

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	24
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 17x10b; D/A 1x5b, 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1718-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-3: PIC16(L)F1717/9 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
RC4/AN16/SDI ⁽¹⁾ /SDA ⁽¹⁾	RC4	TTL/ST	CMOS	General purpose I/O.
	AN16	AN	_	ADC Channel 16 input.
	SDI	TTL/ST		SPI Data input.
	SDA ⁽³⁾	l ² C		I ² C Data input.
RC5/AN17	RC5	TTL/ST	CMOS	General purpose I/O.
	AN17	AN	_	ADC Channel 17 input.
RC6/AN18/CK ⁽¹⁾	RC6	TTL/ST	CMOS	General purpose I/O.
	AN18	AN		ADC Channel 18 input.
	СК	TTL/ST		EUSART synchronous clock.
RC7/AN19/RX ⁽¹⁾	RC7	TTL/ST	CMOS	General purpose I/O.
	AN19	AN		ADC Channel 19 input.
	RX	TTL/ST	_	EUSART receive.
RDO/AN20	RD0	TTL/ST	CMOS	General purpose I/O.
	AN20	AN	_	ADC Channel 20 input.
RD1/AN21	RD1	TTL/ST	CMOS	General purpose I/O.
	AN21	AN	_	ADC Channel 21 input.
RD2/AN22	RD2	TTL/ST	CMOS	General purpose I/O.
	AN22	AN	_	ADC Channel 22 input.
RD3/AN23	RD3	TTL/ST	CMOS	General purpose I/O.
	AN23	AN	_	ADC Channel 23 input.
RD4/AN24	RD4	TTL/ST	CMOS	General purpose I/O.
	AN24	AN	_	ADC Channel 24 input.
RD5/AN25	RD5	TTL/ST	CMOS	General purpose I/O.
	AN25	AN		ADC Channel 25 input.
RD6/AN26	RD6	TTL/ST	CMOS	General purpose I/O.
	AN26	AN		ADC Channel 26 input.
RD7/AN27	RD7	TTL/ST	CMOS	General purpose I/O.
	AN27	AN		ADC Channel 27 input.
RE0/AN5	RE0	TTL/ST	CMOS	General purpose I/O.
	AN5	AN		ADC Channel 5 input.
RE1/AN6	RE1	TTL/ST	CMOS	General purpose I/O.
	AN6	AN		ADC Channel 6 input.
RE2/AN7	RE2	TTL/ST	CMOS	General purpose I/O.
	AN7	AN		ADC Channel 7 input.
RE3/MCLR/VPP	RE3	TTL/ST		General purpose input.
	MCLR	ST		Master clear input.
	Vpp	HV	_	Programming voltage.
Vdd	VDD	Power	—	Positive supply.
Vss	Vss	Power	_	Ground reference.

Legend: AN = Analog input or output CMOS = CMOS compatible input or output OD = Open-Drain

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I^2C = Schmitt Trigger input with I^2C HV = High Voltage XTAL = Crystal levels

Note 1: Default peripheral input. Alternate pins can be selected as the peripheral input with the PPS input selection registers.
All pin digital outputs default to PORT latch data. Alternate outputs can be selected as the peripheral digital output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

FIGURE 3-1	PROGRAM MEMO AND STACK FOR PIC16(L)F1717	DRY MAP
	PC<14:0>	
CALI RETURI Interrup	L, CALLW N, RETLW t, RETFIE Stack Level 0 Stack Level 1	
	Stack Level 15	
	Reset Vector	0000h
	Interrupt Vector	0004h
On-chip	Page 0	0005h 07FFh
Memory	Page 1	0800h 0FFFh
	Page 2	1000h 17FFh
	Page 3	1800h 1FFFh
	Rollover to Page 0	2000h
	• • •	
	Rollover to Page 1	7FFFh

FIGURE 3-2:

