMx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

17.1.7 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency (Fosc). Any changes in the system clock frequency will result in changes to the PWM frequency. Refer to Section 6.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

17.1.8 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the PWM registers to their Reset states.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	_	-	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	125
ANSELB	_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	131
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	—	—	136
COG1PHR		_			G1PH	R<5:0>			216
COG1PHF		-			G1PH	F<5:0>			216
COG1BLKR		-			G1BLK	(R<5:0>			215
COG1BLKF		-			G1BLK	(F<5:0>			215
COG1DBR	-	—			G1DB	R<5:0>			214
COG1DBF	-	—		G1DBF<5:0>					214
COG1RIS	G1RIS7	G1RIS6	G1RIS5	G1RIS4	G1RIS3	G1RIS2	G1RIS1	G1RIS0	205
COG1RSIM	G1RSIM7	G1RSIM6	G1RSIM5	G1RSIM4	G1RSIM3	G1RSIM2	G1RSIM1	G1RSIM0	206
COG1FIS	G1FIS7	G1FIS6	G1FIS5	G1FIS4	G1FIS3	G1FIS2	G1FIS1	G1FIS0	208
COG1FSIM	G1FSIM7	G1FSIM6	G1FSIM5	G1FSIM4	G1FSIM3	G1FSIM2	G1FSIM1	G1FSIM0	209
COG1CON0	G1EN	G1LD	_	G1CS	6<1:0>		G1MD<2:0>		203
COG1CON1	G1RDBS	G1FDBS	_	—	G1POLD	G1POLC	G1POLB	G1POLA	204
COG1ASD0	G1ASE	G1ARSEN	G1ASD	BD<1:0>	G1ASD	AC<1:0>	—	—	211
COG1ASD1	-	—	_	—	G1AS3E	G1AS2E	G1AS1E	G1AS0E	212
COG1STR	G1SDATD	G1SDATC	G1SDATB	G1SDATA	G1STRD	G1STRC	G1STRB	G1STRA	213
INTCON	GIE	PEIE	T0IE	INTE	IOCIE	TOIF	INTF	IOCIF	90
COG1PPS	-	_		- COG1PPS<4:0>					136
PIE2	OSFIE	C2IE	C1IE	_	BCL1IE	TMR6IE	TMR4IE	CCP2IE	92
PIR2	OSFIF	C2IF	C1IF	—	BCL1IF	TMR6IF	TMR4IF	CCP2IF	95
RxyPPS	_	_	_	- RxyPPS<4:0>					153

TABLE 18-2: SUMMARY OF REGISTERS ASSOCIATED WITH COG

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by COG.

19.1.2 DATA GATING

Outputs from the input multiplexers are directed to the desired logic function input through the data gating stage. Each data gate can direct any combination of the four selected inputs.

Note: Data gating is undefined at power-up.

The gate stage is more than just signal direction. The gate can be configured to direct each input signal as inverted or non-inverted data. Directed signals are ANDed together in each gate. The output of each gate can be inverted before going on to the logic function stage.

The gating is in essence a 1-to-4 input AND/NAND/OR/NOR gate. When every input is inverted and the output is inverted, the gate is an OR of all enabled data inputs. When the inputs and output are not inverted, the gate is an AND or all enabled inputs.

Table 19-2 summarizes the basic logic that can be obtained in gate 1 by using the gate logic select bits. The table shows the logic of four input variables, but each gate can be configured to use less than four. If no inputs are selected, the output will be zero or one, depending on the gate output polarity bit.

CLCxGLS0	LCxG1POL	Gate Logic
0x55	1	AND
0x55	0	NAND
0xAA	1	NOR
0xAA	0	OR
0x00	0	Logic 0
0x00	1	Logic 1

TABLE 19-2: DATA GATING LOGIC

It is possible (but not recommended) to select both the true and negated values of an input. When this is done, the gate output is zero, regardless of the other inputs, but may emit logic glitches (transient-induced pulses). If the output of the channel must be zero or one, the recommended method is to set all gate bits to zero and use the gate polarity bit to set the desired level.

Data gating is configured with the logic gate select registers as follows:

- Gate 1: CLCxGLS0 (Register 19-7)
- Gate 2: CLCxGLS1 (Register 19-8)
- Gate 3: CLCxGLS2 (Register 19-9)
- Gate 4: CLCxGLS3 (Register 19-10)

Register number suffixes are different than the gate numbers because other variations of this module have multiple gate selections in the same register.

Data gating is indicated in the right side of Figure 19-2. Only one gate is shown in detail. The remaining three gates are configured identically with the exception that the data enables correspond to the enables for that gate.

