

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E-XF

| Product Status             | Active                                                                    |
|----------------------------|---------------------------------------------------------------------------|
| Core Processor             | PIC                                                                       |
| Core Size                  | 8-Bit                                                                     |
| Speed                      | 32MHz                                                                     |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                                 |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                     |
| Number of I/O              | 24                                                                        |
| Program Memory Size        | 28KB (16K x 14)                                                           |
| Program Memory Type        | FLASH                                                                     |
| EEPROM Size                | -                                                                         |
| RAM Size                   | 2K x 8                                                                    |
| Voltage - Supply (Vcc/Vdd) | 2.3V ~ 5.5V                                                               |
| Data Converters            | A/D 17x10b; D/A 1x5b, 1x8b                                                |
| Oscillator Type            | Internal                                                                  |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                        |
| Mounting Type              | Surface Mount                                                             |
| Package / Case             | 28-UFQFN Exposed Pad                                                      |
| Supplier Device Package    | 28-UQFN (4x4)                                                             |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16f1718-e-mv |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| Name                             | Function | Input<br>Type | Output<br>Type | e Description                                |  |  |  |
|----------------------------------|----------|---------------|----------------|----------------------------------------------|--|--|--|
| RA0/AN0/C1IN0-/C2IN0-/           | RA0      | TTL/ST        | CMOS           | General purpose I/O.                         |  |  |  |
| CLCINO <sup>(1)</sup>            | AN0      | AN            | _              | ADC Channel 0 input.                         |  |  |  |
|                                  | C1IN0-   | AN            | _              | Comparator C2 negative input.                |  |  |  |
|                                  | C2IN0-   | AN            | _              | Comparator C3 negative input.                |  |  |  |
|                                  | CLCIN0   | TTL/ST        | _              | Configurable Logic Cell source input.        |  |  |  |
| RA1/AN1/C1IN1-/C2IN1-/           | RA1      | TTL/ST        | CMOS           | General purpose I/O.                         |  |  |  |
| OPA1OUT/CLCIN1 <sup>(1)</sup>    | AN1      | AN            |                | ADC Channel 1 input.                         |  |  |  |
|                                  | C1IN1-   | AN            | _              | Comparator C1 negative input.                |  |  |  |
|                                  | C2IN1-   | AN            | _              | Comparator C2 negative input.                |  |  |  |
|                                  | OPA1OUT  | _             | AN             | Operational Amplifier 1 output.              |  |  |  |
|                                  | CLCIN1   | TTL/ST        | _              | Configurable Logic Cell source input.        |  |  |  |
| RA2/AN2/VREF-/C1IN0+/C2IN0+/     | RA2      | TTL/ST        | CMOS           | General purpose I/O.                         |  |  |  |
| DAC1OUT1                         | AN2      | AN            |                | ADC Channel 2 input.                         |  |  |  |
|                                  | VREF-    | AN            |                | ADC Negative Voltage Reference input.        |  |  |  |
|                                  | C1IN0+   | AN            |                | Comparator C2 positive input.                |  |  |  |
|                                  | C2IN0+   | AN            |                | Comparator C3 positive input.                |  |  |  |
|                                  | DAC10UT1 |               | AN             | Digital-to-Analog Converter output.          |  |  |  |
| RA3/AN3/VREF+/C1IN1+             | RA3      | TTL/ST        | CMOS           | General purpose I/O.                         |  |  |  |
|                                  | AN3      | AN            |                | ADC Channel 3 input.                         |  |  |  |
|                                  | VREF+    | AN            |                | ADC Voltage Reference input.                 |  |  |  |
|                                  | C1IN1+   | AN            |                | Comparator C1 positive input.                |  |  |  |
| RA4/OPA1IN+/T0CKI <sup>(1)</sup> | RA4      | TTL/ST        | CMOS           | General purpose I/O.                         |  |  |  |
|                                  | OPA1IN+  | AN            | _              | Operational Amplifier 1 non-inverting input. |  |  |  |
|                                  | TOCKI    | TTL/ST        |                | Timer0 gate input.                           |  |  |  |
| RA5/AN4/OPA1IN-/DAC2OUT1/        | RA5      | TTL/ST        | CMOS           | General purpose I/O.                         |  |  |  |
| SS()                             | AN4      | AN            | _              | ADC Channel 4 input.                         |  |  |  |
|                                  | OPA1IN-  | AN            | _              | Operational Amplifier 1 inverting input.     |  |  |  |
|                                  | DAC2OUT1 |               | AN             | Digital-to-Analog Converter output.          |  |  |  |
|                                  | SS       | TTL/ST        | _              | Slave Select enable input.                   |  |  |  |
| RA6/OSC2/CLKOUT                  | RA6      | TTL/ST        | CMOS           | General purpose I/O.                         |  |  |  |
|                                  | OSC2     | —             | XTAL           | Crystal/Resonator (LP, XT, HS modes).        |  |  |  |
|                                  | CLKOUT   | _             | CMOS           | Fosc/4 output.                               |  |  |  |
| RA7/OSC1/CLKIN                   | RA7      | TTL/ST        | CMOS           | General purpose I/O.                         |  |  |  |
|                                  | OSC1     | —             | XTAL           | Crystal/Resonator (LP, XT, HS modes).        |  |  |  |
|                                  | CLKIN    | ST            | —              | External clock input (EC mode).              |  |  |  |
| RB0/AN12/C2IN1+/ZCD/             | RB0      | TTL/ST        | CMOS           | General purpose I/O.                         |  |  |  |
| COGIN                            | AN12     | AN            | —              | ADC Channel 12 input.                        |  |  |  |
|                                  | C2IN1+   | AN            | _              | Comparator C2 positive input.                |  |  |  |
|                                  | ZCD      | AN            | _              | Zero-Cross Detection Current Source/Sink.    |  |  |  |
|                                  | COGIN    | TTL/ST        | CMOS           | Complementary Output Generator input.        |  |  |  |