PROGRAM MEMORY MAP AND STACK FOR PIC16(L)F1718/9

		T
	PC<14:0>	
CALI	L, CALLW 15	
RETURI	N, RETLW	
interrup		
	Stack Level 0	
	•	
	Stack Level 15	
		r I
	Reset Vector	0000h
	Interrupt Vector	0004h
ſ		0005h
On ahin	Page 0	
Program		07FFh
Memory		0800h
, , , , , , , , , , , , , , , , , , ,	Page 1	
l		0FFFh
		1000h
	Page 2	
		17FFh
		1800h
	Page 3	
		1FFFh
	Dana 4	2000h
	Page 4	27FFh
		20006
	Page 5	200011
	l age e	2FFFh
		3000h
	Page 6	000011
		37FFh
		3800h
	Page 7	
		3FFFh
	Rollover to Page 0	4000h
	•	
	•	
	Rollover to Page 1	7FFFh
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Addresses	BANKx	
x00h or x80h	INDF0	
x01h or x81h	INDF1	
x02h or x82h	PCL	
x03h or x83h	STATUS	
x04h or x84h	FSR0L	
x05h or x85h	FSR0H	
x06h or x86h	FSR1L	
x07h or x87h	FSR1H	
x08h or x88h	BSR	
x09h or x89h	WREG	
x0Ah or x8Ah	PCLATH	1
x0Bh or x8Bh	INTCON	

TABLE 3-2: CORE REGISTERS

3.3.1.1 STATUS Register

The STATUS register, shown in Register 3-1, contains:

- The arithmetic status of the ALU
- · The Reset status

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u u1uu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits (Refer to Section 33.0 "Instruction Set Summary").

Note: The C and DC bits operate as Borrow and Digit Borrow out bits, respectively, in subtraction.

3.4.1 SPECIAL FUNCTION REGISTER

The Special Function Registers are registers used by the application to control the desired operation of peripheral functions in the device. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh). The registers associated with the operation of the peripherals are described in the appropriate peripheral chapter of this data sheet.

3.4.2 GENERAL PURPOSE RAM

There are up to 80 bytes of GPR in each data memory bank. The GPR occupies the 80 bytes after the SFR registers of selected data memory banks.

3.4.2.1 Linear Access to GPR

The general purpose RAM can be accessed in a non-banked method via the FSRs. This can simplify access to large memory structures. See **Section 3.7.2** "**Linear Data Memory**" for more information.

3.4.3 COMMON RAM

There are 16 bytes of common RAM accessible from all banks.

FIGURE 3-3: BANKED MEMORY PARTITIONING

7-bit Bank Offset	Memory Region
00h 0Bh	Core Registers (12 bytes)
0Ch	Special Function Registers (20 bytes maximum)
1Fh	
20h	General Purpose RAM (80 bytes maximum)
6Fh	
70h	Common RAM (16 bytes)
7Fh	

3.4.4 DEVICE MEMORY MAPS

The memory maps for the device family are as shown in Table 3-3 through Table 3-10.