19.1.3 LOGIC FUNCTION

There are eight available logic functions including:

- AND-OR
- OR-XOR
- AND
- S-R Latch
- D Flip-Flop with Set and Reset
- D Flip-Flop with Reset
- J-K Flip-Flop with Reset
- Transparent Latch with Set and Reset

Logic functions are shown in Figure 19-3. Each logic function has four inputs and one output. The four inputs are the four data gate outputs of the previous stage. The output is fed to the inversion stage and from there to other peripherals, an output pin, and back to the CLCx itself.

19.1.4 OUTPUT POLARITY

The last stage in the configurable logic cell is the output polarity. Setting the LCxPOL bit of the CLCxCON register inverts the output signal from the logic stage. Changing the polarity while the interrupts are enabled will cause an interrupt for the resulting output transition.

27.3 Timer1 Prescaler

Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The T1CKPS bits of the T1CON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.

27.4 Timer1 (Secondary) Oscillator

A dedicated low-power 32.768 kHz oscillator circuit is built-in between pins SOSCI (input) and SOSCO (amplifier output). This internal circuit is to be used in conjunction with an external 32.768 kHz crystal.

The oscillator circuit is enabled by setting the T1OSCEN bit of the T1CON register. The oscillator will continue to run during Sleep.

Note: The oscillator requires a start-up and stabilization time before use. Thus, T1OSCEN should be set and a suitable delay observed prior to using Timer1. A suitable delay similar to the OST delay can be implemented in software by clearing the TMR1IF bit then presetting the TMR1H:TMR1L register pair to FC00h. The TMR1IF flag will be set when 1024 clock cycles have elapsed, thereby indicating that the oscillator is running and reasonably stable.

27.5 Timer1 Operation in Asynchronous Counter Mode

If the control bit T1SYNC of the T1CON register is set, the external clock input is not synchronized. The timer increments asynchronously to the internal phase clocks. If the external clock source is selected then the timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 27.5.1 "Reading and Writing Timer1 in Asynchronous Counter Mode").

Note:	When switching from synchronous to
	asynchronous operation, it is possible to
	skip an increment. When switching from
	asynchronous to synchronous operation,
	it is possible to produce an additional
	increment.

27.5.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TMR1L register pair.

27.6 Timer1 Gate

Timer1 can be configured to count freely or the count can be enabled and disabled using Timer1 gate circuitry. This is also referred to as Timer1 Gate Enable.

Timer1 gate can also be driven by multiple selectable sources.

27.6.1 TIMER1 GATE ENABLE

The Timer1 Gate Enable mode is enabled by setting the TMR1GE bit of the T1GCON register. The polarity of the Timer1 Gate Enable mode is configured using the T1GPOL bit of the T1GCON register.

When Timer1 Gate Enable mode is enabled, Timer1 will increment on the rising edge of the Timer1 clock source. When Timer1 Gate Enable mode is disabled, no incrementing will occur and Timer1 will hold the current count. See Figure 27-3 for timing details.

TABLE 27-3: TIMER1 GATE ENABLE SELECTIONS

T1CLK	T1GPOL	T1G Timer1 Operati		
\uparrow	0	0	Counts	
\uparrow	0	1	Holds Count	
\uparrow	1	0	Holds Count	
\uparrow	1	1	Counts	

FIGURE 27-6:	TIMER1 GATE SINGLE-PULSE AND TOGGLE COMBINED MODE
TMR1GE	
T1GPOL	
T1GSPM	
T1GTM	
T1GG <u>O/</u> DONE	Set by software Cleared by hardware or falling edge of T1GVAL Counting enabled on
t1g_in	
тіскі	
T1GVAL	
Timer1	N N + 1 N + 2 N + 3 N + 4
TMR1GIF	Cleared by software on falling edge of T1GVAL → Cleared by software

28.5 Register Definitions: Timer2 Control

REGISTER 28-1: T2CON: TIMER2 CONTROL REGISTER

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
—		T2OUTF	PS<3:0>		TMR2ON	T2CKP	S<1:0>	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7	Unimpleme	nted: Read as '	0'					
bit 6-3	T2OUTPS<3	3:0>: Timer2 Ou	tput Postscale	er Select bits				
	1111 = 1:16	Postscaler						
	1110 = 1:15	Postscaler						
	1101 = 1:14	Postscaler						
	1100 = 1.13	Postscaler						
	1011 - 1.12 1010 = 1.12	Postscaler						
	1001 = 1:10	Postscaler						
	1000 = 1:9 F	Postscaler						
	0111 = 1 :8 F	Postscaler						
	0110 = 1 :7 F	Postscaler						
	0101 = 1:6 F	Postscaler						
	0100 = 1:5 F	Postscaler						
	0011 = 1 :4 F	Postscaler						
	0010 = 1:3 +	Postscaler						
	0001 = 1:2F							
hit 2	TMR20N· Ti	imer2 On hit						
5112	$1 = \text{Timer}^2$ is on							
	0 = Timer2 is off							
bit 1-0	T2CKPS<1:0>: Timer2 Clock Prescale Select bits							
11 = Prescaler is 64								
	10 = Prescaler is 16							
	01 = Prescal	ler is 4						
	00 = Prescal	ler is 1						