TABLE 1-2: PIC16(L)F1718 PINOUT DESCRIPTION

 Legend:
 AN = Analog input or output
 CMOS = CMOS compatible input or output
 OD = Open-Drain

 TTL = TTL compatible input
 ST = Schmitt Trigger input with CMOS levels
 I<sup>2</sup>C = Schmitt Trigger input with I<sup>2</sup>C

 HV = High Voltage
 XTAL = Crystal levels

Note 1: Default peripheral input. Alternate pins can be selected as the peripheral input with the PPS input selection registers.

2: All pin digital outputs default to PORT latch data. Alternate outputs can be selected as the peripheral digital output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

#### 6.2 Clock Source Types

Clock sources can be classified as external or internal.

External clock sources rely on external circuitry for the clock source to function. Examples are: oscillator modules (ECH, ECM, ECL mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes) and Resistor-Capacitor (EXTRC) mode circuits.

Internal clock sources are contained within the oscillator module. The internal oscillator block has two internal oscillators and a dedicated Phase-Lock Loop (HFPLL) that are used to generate three internal system clock sources: the 16 MHz High-Frequency Internal Oscillator (HFINTOSC), 500 kHz (MFINTOSC) and the 31 kHz Low-Frequency Internal Oscillator (LFINTOSC).

The system clock can be selected between external or internal clock sources via the System Clock Select (SCS) bits in the OSCCON register. See **Section 6.3** "**Clock Switching**" for additional information.

#### 6.2.1 EXTERNAL CLOCK SOURCES

An external clock source can be used as the device system clock by performing one of the following actions:

- Program the FOSC<2:0> bits in the Configuration Words to select an external clock source that will be used as the default system clock upon a device Reset.
- Write the SCS<1:0> bits in the OSCCON register to switch the system clock source to:
  - Secondary oscillator during run-time, or
  - An external clock source determined by the value of the FOSC bits.

See **Section 6.3** "Clock Switching" for more information.

#### 6.2.1.1 EC Mode

The External Clock (EC) mode allows an externally generated logic level signal to be the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input. OSC2/CLKOUT is available for general purpose I/O or CLKOUT. Figure 6-2 shows the pin connections for EC mode.

EC mode has three power modes to select from through Configuration Words:

- ECH High power, 4-32 MHz
- ECM Medium power, 0.5-4 MHz
- ECL Low power, 0-0.5 MHz

The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC<sup>®</sup> MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.



#### EXTERNAL CLOCK (EC) MODE OPERATION



### 6.2.1.2 LP, XT, HS Modes

The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (see Figure 6-3). The three modes select a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.

**LP** Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is designed to drive only 32.768 kHz tuning-fork type crystals (watch crystals).

**XT** Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification.

**HS** Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting.

Figure 6-3 and Figure 6-4 show typical circuits for quartz crystal and ceramic resonators, respectively.

## 8.0 POWER-DOWN MODE (SLEEP)

The Power-down mode is entered by executing a  $\ensuremath{\mathtt{SLEEP}}$  instruction.

Upon entering Sleep mode, the following conditions exist:

- 1. WDT will be cleared but keeps running, if enabled for operation during Sleep.
- 2. PD bit of the STATUS register is cleared.
- 3. TO bit of the STATUS register is set.
- 4. CPU clock is disabled.
- 5. 31 kHz LFINTOSC is unaffected and peripherals that operate from it may continue operation in Sleep.
- 6. Timer1 and peripherals that operate from Timer1 continue operation in Sleep when the Timer1 clock source selected is:
- LFINTOSC
- T1CKI
- Secondary oscillator
- 7. ADC is unaffected, if the dedicated FRC oscillator is selected.
- 8. I/O ports maintain the status they had before SLEEP was executed (driving high, low or high-impedance).
- 9. Resets other than WDT are not affected by Sleep mode.

Refer to individual chapters for more details on peripheral operation during Sleep.

To minimize current consumption, the following conditions should be considered:

- I/O pins should not be floating
- External circuitry sinking current from I/O pins
- Internal circuitry sourcing current from I/O pins
- Current draw from pins with internal weak pull-ups
- Modules using 31 kHz LFINTOSC
- · Modules using secondary oscillator

I/O pins that are high-impedance inputs should be pulled to VDD or VSS externally to avoid switching currents caused by floating inputs.

Examples of internal circuitry that might be sourcing current include modules such as the DAC and FVR modules. See Section 22.0 "Operational Amplifier (OPA) Modules" and Section 14.0 "Fixed Voltage Reference (FVR)" for more information on these modules.