TABLE 3-6: PIC16(L)F1718/9 MEMORY MAP, BANK 8-23

	BANK 8		BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h	Core Registers	480h	Core Registers	500h	Core Registers	580h	Core Registers	600h	Core Registers	680h	Core Registers	700h	Core Registers	780h	Core Registers
	(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)
40Bh		48Bh		50Bh		58Bh		60Bh		68Bh		70Bh		78Bh	
40Ch	—	48Ch	—	50Ch	—	58Ch	—	60Ch	-	68Ch	_	70Ch	-	78Ch	—
40Dh	_	48Dh	_	50Dh	_	58Dh	_	60Dh	_	68Dh	_	70Dh	—	78Dh	_
40Eh	_	48Eh	_	50Eh	_	58Eh	_	60Eh		68Eh	_	70Eh	—	78Eh	_
40Fh	—	48Fh	_	50Fh	_	58Fh	_	60Fh	_	68Fh	_	70Fh	—	78Fh	_
410h	—	490h	_	510h	_	590h	_	610h	_	690h	—	710h	—	790h	_
411h	—	491h	—	511h	OPA1CON	591h	—	611h	—	691h	COG1PHR	711h	—	791h	—
412h	—	492h	_	512h	_	592h	_	612h	_	692h	COG1PHF	712h	—	792h	_
413h	—	493h	—	513h	—	593h	—	613h	—	693h	COG1BLKR	713h	—	793h	—
414h	—	494h	—	514h	—	594h	—	614h	—	694h	COG1BLKF	714h	—	794h	—
415h	TMR4	495h	_	515h	OPA2CON	595h	_	615h	_	695h	COG1DBR	715h	—	795h	—
416h	PR4	496h	_	516h	_	596h	_	616h	—	696h	COG1DBF	716h	—	796h	—
417h	T4CON	497h	—	517h	—	597h	—	617h	PWM3DCL	697h	COG1CON0	717h	—	797h	—
418h	_	498h	NCO1ACCL	518h	_	598h	_	618h	PWM3DCH	698h	COG1CON1	718h	—	798h	—
419h	—	499h	NCO1ACCH	519h	—	599h	—	619h	PWM3CON	699h	COG1RIS	719h	—	799h	—
41Ah	—	49Ah	NCO1ACCU	51Ah	_	59Ah	_	61Ah	PWM4DCL	69Ah	COG1RSIM	71Ah	—	79Ah	—
41Bh	—	49Bh	NCO1INCL	51Bh	—	59Bh	—	61Bh	PWM4DCH	69Bh	COG1FIS	71Bh	—	79Bh	—
41Ch	TMR6	49Ch	NCO1INCH	51Ch	_	59Ch	_	61Ch	PWM4CON	69Ch	COG1FSIM	71Ch	—	79Ch	—
41Dh	PR6	49Dh	NCO1INCU	51Dh	_	59Dh	_	61Dh	—	69Dh	COG1ASD0	71Dh	—	79Dh	—
41Eh	T6CON	49Eh	NCO1CON	51Eh	_	59Eh	_	61Eh	_	69Eh	COG1ASD1	71Eh	—	79Eh	_
41Fh	—	49Fh	NCO1CLK	51Fh	—	59Fh	—	61Fh	—	69Fh	COG1STR	71Fh	—	79Fh	—
420n		4A0n	- ·	520n	. .	5AUN		620n	- ·	6AUN		720n	- ·	7 AUN	
	General		General		General		General		General		General		General		General
	Purpose		Purpose		Purpose		Purpose		Purpose		Purpose		Purpose		Purpose
	Register 80 Putos		80 Butos		80 Butos		Register 80 Bytes		80 Bytes		Register 80 Butos		Register 80 Butos		80 Bytes
46Eb	ou bytes	455h	ou bytes	FREN	ou bytes	5 C C h	ou bytes	GGEN	ou bytes	6EEb	ou bytes	76Eb	ou Dytes	7EEb	ou Dytes
40FII 470b				570h		5E0h		670h				70FII 770h		7E0h	
-1011		-1 011		57011		51 011		07011		01 011		77011		71 011	
	Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses
	70n – 7Fn		70n – 7Fn		70n – 7Fn		70n – 7Fn		70n – 7Fn		70n – 7Fn		70n – 7Fn		70n – 7Fn
47Fh		4FFh		57Fh		5FFh		67Fh		6FFh		77Fh		7FFh	
	BANK 16		BANK 17		BANK 18		BANK 19		BANK 20		BANK 21		BANK 22		BANK 23
800h		880h		900h		980h		A00h		A80h		B00h		B80h	
	Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)
80Bh		88Bh		90Bh		98Bh		A0Bh		A8Bh		B0Bh		B8Bh	
80Ch	General	88Ch	General	90Ch	General	98Ch	General	A0Ch	General	A8Ch	General	B0Ch	General	B8Ch	General
	Purpose		Purpose		Purpose		Purpose		Purpose		Purpose		Purpose		Purpose
	Register		Register		Register		Register		Register		Register		Register		Register
005-	80 Bytes	000	80 Bytes	0654	80 Bytes		80 Bytes		80 Bytes	AEEh	80 Bytes		80 Bytes	DEEK	80 Bytes
80FN	-		•	9010	•		•		•				-	DEFI	-
870n		ö⊢un	A	970n	A	9r0n	A	A/UN	A	AFUN	A	BION	A	BEON	A
	ACCESSES		ACCESSES		ACCESSES		ACCESSES		ACCESSES		ACCESSES		ACCESSES		ACCESSES
	/011-/11						1011 - 1711		1011 - 1711						1011-111
87Fh		8FFh		97Fh		9FFh		A7Fh		AFFh		B7Fh		BFFh	