29.3.9 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCP1CON	—	_	DC1B	<1:0>		CCP1N	∕l<3:0>		294
CCPR1L	Capture/Co	Capture/Compare/PWM Register 1 (LSB)							291*
CCPTMRS	P4TSE	L<1:0>	P3TSE	L<1:0>	C2TSE	EL<1:0>	C1TSE	L<1:0>	286
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	90
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	91
PIE2	OSFIE	C2IE	C1IE	_	BCL1IE	TMR6IE	TMR4IE	CCP2IE	92
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	94
PIR2	OSFIF	C2IF	C1IF	_	BCL1IF	TMR6IF	TMR4IF	CCP2IF	95
PR2	Timer2 Per	iod Register	r						282*
ANSELB			ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	131
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2			136
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	130
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	135
RxyPPS	_		_	- RxyPPS<4:0>				153	
CCP1PPS	_	_	- CCP1PPS<4:0>					152	
CCP2PPS	_	_	_	— CCP2PPS<4:0>					152
T2CON			T2OUTPS<3:0> TMR2ON T2CKPS<1:0>					284	
TMR2	Timer2 Module Register							282	

TABLE 29-3: SUMMARY OF REGISTERS ASSOCIATED WITH CCP

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the CCP.

* Page provides register information.

30.2.5 SLAVE SELECT SYNCHRONIZATION

The Slave Select can also be used to synchronize communication. The Slave Select line is held high until the master device is ready to communicate. When the Slave Select line is pulled low, the slave knows that a new transmission is starting.

If the slave fails to receive the communication properly, it will be reset at the end of the transmission, when the Slave Select line returns to a high state. The slave is then ready to receive a new transmission when the Slave Select line is pulled low again. If the Slave Select line is not used, there is a risk that the slave will eventually become out of sync with the master. If the slave misses a bit, it will always be one bit off in future transmissions. Use of the Slave Select line allows the slave and master to align themselves at the beginning of each transmission.

The \overline{SS} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with \overline{SS} pin control enabled (SSP1CON1<3:0> = 0100).

FIGURE 30-7: SPI DAISY-CHAIN CONNECTION

When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven.

When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable depending on the application.

- Note 1: When the SPI is in Slave mode with \overline{SS} pin control enabled (SSP1CON1<3:0> = 0100), the SPI module will reset if the \overline{SS} pin is set to VDD.
 - 2: When the SPI is used in Slave mode with CKE set; the user must enable SS pin control.
 - **3:** While operated in SPI Slave mode the SMP bit of the SSP1STAT register must remain clear.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the SS pin to a high level or clearing the SSPEN bit.

30.6.13.1 Bus Collision During a Start Condition

During a Start condition, a bus collision occurs if:

- a) SDA or SCL are sampled low at the beginning of the Start condition (Figure 30-33).
- b) SCL is sampled low before SDA is asserted low (Figure 30-34).

During a Start condition, both the SDA and the SCL pins are monitored.

If the SDA pin is already low, or the SCL pin is already low, then all of the following occur:

- · the Start condition is aborted,
- · the BCL1IF flag is set and
- the MSSP module is reset to its Idle state (Figure 30-33).

The Start condition begins with the SDA and SCL pins deasserted. When the SDA pin is sampled high, the Baud Rate Generator is loaded and counts down. If the SCL pin is sampled low while SDA is high, a bus collision occurs because it is assumed that another master is attempting to drive a data '1' during the Start condition.

If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 30-35). If, however, a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The Baud Rate Generator is then reloaded and counts down to zero; if the SCL pin is sampled as '0' during this time, a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a Start condition is that no two bus masters can assert a Start condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue into the data portion. Repeated Start or Stop conditions.

31.5.1.5 Synchronous Master Reception

Data is received at the RX/DT pin. The RX/DT pin output driver is automatically disabled when the EUSART is configured for synchronous master receive operation.

In Synchronous mode, reception is enabled by setting either the Single Receive Enable bit (SREN of the RC1STA register) or the Continuous Receive Enable bit (CREN of the RC1STA register).