#### 8.1 Wake-up from Sleep

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on MCLR pin, if enabled
- 2. BOR Reset, if enabled
- 3. POR Reset
- 4. Watchdog Timer, if enabled
- 5. Any external interrupt
- 6. Interrupts by peripherals capable of running during Sleep (see individual peripheral for more information)

The first three events will cause a device Reset. The last three events are considered a continuation of program execution. To determine whether a device Reset or wake-up event occurred, refer to **Section 5.12 "Determining the Cause of a Reset"**.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be enabled. Wake-up will occur regardless of the state of the GIE bit. If the GIE bit is disabled, the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is enabled, the device executes the instruction after the SLEEP instruction, the device will then call the Interrupt Service Routine. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up.

See Table 10-1 for Erase Row size and the number of write latches for Flash program memory.

| TABLE 10-1: | FLASH MEMORY           |
|-------------|------------------------|
|             | ORGANIZATION BY DEVICE |

| Device        | Row Erase<br>(words) | Write<br>Latches<br>(words) |  |
|---------------|----------------------|-----------------------------|--|
| PIC16(L)F1717 |                      |                             |  |
| PIC16(L)F1718 | 32                   | 32                          |  |
| PIC16(L)F1719 |                      |                             |  |

# 10.2.1 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must:

- 1. Write the desired address to the PMADRH:PMADRL register pair.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Then, set control bit RD of the PMCON1 register.

Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF PMCON1, RD" instruction to be ignored. The data is available in the very next cycle, in the PMDATH:PMDATL register pair; therefore, it can be read as two bytes in the following instructions.

PMDATH:PMDATL register pair will hold this value until another read or until it is written to by the user.

| Note: | The two instructions following a program    |
|-------|---------------------------------------------|
|       | memory read are required to be NOPS.        |
|       | This prevents the user from executing a     |
|       | 2-cycle instruction on the next instruction |
|       | after the RD bit is set.                    |



#### FLASH PROGRAM MEMORY READ FLOWCHART



### 11.6 Register Definitions: PORTC

| R/W-x/u                                 | R/W-x/u | R/W-x/u                                               | R/W-x/u | R/W-x/u                            | R/W-x/u | R/W-x/u | R/W-x/u |
|-----------------------------------------|---------|-------------------------------------------------------|---------|------------------------------------|---------|---------|---------|
| RC7                                     | RC6     | RC5                                                   | RC4     | RC3                                | RC2     | RC1     | RC0     |
| bit 7                                   |         |                                                       |         |                                    |         |         | bit 0   |
|                                         |         |                                                       |         |                                    |         |         |         |
| Legend:                                 |         |                                                       |         |                                    |         |         |         |
| R = Readable bit W = Writable bit       |         |                                                       |         | U = Unimplemented bit, read as '0' |         |         |         |
| u = Bit is unchanged x = Bit is unknown |         | -n/n = Value at POR and BOR/Value at all other Resets |         |                                    |         |         |         |
| '1' = Bit is set                        |         | '0' = Bit is clea                                     | ared    |                                    |         |         |         |

#### REGISTER 11-17: PORTC: PORTC REGISTER

bit 7-0 RC<7:0>: PORTC General Purpose I/O Pin bits<sup>(1)</sup> 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

**Note 1:** Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is return of actual I/O pin values.

#### REGISTER 11-18: TRISC: PORTC TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISC7  | TRISC6  | TRISC5  | TRISC4  | TRISC3  | TRISC2  | TRISC1  | TRISC0  |
| bit 7   |         |         |         |         |         |         | bit 0   |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-0

- TRISC<7:0>: PORTC Tri-State Control bits
- 1 = PORTC pin configured as an input (tri-stated)
- 0 = PORTC pin configured as an output

#### REGISTER 11-19: LATC: PORTC DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATC7   | LATC6   | LATC5   | LATC4   | LATC3   | LATC2   | LATC1   | LATC0   |
| bit 7   |         |         |         |         |         |         | bit 0   |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

#### bit 7-0 LATC<7:0>: PORTC Output Latch Value bits

| U-0                                                                                             | U-0                                     | U-0               | U-0             | R/W-0/0                                               | U-0       | U-0            | U-0   |  |
|-------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------|-----------------|-------------------------------------------------------|-----------|----------------|-------|--|
| —                                                                                               | —                                       | —                 | —               | IOCEP3                                                | —         | —              | —     |  |
| bit 7                                                                                           |                                         |                   |                 |                                                       |           |                | bit 0 |  |
|                                                                                                 |                                         |                   |                 |                                                       |           |                |       |  |
| Legend:                                                                                         |                                         |                   |                 |                                                       |           |                |       |  |
| R = Readable bit W = Writable bit                                                               |                                         |                   | bit             | U = Unimplemented bit, read as '0'                    |           |                |       |  |
| u = Bit is uncha                                                                                | u = Bit is unchanged x = Bit is unknown |                   | nown            | -n/n = Value at POR and BOR/Value at all other Resets |           |                |       |  |
| '1' = Bit is set                                                                                |                                         | '0' = Bit is clea | ared            |                                                       |           |                |       |  |
|                                                                                                 |                                         |                   |                 |                                                       |           |                |       |  |
| bit 7-4                                                                                         | Unimplemen                              | ted: Read as '    | 0'              |                                                       |           |                |       |  |
| bit 3                                                                                           | IOCEP3: Inter                           | rrupt-on-Chang    | e PORTE Po      | sitive Edge En                                        | able bits |                |       |  |
| 1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCEFx bit and IOCIF flag |                                         |                   |                 |                                                       |           | OCIF flag will |       |  |
|                                                                                                 | be set upon detecting an edge.          |                   |                 |                                                       |           |                |       |  |
|                                                                                                 | 0 = interrupt-                          | on-change dis     | abled for the a | associated pin                                        |           |                |       |  |
| bit 2-0                                                                                         | Unimplemen                              | ted: Read as '    | 0'              |                                                       |           |                |       |  |