Legend: = Unimplemented data memory locations, read as '0'.

4.0 DEVICE CONFIGURATION

Device configuration consists of Configuration Words, Code Protection and Device ID.

4.1 Configuration Words

There are several Configuration Word bits that allow different oscillator and memory protection options. These are implemented as Configuration Word 1 at 8007h and Configuration Word 2 at 8008h.

Note:	The DEBUG bit in Configuration Words is									
	managed automatically by device									
	development tools including debuggers									
	and programmers. For normal device									
	operation, this bit should be maintained as									
	a '1'.									

4.2 Register Definitions: Configuration Words

REGISTER 4	I-1: CONI	FIG1: CONFIG	SURATION	WORD 1					
		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	U-1		
		FCMEN	IESO	CLKOUTEN	BORE	EN<1:0>			
		bit 13		·			bit 8		
R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1		
CP ⁽¹⁾	MCLRE	PWRTE	WDT	E<1:0>		FOSC<2:0>			
bit 7							bit 0		
Legend:									
R = Readable	bit	P = Programn	nable bit	U = Unimplem	ented bit, rea	d as '1'			
'0' = Bit is clea	ared	'1' = Bit is set		-n = Value whe	en blank or af	ter Bulk Erase			
bit 13 bit 12 bit 11	FCMEN: Fail-Safe Clock Monitor Enable bit 1 = Fail-Safe Clock Monitor and internal/external switchover are both enabled 0 = Fail-Safe Clock Monitor is disabled IESO: Internal External Switchover bit 1 = Internal/External Switchover mode is enabled 0 = Internal/External Switchover mode is disabled CLKOUTEN: Clock Out Enable bit								
If FOSC Configuration bits are set to LP, XT, HS modes: This bit is ignored, CLKOUT function is disabled. Oscillator function on the CLKOUT pin. All other FOSC modes: 1 = CLKOUT function is disabled. I/O function on the CLKOUT pin. 0 = CLKOUT function is enabled on the CLKOUT pin bit 10-9 BOREN<1:0>: Brown-out Reset Enable bits 11 = BOR enabled 10 = BOR enabled 10 = BOR enabled during operation and disabled in Sleep 01 = BOR controlled by SBOREN bit of the BORCON register 00 = BOR disabled									
bit 8	Unimplemen	ted: Read as '1	L'						

PIC16(L)F1717/8/9

7.0 INTERRUPTS

The interrupt feature allows certain events to preempt normal program flow. Firmware is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode.

This chapter contains the following information for Interrupts:

- · Operation
- Interrupt Latency
- Interrupts During Sleep
- INT Pin
- Automatic Context Saving

Many peripherals produce interrupts. Refer to the corresponding chapters for details.

A block diagram of the interrupt logic is shown in Figure 7-1.