When SREN is set and CREN is clear, only as many clock cycles are generated as there are data bits in a single character. The SREN bit is automatically cleared at the completion of one character. When CREN is set, clocks are continuously generated until CREN is cleared. If CREN is cleared in the middle of a character the CK clock stops immediately and the partial character is discarded. If SREN and CREN are both set, then SREN is cleared at the completion of the first character and CREN takes precedence.

To initiate reception, set either SREN or CREN. Data is sampled at the RX/DT pin on the trailing edge of the TX/CK clock pin and is shifted into the Receive Shift Register (RSR). When a complete character is received into the RSR, the RCIF bit is set and the character is automatically transferred to the two character receive FIFO. The Least Significant eight bits of the top character in the receive FIFO are available in RC1REG. The RCIF bit remains set as long as there are unread characters in the receive FIFO.

Note:	If the RX/DT function is on an analog pin,
	the corresponding ANSEL bit must be
	cleared for the receiver to function.

31.5.1.6 Slave Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a slave receives the clock on the TX/CK line. The TX/CK pin output driver is automatically disabled when the device is configured for synchronous slave transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One data bit is transferred for each clock cycle. Only as many clock cycles should be received as there are data bits.

Note: If the device is configured as a slave and the TX/CK function is on an analog pin, the corresponding ANSEL bit must be cleared.

31.5.1.7 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before RC1REG is read to access the FIFO. When this happens the OERR bit of the RC1STA register is set. Previous data in the FIFO will not be overwritten. The two characters in the FIFO buffer can be read, however, no additional characters will be received until the error is cleared. The OERR bit can only be cleared by clearing the overrun condition. If the overrun error occurred when the SREN bit is set and CREN is clear then the error is cleared by reading RC1REG. If the overrun occurred when the CREN bit is set then the error condition is cleared by either clearing the CREN bit of the RC1STA register or by clearing the SPEN bit which resets the EUSART.

31.5.1.8 Receiving 9-Bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RC1STA register is set the EUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RC1STA register is the ninth, and Most Significant, data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RC1REG.

31.5.1.9 Synchronous Master Reception Setup

- 1. Initialize the SP1BRGH, SP1BRGL register pair for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- 3. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 4. Ensure bits CREN and SREN are clear.
- 5. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 6. If 9-bit reception is desired, set bit RX9.
- 7. Start reception by setting the SREN bit or for continuous reception, set the CREN bit.
- 8. Interrupt flag bit RCIF will be set when reception of a character is complete. An interrupt will be generated if the enable bit RCIE was set.
- 9. Read the RC1STA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 10. Read the 8-bit received data by reading the RC1REG register.
- 11. If an overrun error occurs, clear the error by either clearing the CREN bit of the RC1STA register or by clearing the SPEN bit which resets the EUSART.

34.2 Standard Operating Conditions

The standard operating co	onditions for any device are defined as:	
Operating Voltage:	$V\text{DDMIN} \leq V\text{DD} \leq V\text{DDMAX}$	
Operating Temperature:	$TA_MIN \le TA \le TA_MAX$	
VDD — Operating Supply	y Voltage ⁽¹⁾	
PIC16LF1717/8/9		
VDDMIN (Fosc \leq 16 MHz)		+1.8V
VDDMIN (Fosc > 16 MHz)		+2.5V
VDDMAX		+3.6V
PIC16F1717/8/9		
VDDMIN (Fosc \leq 16 MHz)		+2.3V
Vddmin (> 16 MHz)		
VDDMAX		+5.5V
TA — Operating Ambient	t Temperature Range	
Industrial Temperat	lure	
ТА_МІЛ		40°C
Та_мах		+85°C
Extended Temperat	ture	
Та_міл		40°C
Та_мах		+125°C
Note 1: See Paramete	er D001, DS Characteristics: Supply Voltage.	

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 35-103: Comparator Hysteresis, NP Mode (CxSP = 1), VDD = 5.5V, Typical Measured Values, PIC16F1717/8/9 Only.

FIGURE 35-104: Comparator Offset, NP Mode (CxSP = 1), VDD = 5.0V, Typical Measured Values at 25°C, PIC16F1717/8/9 Only.

FIGURE 35-105: Comparator Offset, NP Mode (CxSP = 1), VDD = 5.5V, Typical Measured Values From -40°C to 125°C, PIC16F1717/8/9 Only.

FIGURE 35-106: Comparator Response Time Over Voltage, NP Mode (CxSP = 1), Typical Measured Values, PIC16LF1717/8/9 Only.

FIGURE 35-107: Comparator Response Time Over Voltage, NP Mode (CxSP = 1), Typical Measured Values, PIC16F1717/8/9 Only.

FIGURE 35-108: Comparator Output Filter Delay Time Over Temp., NP Mode (CxSP = 1), Typical Measured Values, PIC16LF1717/8/9 Only.