### REGISTER 13-10: IOCEP: INTERRUPT-ON-CHANGE PORTE POSITIVE EDGE REGISTER

#### REGISTER 13-11: IOCEN: INTERRUPT-ON-CHANGE PORTE NEGATIVE EDGE REGISTER

| U-0   | U-0 | U-0 | U-0 | R/W-0/0 | U-0 | U-0 | U-0   |
|-------|-----|-----|-----|---------|-----|-----|-------|
| _     | _   | _   | —   | IOCEN3  | —   |     | _     |
| bit 7 |     |     |     |         |     |     | bit 0 |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

| bit 7-4 | Unimplemented: Read as '0'                                                                                                                                  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 3   | IOCEN3: Interrupt-on-Change PORTE Negative Edge Enable bits                                                                                                 |
|         | <ul> <li>1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCEFx bit and IOCIF flag will<br/>be set upon detecting an edge.</li> </ul> |
|         | 0 = Interrupt-on-Change disabled for the associated pin.                                                                                                    |
| bit 2-0 | Unimplemented: Read as '0'                                                                                                                                  |

#### 18.4 Output Control

Upon disabling, or immediately after enabling the COG module, the primary COG outputs are inactive and complementary COG outputs are active.

#### 18.4.1 OUTPUT ENABLES

There are no output enable controls in the COG module. Instead, each device pin has an individual output selection control called the PPS register. All four COG outputs are available for selection in the PPS register of every pin.

When a COG output is enabled by PPS selection, the output on the pin has several possibilities, which depend on the steering control, GxEN bit, and shutdown state as shown in Table 18-1

| GxEN | COGxSTR<br>bit | Shutdown | Output               |
|------|----------------|----------|----------------------|
| x    | 0              | Inactive | Static steering data |
| x    | 1              | Active   | Shutdown override    |
| 0    | 1              | Inactive | Inactive state       |
| 1    | 1              | Inactive | Active PWM signal    |

TABLE 18-1: PIN OUTPUT STATES

#### 18.4.2 POLARITY CONTROL

The polarity of each COG output can be selected independently. When the output polarity bit is set, the corresponding output is active low. Clearing the output polarity bit configures the corresponding output as active high. However, polarity affects the outputs in only one of the four shutdown override modes. See Section 18.8, Auto-shutdown Control for more details.

Output polarity is selected with the GxPOLA through GxPOLD bits of the COGxCON1 register (Register 18-2).

#### 18.5 Dead-Band Control

The dead-band control provides for non-overlapping PWM output signals to prevent shoot-through current in the external power switches. Dead time affects the output only in the Half-Bridge mode and when changing direction in the Full-Bridge mode.

The COG contains two dead-band timers. One dead-band timer is used for rising event dead-band control. The other is used for falling event dead-band control. Timer modes are selectable as either:

- Asynchronous delay chain
- · Synchronous counter

The dead-band Tmer mode is selected for the rising\_event and falling\_event dead-band times with the respective GxRDBS and GxFDBS bits of the COGxCON1 register (Register 18-2).

In Half-Bridge mode, the rising\_event dead-band time delays all selected primary outputs from going active for the selected dead time after the rising event. COGxA and COGxC are the primary outputs in Half-Bridge mode.

In Half-Bridge mode, the falling\_event dead-band time delays all selected complementary outputs from going active for the selected dead time after the falling event. COGxB and COGxD are the complementary outputs in Half-Bridge mode.

In Full-Bridge mode, the dead-time delay occurs only during direction changes. The modulated output is delayed for the falling\_event dead time after a direction change from forward to reverse. The modulated output is delayed for the rising\_event dead time after a direction change from reverse to forward.

#### 18.5.1 ASYNCHRONOUS DELAY CHAIN DEAD-BAND DELAY

Asynchronous dead-band delay is determined by the time it takes the input to propagate through a series of delay elements. Each delay element is a nominal five nanoseconds.

Set the COGxDBR register (Register 18-10) value to the desired number of delay elements in the rising\_event dead-band time. Set the COGxDBF register (Register 18-11) value to the desired number of delay elements in the falling\_event dead-band time. When the value is zero, dead-band delay is disabled.

#### 18.5.2 SYNCHRONOUS COUNTER DEAD-BAND DELAY

Synchronous counter dead band is timed by counting COG\_clock periods from zero up to the value in the dead-band count register. Use Equation 18-1 to calculate dead-band times.

Set the COGxDBR count register value to obtain the desired rising\_event dead-band time. Set the COGxDBF count register value to obtain the desired falling\_event dead-band time. When the value is zero, dead-band delay is disabled.

#### 18.5.3 SYNCHRONOUS COUNTER DEAD-BAND TIME UNCERTAINTY

When the rising and falling events that trigger the dead-band counters come from asynchronous inputs, it creates uncertainty in the synchronous counter dead-band time. The maximum uncertainty is equal to one COG\_clock period. Refer to Example 18-1 for more detail.

When event input sources are asynchronous with no phase delay, use the asynchronous delay chain dead-band mode to avoid the dead-band time uncertainty.

#### 18.8 Auto-shutdown Control

Auto-shutdown is a method to immediately override the COG output levels with specific overrides that allow for safe shutdown of the circuit.