FIGURE 7-1: INTERRUPT LOGIC

10.2.2 FLASH MEMORY UNLOCK SEQUENCE

The unlock sequence is a mechanism that protects the Flash program memory from unintended self-write programming or erasing. The sequence must be executed and completed without interruption to successfully complete any of the following operations:

- Row Erase
- · Load program memory write latches
- Write of program memory write latches to program memory
- Write of program memory write latches to User IDs

The unlock sequence consists of the following steps:

- 1. Write 55h to PMCON2
- 2. Write AAh to PMCON2
- 3. Set the WR bit in PMCON1
- 4. NOP instruction
- 5. NOP instruction

Once the WR bit is set, the processor will always force two NOP instructions. When an Erase Row or Program Row operation is being performed, the processor will stall internal operations (typical 2 ms), until the operation is complete and then resume with the next instruction. When the operation is loading the program memory write latches, the processor will always force the two NOP instructions and continue uninterrupted with the next instruction.

Since the unlock sequence must not be interrupted, global interrupts should be disabled prior to the unlock sequence and re-enabled after the unlock sequence is completed.

FIGURE 10-3:

FLASH PROGRAM MEMORY UNLOCK SEQUENCE FLOWCHART

17.1.9 SETUP FOR PWM OPERATION USING PWMx PINS

The following steps should be taken when configuring the module for PWM operation using the PWMx pins:

- 1. Disable the PWMx pin output driver(s) by setting the associated TRIS bit(s).
- 2. Clear the PWMxCON register.
- 3. Load the PR2 register with the PWM period value.
- 4. Load the PWMxDCH register and bits <7:6> of the PWMxDCL register with the PWM duty cycle value.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIR1 register. See Note below.
 - Configure the T2CKPS bits of the T2CON register with the Timer2 prescale value.
 - Enable Timer2 by setting the TMR2ON bit of the T2CON register.
- Enable PWM output pin and wait until Timer2 overflows, TMR2IF bit of the PIR1 register is set. See Note below.
- 7. Enable the PWMx pin output driver(s) by clearing the associated TRIS bit(s) and setting the desired pin PPS control bits.
- 8. Configure the PWM module by loading the PWMxCON register with the appropriate values.
 - Note 1: In order to send a complete duty cycle and period on the first PWM output, the above steps must be followed in the order given. If it is not critical to start with a complete PWM signal, then move Step 8 to replace Step 4.
 - **2:** For operation with other peripherals only, disable PWMx pin outputs.

17.1.10 SETUP FOR PWM OPERATION TO OTHER DEVICE PERIPHERALS

The following steps should be taken when configuring the module for PWM operation to be used by other device peripherals:

- 1. Disable the PWMx pin output driver(s) by setting the associated TRIS bit(s).
- 2. Clear the PWMxCON register.
- 3. Load the PR2 register with the PWM period value.
- 4. Load the PWMxDCH register and bits <7:6> of the PWMxDCL register with the PWM duty cycle value.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIR1 register. See Note below.
 - Configure the T2CKPS bits of the T2CON register with the Timer2 prescale value.
 - Enable Timer2 by setting the TMR2ON bit of the T2CON register.
- 6. Enable PWM output pin:
- Wait until Timer2 overflows, TMR2IF bit of the PIR1 register is set. See Note below.
- 7. Configure the PWM module by loading the PWMxCON register with the appropriate values.

Note: In order to send a complete duty cycle and period on the first PWM output, the above steps must be included in the setup sequence. If it is not critical to start with a complete PWM signal on the first output, then step 6 may be ignored.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0			
GxASE	GxARSEN	GxASD	3D<1:0>	GxASD	AC<1:0>	_	—			
bit 7				1			bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpleme	ented bit, read a	as 'O'				
u = Bit is unc	hanged	x = Bit is unkr	iown	-n/n = Value at	POR and BOR	/Value at all oth	ner Resets			
'1' = Bit is set		'0' = Bit is clea	ared	q = Value depe	ends on conditio	n				
bit 7	GxASE: Auto	-Shutdown Eve	ent Status bit							
	1 = COG is in	n the shutdown	state							
	0 = COG is e	either not in the	shutdown stat	e or will exit the	shutdown state	e on the next ris	sing event			
bit 6	GxARSEN: A	uto-Restart En	able bit							
	1 = Auto-rest	art is enabled								
	0 = Auto-rest	art is disabled								
bit 5-4	GxASDBD<1	:0>: COGxB a	nd COGxD Au	to-shutdown Ov	erride Level Se	lect bits				
	11 = A logic	1 = A logic '1' is placed on COGxB and COGxD when shutdown is active								
	$10 = A \log ic$	10 = A logic '0' is placed on COGxB and COGxD when shutdown is active								
	01 = COGxE	01 = COGxB and COGxD are tri-stated when shutdown is active								
	00 = The ina is activ	active state of th e	ne pin, includin	ig polarity, is pla	ced on COGxB	and COGxD w	hen shutdown			
bit 3-2	GxASDAC<1	: 0>: COGxA a	nd COGxC Au	to-shutdown Ov	erride Level Se	lect bits				
	11 = A logic	'1' is placed on	COGxA and	COGxC when sh	nutdown is activ	'e				
	$10 = A \log c$	'0' is placed on	COGxA and (COGxC when sh	nutdown is activ	'e				
	01 = COGxA	and COGxC a	re tri-stated w	hen shutdown is	active					
	00 = The ina is active	ctive state of the	ie pin, includin	g polarity, is pla	ced on COGxA	and COGxC w	hen shutdown			
bit 1-0	Unimplemen	ted: Read as '	כ'							

REGISTER 18-7: COGxASD0: COG AUTO-SHUTDOWN CONTROL REGISTER 0

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG4D4T	LCxG4D4N	LCxG4D3T	LCxG4D3N	LCxG4D2T	LCxG4D2N	LCxG4D1T	LCxG4D1N
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	LCxG4D4T: 0	Gate 4 Data 4 1	rue (non-inve	rted) bit			
	1 = LCxD4T	is gated into LO	CxG4				
	0 = LCxD4T	is not gated int	o LCxG4				
bit 6	LCxG4D4N:	Gate 4 Data 4	Negated (inve	rted) bit			
	1 = LCXD4N 0 = LCYD4N	is pot gated into L					
bit 5		Sate 4 Data 3 1	rue (non-inve	rted) hit			
bit 0	1 = 1 CxD3T	is gated into I (CxG4				
	0 = LCxD3T	is not gated int	o LCxG4				
bit 4	LCxG4D3N:	Gate 4 Data 3 I	Negated (inve	rted) bit			
	1 = LCxD3N	is gated into L	CxG4				
	0 = LCxD3N	is not gated inf	to LCxG4				
bit 3	LCxG4D2T: (Gate 4 Data 2 1	True (non-inve	rted) bit			
	1 = LCxD2T	is gated into L0	CXG4				
bit 2		Gate 4 Data 2 l	Vegated (inve	rtad) hit			
Dit 2	1 = 1 CxD2N	is dated into I	CxG4	neu) bii			
	0 = LCxD2N	is not gated int	to LCxG4				
bit 1	LCxG4D1T: (Gate 4 Data 1 1	rue (non-inve	rted) bit			
	1 = LCxD1T	is gated into L0	CxG4				
	0 = LCxD1T	is not gated int	o LCxG4				
bit 0	LCxG4D1N:	Gate 4 Data 1 I	Negated (inve	rted) bit			
	1 = LCxD1N	is gated into L	CxG4				
	0 = LCxD1N	is not gated in	OLCXG4				