The shutdown state can be either cleared automatically or held until cleared by software. In either case, the shutdown overrides remain in effect until the first rising event after the shutdown is cleared.

#### 18.8.1 SHUTDOWN

The shutdown state can be entered by either of the following two mechanisms:

- · Software generated
- External Input

#### 18.8.1.1 Software Generated Shutdown

Setting the GxASE bit of the COGxASD0 register (Register 18-7) will force the COG into the shutdown state.

When auto-restart is disabled, the shutdown state will persist until the first rising event after the GxASE bit is cleared by software.

When auto-restart is enabled, the GxASE bit will clear automatically and resume operation on the first rising event after the shutdown input clears. See Figure 18-15 and **Section 18.8.3.2 "Auto-Restart"**.

#### 18.8.1.2 External Shutdown Source

External shutdown inputs provide the fastest way to safely suspend COG operation in the event of a Fault condition. When any of the selected shutdown inputs goes true, the output drive latches are reset and the COG outputs immediately go to the selected override levels without software delay.

Any combination of the input sources can be selected to cause a shutdown condition. Shutdown occurs when the selected source is low. Shutdown input sources include:

- Any input pin selected with the COGxPPS control
- C2OUT
- C10UT
- CLC2OUT

Shutdown inputs are selected independently with bits of the COGxASD1 register (Register 18-8).

| Note: | Shutd                                    | own input    | s are lev | el ser | isitive, not |  |  |  |
|-------|------------------------------------------|--------------|-----------|--------|--------------|--|--|--|
|       | edge s                                   | sensitive. T | he shutd  | own st | ate cannot   |  |  |  |
|       | be cleared as long as the shutdown input |              |           |        |              |  |  |  |
|       | level                                    | persists,    | except    | by     | disabling    |  |  |  |
|       | auto-s                                   | hutdown,     |           |        |              |  |  |  |

#### 18.8.2 PIN OVERRIDE LEVELS

The levels driven to the output pins, while the shutdown is active, are controlled by the GxASDAC<1:0> and GxASDBC<1:0> bits of the COGxASD0 register (Register 18-7). GxASDAC<1:0> controls the COGxA and COGxC override levels and GxASDBC<1:0> controls the COGxB and COGxD override levels. There are four override options for each output pair:

- · Forced low
- · Forced high
- Tri-state
- PWM inactive state (same state as that caused by a falling event)

Note: The polarity control does not apply to the forced low and high override levels but does apply to the PWM inactive state.

#### 18.8.3 AUTO-SHUTDOWN RESTART

After an auto-shutdown event has occurred, there are two ways to resume operation:

- Software controlled
- Auto-restart

The restart method is selected with the GxARSEN bit of the COGxASD0 register. Waveforms of a software controlled automatic restart are shown in Figure 18-15.

#### 18.8.3.1 Software Controlled Restart

When the GxARSEN bit of the COGxASD0 register is cleared, software must clear the GxASE bit to restart COG operation after an auto-shutdown event.

The COG will resume operation on the first rising event after the GxASE bit is cleared. Clearing the shutdown state requires all selected shutdown inputs to be false, otherwise, the GxASE bit will remain set.

#### 18.8.3.2 Auto-Restart

When the GxARSEN bit of the COGxASD0 register is set, the COG will restart from the auto-shutdown state automatically.

The GxASE bit will clear automatically and the COG will resume operation on the first rising event after all selected shutdown inputs go false.

# PIC16(L)F1717/8/9



| R/W-x/u          | R/W-x/u            | R/W-x/u           | R/W-x/u            | R/W-x/u                            | R/W-x/u       | R/W-x/u          | R/W-x/u      |  |  |
|------------------|--------------------|-------------------|--------------------|------------------------------------|---------------|------------------|--------------|--|--|
| ADRE             | S<1:0>             | —                 | —                  | —                                  | —             | —                | —            |  |  |
| bit 7            |                    |                   |                    |                                    |               |                  | bit 0        |  |  |
|                  |                    |                   |                    |                                    |               |                  |              |  |  |
| Legend:          |                    |                   |                    |                                    |               |                  |              |  |  |
| R = Readable     | bit                | W = Writable      | bit                | U = Unimplemented bit, read as '0' |               |                  |              |  |  |
| u = Bit is unch  | = Bit is unchanged |                   | x = Bit is unknown |                                    | at POR and BC | R/Value at all o | other Resets |  |  |
| '1' = Bit is set |                    | '0' = Bit is clea | ared               |                                    |               |                  |              |  |  |
|                  |                    |                   |                    |                                    |               |                  |              |  |  |
| bit 7-6          | ADRES<1:0          | - ADC Result F    | Register bits      |                                    |               |                  |              |  |  |

#### **REGISTER 21-5:** ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0

| bit 7-6 | ADRES<1:0>: ADC Result Register bits       |
|---------|--------------------------------------------|
|         | Lower two bits of 10-bit conversion result |
| bit 5-0 | Reserved: Do not use.                      |

#### REGISTER 21-6: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1

| R/W-x/u    | R/W-x/u |
|---------|---------|---------|---------|---------|---------|------------|---------|
| —       | —       | —       | —       | —       | —       | ADRES<9:8> |         |
| bit 7   |         |         |         |         |         |            | bit 0   |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