REGISTER 19-10: CLCxGLS3: GATE 4 LOGIC SELECT REGISTER

	21-3. ADG	UNZ. ADC CC		GISTER Z			
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
	TRIGSE	:L<3:0>(1)		—	—	—	—
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is unchanged x = Bit is unknown -n/n = Value				-n/n = Value	at POR and BC	R/Value at all o	other Resets
'1' = Bit is set	t	'0' = Bit is cle	ared				
bit 7-4	TRIGSEL<3 0000 = No 4 0001 = CCI 0010 = CCI 0011 = Time 0100 = Time 0101 = Time 0110 = Com 0111 = Com 0111 = Com	:0>: Auto-Conv auto-conversior P1 P2 er0 – T0_overflo er1 – T1_overflo er2 – T2_match nparator C1 – sy nparator C2 – sy C1 – LC1_out	ersion Trigger h trigger select _{DW} (2) _{DW} (2) ync_C1OUT ync_C2OUT	Selection bits ^{(*}	1)		
	1001 = CLC 1010 = CLC	2 – LC2_out 3 – LC3_out					
	1011 = CLC 1100 = Tim 1101 = Tim	4 – LC4_out er4 – T4_match er6 – T6_match	1				

REGISTER 21-3: ADCON2: ADC CONTROL REGISTER 2

- 1110 = Reserved
- 1111 = Reserved
- bit 3-0 Unimplemented: Read as '0'
- Note 1: This is a rising edge sensitive input for all sources.
 - **2:** Signal also sets its corresponding interrupt flag.

REGISTER 21-4: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u				
ADRES<9:2>											
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, rea	d as '0'					
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value	at POR and BC	R/Value at all	other Resets				
'1' = Bit is set		'0' = Bit is clea	ared								

bit 7-0 **ADRES<9:2>**: ADC Result Register bits Upper eight bits of 10-bit conversion result

22.0 OPERATIONAL AMPLIFIER (OPA) MODULES

The Operational Amplifier (OPA) is a standard three-terminal device requiring external feedback to operate. The OPA module has the following features:

- External connections to I/O ports
- Low leakage inputs
- · Factory Calibrated Input Offset Voltage

PIC16(L)F1717/8/9

FIGURE 30-6: SPI MODE WAVEFORM (MASTER MODE)

30.2.4 SPI SLAVE MODE

In Slave mode, the data is transmitted and received as external clock pulses appear on SCK. When the last bit is latched, the SSP1IF interrupt flag bit is set.

Before enabling the module in SPI Slave mode, the clock line must match the proper Idle state. The clock line can be observed by reading the SCK pin. The Idle state is determined by the CKP bit of the SSP1CON1 register.

While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. The shift register is clocked from the SCK pin input and when a byte is received, the device will generate an interrupt. If enabled, the device will wake-up from Sleep.

30.2.4.1 Daisy-Chain Configuration

The SPI bus can sometimes be connected in a daisy-chain configuration. The first slave output is connected to the second slave input, the second slave output is connected to the third slave input, and so on. The final slave output is connected to the master input. Each slave sends out, during a second group of clock pulses, an exact copy of what was received during the first group of clock pulses. The whole chain acts as one large communication shift register. The daisy-chain feature only requires a single Slave Select line from the master device.

Figure 30-7 shows the block diagram of a typical daisy-chain connection when operating in SPI mode.

In a daisy-chain configuration, only the most recent byte on the bus is required by the slave. Setting the BOEN bit of the SSP1CON3 register will enable writes to the SSP1BUF register, even if the previous byte has not been read. This allows the software to ignore data that may not apply to it.