#### bit 7-2 Reserved: Do not use.

bit 1-0 ADRES<9:8>: ADC Result Register bits Upper two bits of 10-bit conversion result

#### **REGISTER 21-7:** ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1

| R/W-x/u     | R/W-x/u | R/W-x/u | R/W-x/u | R/W-x/u | R/W-x/u | R/W-x/u | R/W-x/u |  |
|-------------|---------|---------|---------|---------|---------|---------|---------|--|
| ADRES<7:0>  |         |         |         |         |         |         |         |  |
| bit 7 bit ( |         |         |         |         |         |         |         |  |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-0 ADRES<7:0>: ADC Result Register bits Lower eight bits of 10-bit conversion result

#### 30.2.5 SLAVE SELECT SYNCHRONIZATION

The Slave Select can also be used to synchronize communication. The Slave Select line is held high until the master device is ready to communicate. When the Slave Select line is pulled low, the slave knows that a new transmission is starting.

If the slave fails to receive the communication properly, it will be reset at the end of the transmission, when the Slave Select line returns to a high state. The slave is then ready to receive a new transmission when the Slave Select line is pulled low again. If the Slave Select line is not used, there is a risk that the slave will eventually become out of sync with the master. If the slave misses a bit, it will always be one bit off in future transmissions. Use of the Slave Select line allows the slave and master to align themselves at the beginning of each transmission.

The  $\overline{SS}$  pin allows a Synchronous Slave mode. The SPI must be in Slave mode with  $\overline{SS}$  pin control enabled (SSP1CON1<3:0> = 0100).

FIGURE 30-7: SPI DAISY-CHAIN CONNECTION

When the  $\overline{SS}$  pin is low, transmission and reception are enabled and the SDO pin is driven.

When the  $\overline{SS}$  pin goes high, the SDO pin is no longer driven, even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable depending on the application.

- Note 1: When the SPI is in Slave mode with  $\overline{SS}$  pin control enabled (SSP1CON1<3:0> = 0100), the SPI module will reset if the  $\overline{SS}$ pin is set to VDD.
  - 2: When the SPI is used in Slave mode with CKE set; the user must enable SS pin control.
  - **3:** While operated in SPI Slave mode the SMP bit of the SSP1STAT register must remain clear.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the SS pin to a high level or clearing the SSPEN bit.



# PIC16(L)F1717/8/9





#### 30.6.5 I<sup>2</sup>C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition (Figure 30-27) occurs when the RSEN bit of the SSP1CON2 register is programmed high and the master state machine is no longer active. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. SCL is asserted low. Following this, the RSEN bit of the SSP1CON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL

pins, the S bit of the SSP1STAT register will be set. The SSP1IF bit will not be set until the Baud Rate Generator has timed out.

Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
2: A bus collision during the Repeated Start condition occurs if:

- SDA is sampled low when SCL goes from low-to-high.
- SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.

### FIGURE 30-27: REPEATED START CONDITION WAVEFORM



| С    | Configuration Bits |      |                     | Baud Pate Formula |  |  |
|------|--------------------|------|---------------------|-------------------|--|--|
| SYNC | BRG16              | BRGH | BRG/EUSART Mode     | Bauu Kale Formula |  |  |
| 0    | 0                  | 0    | 8-bit/Asynchronous  | Fosc/[64 (n+1)]   |  |  |
| 0    | 0                  | 1    | 8-bit/Asynchronous  |                   |  |  |
| 0    | 1                  | 0    | 16-bit/Asynchronous | FOSC/[16 (n+1)]   |  |  |
| 0    | 1                  | 1    | 16-bit/Asynchronous |                   |  |  |
| 1    | 0                  | x    | 8-bit/Synchronous   | Fosc/[4 (n+1)]    |  |  |
| 1    | 1                  | x    | 16-bit/Synchronous  |                   |  |  |

#### TABLE 31-3: BAUD RATE FORMULAS

**Legend:** x = Don't care, n = value of SP1BRGH, SP1BRGL register pair.

#### TABLE 31-4: SUMMARY OF REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR

| Name     | Bit 7        | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Register<br>on Page |
|----------|--------------|-------|-------|-------|-------|-------|-------|-------|---------------------|
| BAUD1CON | ABDOVF       | RCIDL |       | SCKP  | BRG16 |       | WUE   | ABDEN | 362                 |
| RC1STA   | SPEN         | RX9   | SREN  | CREN  | ADDEN | FERR  | OERR  | RX9D  | 361                 |
| SP1BRGL  | SP1BRG<7:0>  |       |       |       |       |       |       |       | 363                 |
| SP1BRGH  | SP1BRG<15:8> |       |       |       |       |       |       |       | 363                 |
| TX1STA   | CSRC         | TX9   | TXEN  | SYNC  | SENDB | BRGH  | TRMT  | TX9D  | 360                 |

**Legend:** — = unimplemented location, read as '0'. Shaded cells are not used for the Baud Rate Generator.

\* Page provides register information.

| BAUD<br>RATE | <b>SYNC</b> = 0, <b>BRGH</b> = 0, <b>BRG16</b> = 0 |            |                             |                   |            |                             |                   |            |                             |                    |            |                             |
|--------------|----------------------------------------------------|------------|-----------------------------|-------------------|------------|-----------------------------|-------------------|------------|-----------------------------|--------------------|------------|-----------------------------|
|              | Fosc = 32.000 MHz                                  |            |                             | Fosc = 20.000 MHz |            |                             | Fosc = 18.432 MHz |            |                             | Fosc = 11.0592 MHz |            |                             |
|              | Actual<br>Rate                                     | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate    | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate    | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate     | %<br>Error | SPBRG<br>value<br>(decimal) |
| 300          |                                                    | _          | _                           | _                 |            | _                           | _                 |            | _                           | _                  | _          | _                           |
| 1200         | —                                                  | —          | —                           | 1221              | 1.73       | 255                         | 1200              | 0.00       | 239                         | 1200               | 0.00       | 143                         |
| 2400         | 2404                                               | 0.16       | 207                         | 2404              | 0.16       | 129                         | 2400              | 0.00       | 119                         | 2400               | 0.00       | 71                          |
| 9600         | 9615                                               | 0.16       | 51                          | 9470              | -1.36      | 32                          | 9600              | 0.00       | 29                          | 9600               | 0.00       | 17                          |
| 10417        | 10417                                              | 0.00       | 47                          | 10417             | 0.00       | 29                          | 10286             | -1.26      | 27                          | 10165              | -2.42      | 16                          |
| 19.2k        | 19.23k                                             | 0.16       | 25                          | 19.53k            | 1.73       | 15                          | 19.20k            | 0.00       | 14                          | 19.20k             | 0.00       | 8                           |
| 57.6k        | 55.55k                                             | -3.55      | 3                           | —                 | _          | _                           | 57.60k            | 0.00       | 7                           | 57.60k             | 0.00       | 2                           |
| 115.2k       |                                                    | _          | _                           | —                 | _          | _                           | _                 | _          | _                           | —                  | _          | _                           |

#### TABLE 31-5: BAUD RATES FOR ASYNCHRONOUS MODES

|              |                  | SYNC = 0, BRGH = 0, BRG16 = 0 |                             |                  |            |                             |                   |            |                             |                  |            |                             |  |
|--------------|------------------|-------------------------------|-----------------------------|------------------|------------|-----------------------------|-------------------|------------|-----------------------------|------------------|------------|-----------------------------|--|
| BAUD<br>RATE | Fosc = 8.000 MHz |                               |                             | Fosc = 4.000 MHz |            |                             | Fosc = 3.6864 MHz |            |                             | Fosc = 1.000 MHz |            |                             |  |
|              | Actual<br>Rate   | %<br>Error                    | SPBRG<br>value<br>(decimal) | Actual<br>Rate   | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate    | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate   | %<br>Error | SPBRG<br>value<br>(decimal) |  |
| 300          | _                | _                             | _                           | 300              | 0.16       | 207                         | 300               | 0.00       | 191                         | 300              | 0.16       | 51                          |  |
| 1200         | 1202             | 0.16                          | 103                         | 1202             | 0.16       | 51                          | 1200              | 0.00       | 47                          | 1202             | 0.16       | 12                          |  |
| 2400         | 2404             | 0.16                          | 51                          | 2404             | 0.16       | 25                          | 2400              | 0.00       | 23                          | —                | _          | —                           |  |
| 9600         | 9615             | 0.16                          | 12                          | —                |            | —                           | 9600              | 0.00       | 5                           | —                | _          | —                           |  |
| 10417        | 10417            | 0.00                          | 11                          | 10417            | 0.00       | 5                           | _                 | _          | _                           | _                | _          | _                           |  |
| 19.2k        | —                | _                             | —                           | —                |            | —                           | 19.20k            | 0.00       | 2                           | —                | —          | —                           |  |
| 57.6k        | —                | —                             | —                           | —                | —          | —                           | 57.60k            | 0.00       | 0                           | —                | —          | —                           |  |
| 115.2k       |                  | _                             | _                           | —                |            | _                           | —                 |            | _                           | —                | _          | _                           |  |

|              | SYNC = 0, BRGH = 1, BRG16 = 0 |            |                             |                   |            |                             |                   |            |                             |                    |            |                             |
|--------------|-------------------------------|------------|-----------------------------|-------------------|------------|-----------------------------|-------------------|------------|-----------------------------|--------------------|------------|-----------------------------|
| BAUD<br>RATE | Fosc = 32.000 MHz             |            |                             | Fosc = 20.000 MHz |            |                             | Fosc = 18.432 MHz |            |                             | Fosc = 11.0592 MHz |            |                             |
|              | Actual<br>Rate                | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate    | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate    | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate     | %<br>Error | SPBRG<br>value<br>(decimal) |
| 300          | —                             | _          |                             | —                 |            |                             | _                 |            | _                           | _                  | —          | _                           |
| 1200         | _                             | _          | _                           | —                 | —          | —                           | —                 | _          | —                           | —                  | —          | —                           |
| 2400         | _                             | _          | _                           | _                 | _          | _                           | —                 | _          | _                           | —                  | _          | _                           |
| 9600         | 9615                          | 0.16       | 207                         | 9615              | 0.16       | 129                         | 9600              | 0.00       | 119                         | 9600               | 0.00       | 71                          |
| 10417        | 10417                         | 0.00       | 191                         | 10417             | 0.00       | 119                         | 10378             | -0.37      | 110                         | 10473              | 0.53       | 65                          |
| 19.2k        | 19.23k                        | 0.16       | 103                         | 19.23k            | 0.16       | 64                          | 19.20k            | 0.00       | 59                          | 19.20k             | 0.00       | 35                          |
| 57.6k        | 57.14k                        | -0.79      | 34                          | 56.82k            | -1.36      | 21                          | 57.60k            | 0.00       | 19                          | 57.60k             | 0.00       | 11                          |
| 115.2k       | 117.64k                       | 2.12       | 16                          | 113.64k           | -1.36      | 10                          | 115.2k            | 0.00       | 9                           | 115.2k             | 0.00       | 5                           |

#### 31.5.1.5 Synchronous Master Reception

Data is received at the RX/DT pin. The RX/DT pin output driver is automatically disabled when the EUSART is configured for synchronous master receive operation.

In Synchronous mode, reception is enabled by setting either the Single Receive Enable bit (SREN of the RC1STA register) or the Continuous Receive Enable bit (CREN of the RC1STA register).

When SREN is set and CREN is clear, only as many clock cycles are generated as there are data bits in a single character. The SREN bit is automatically cleared at the completion of one character. When CREN is set, clocks are continuously generated until CREN is cleared. If CREN is cleared in the middle of a character the CK clock stops immediately and the partial character is discarded. If SREN and CREN are both set, then SREN is cleared at the completion of the first character and CREN takes precedence.

To initiate reception, set either SREN or CREN. Data is sampled at the RX/DT pin on the trailing edge of the TX/CK clock pin and is shifted into the Receive Shift Register (RSR). When a complete character is received into the RSR, the RCIF bit is set and the character is automatically transferred to the two character receive FIFO. The Least Significant eight bits of the top character in the receive FIFO are available in RC1REG. The RCIF bit remains set as long as there are unread characters in the receive FIFO.

| Note: | If the RX/DT function is on an analog pin |  |  |  |  |  |  |  |  |  |
|-------|-------------------------------------------|--|--|--|--|--|--|--|--|--|
|       | the corresponding ANSEL bit must be       |  |  |  |  |  |  |  |  |  |
|       | cleared for the receiver to function.     |  |  |  |  |  |  |  |  |  |

#### 31.5.1.6 Slave Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a slave receives the clock on the TX/CK line. The TX/CK pin output driver is automatically disabled when the device is configured for synchronous slave transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One data bit is transferred for each clock cycle. Only as many clock cycles should be received as there are data bits.

Note: If the device is configured as a slave and the TX/CK function is on an analog pin, the corresponding ANSEL bit must be cleared.

#### 31.5.1.7 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before RC1REG is read to access the FIFO. When this happens the OERR bit of the RC1STA register is set. Previous data in the FIFO will not be overwritten. The two characters in the FIFO buffer can be read, however, no additional characters will be received until the error is cleared. The OERR bit can only be cleared by clearing the overrun condition. If the overrun error occurred when the SREN bit is set and CREN is clear then the error is cleared by reading RC1REG. If the overrun occurred when the CREN bit is set then the error condition is cleared by either clearing the CREN bit of the RC1STA register or by clearing the SPEN bit which resets the EUSART.

#### 31.5.1.8 Receiving 9-Bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RC1STA register is set the EUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RC1STA register is the ninth, and Most Significant, data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RC1REG.

## 31.5.1.9 Synchronous Master Reception Setup

- 1. Initialize the SP1BRGH, SP1BRGL register pair for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- 3. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 4. Ensure bits CREN and SREN are clear.
- 5. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 6. If 9-bit reception is desired, set bit RX9.
- 7. Start reception by setting the SREN bit or for continuous reception, set the CREN bit.
- 8. Interrupt flag bit RCIF will be set when reception of a character is complete. An interrupt will be generated if the enable bit RCIE was set.
- 9. Read the RC1STA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 10. Read the 8-bit received data by reading the RC1REG register.
- 11. If an overrun error occurs, clear the error by either clearing the CREN bit of the RC1STA register or by clearing the SPEN bit which resets the EUSART.





#### 36.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM<sup>™</sup> and dsPICDEM<sup>™</sup> demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ<sup>®</sup> security ICs, CAN, IrDA<sup>®</sup>, PowerSmart battery management, SEEVAL<sup>®</sup> evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

### 36.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent<sup>®</sup> and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika<sup>®</sup>

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                        | MILLIMETERS |           |          |      |  |  |  |
|------------------------|-------------|-----------|----------|------|--|--|--|
| Dimension              | Limits      | MIN       | NOM      | MAX  |  |  |  |
| Number of Pins         | N           |           | 28       |      |  |  |  |
| Pitch                  | е           | 0.40 BSC  |          |      |  |  |  |
| Overall Height         | A           | 0.45      | 0.50     | 0.55 |  |  |  |
| Standoff               | A1          | 0.00      | 0.02     | 0.05 |  |  |  |
| Contact Thickness      | A3          | 0.127 REF |          |      |  |  |  |
| Overall Width          | E           |           | 4.00 BSC |      |  |  |  |
| Exposed Pad Width      | E2          | 2.55      | 2.65     | 2.75 |  |  |  |
| Overall Length         | D           |           | 4.00 BSC |      |  |  |  |
| Exposed Pad Length     | D2          | 2.55      | 2.65     | 2.75 |  |  |  |
| Contact Width          | b           | 0.15      | 0.20     | 0.25 |  |  |  |
| Contact Length         | L           | 0.30      | 0.40     | 0.50 |  |  |  |
| Contact-to-Exposed Pad | K           | 0.20      | -        | -    |  |  |  |

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-152A Sheet 2 of 2

#### 44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



#### Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B