					SYNC	C = 0, BRG	H = 1, BRG16 = 0					
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—			_	_	_	_		_	300	0.16	207
1200	—	_	_	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	—	_
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	—	—	—
57.6k	55556	-3.55	8	—	_	—	57.60k	0.00	3	—	—	—
115.2k	—	—		—	—	—	115.2k	0.00	1	—	—	_

TABLE 31-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

	SYNC = 0, BRGH = 0, BRG16 = 1											
BAUD RATE	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz		
	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	6666	300.0	-0.01	4166	300.0	0.00	3839	300.0	0.00	2303
1200	1200	-0.02	3332	1200	-0.03	1041	1200	0.00	959	1200	0.00	575
2400	2401	-0.04	832	2399	-0.03	520	2400	0.00	479	2400	0.00	287
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35
57.6k	57.14k	-0.79	34	56.818	-1.36	21	57.60k	0.00	19	57.60k	0.00	11
115.2k	117.6k	2.12	16	113.636	-1.36	10	115.2k	0.00	9	115.2k	0.00	5

	SYNC = 0, BRGH = 0, BRG16 = 1												
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207	
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51	
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25	
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	_	
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5	
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	—	_	_	
57.6k	55556	-3.55	8	_	_	_	57.60k	0.00	3	—	_	_	
115.2k		_	_	_	_		115.2k	0.00	1	_	_	_	

31.5.1.5 Synchronous Master Reception

Data is received at the RX/DT pin. The RX/DT pin output driver is automatically disabled when the EUSART is configured for synchronous master receive operation.

In Synchronous mode, reception is enabled by setting either the Single Receive Enable bit (SREN of the RC1STA register) or the Continuous Receive Enable bit (CREN of the RC1STA register).

When SREN is set and CREN is clear, only as many clock cycles are generated as there are data bits in a single character. The SREN bit is automatically cleared at the completion of one character. When CREN is set, clocks are continuously generated until CREN is cleared. If CREN is cleared in the middle of a character the CK clock stops immediately and the partial character is discarded. If SREN and CREN are both set, then SREN is cleared at the completion of the first character and CREN takes precedence.

To initiate reception, set either SREN or CREN. Data is sampled at the RX/DT pin on the trailing edge of the TX/CK clock pin and is shifted into the Receive Shift Register (RSR). When a complete character is received into the RSR, the RCIF bit is set and the character is automatically transferred to the two character receive FIFO. The Least Significant eight bits of the top character in the receive FIFO are available in RC1REG. The RCIF bit remains set as long as there are unread characters in the receive FIFO.

Note:	If the RX/DT function is on an analog pin,										
	the corresponding ANSEL bit must be										
	cleared for the receiver to function.										

31.5.1.6 Slave Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a slave receives the clock on the TX/CK line. The TX/CK pin output driver is automatically disabled when the device is configured for synchronous slave transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One data bit is transferred for each clock cycle. Only as many clock cycles should be received as there are data bits.

Note: If the device is configured as a slave and the TX/CK function is on an analog pin, the corresponding ANSEL bit must be cleared.

31.5.1.7 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before RC1REG is read to access the FIFO. When this happens the OERR bit of the RC1STA register is set. Previous data in the FIFO will not be overwritten. The two characters in the FIFO buffer can be read, however, no additional characters will be received until the error is cleared. The OERR bit can only be cleared by clearing the overrun condition. If the overrun error occurred when the SREN bit is set and CREN is clear then the error is cleared by reading RC1REG. If the overrun occurred when the CREN bit is set then the error condition is cleared by either clearing the CREN bit of the RC1STA register or by clearing the SPEN bit which resets the EUSART.

31.5.1.8 Receiving 9-Bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RC1STA register is set the EUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RC1STA register is the ninth, and Most Significant, data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RC1REG.

31.5.1.9 Synchronous Master Reception Setup

- 1. Initialize the SP1BRGH, SP1BRGL register pair for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- 3. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 4. Ensure bits CREN and SREN are clear.
- 5. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 6. If 9-bit reception is desired, set bit RX9.
- 7. Start reception by setting the SREN bit or for continuous reception, set the CREN bit.
- 8. Interrupt flag bit RCIF will be set when reception of a character is complete. An interrupt will be generated if the enable bit RCIE was set.
- 9. Read the RC1STA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 10. Read the 8-bit received data by reading the RC1REG register.
- 11. If an overrun error occurs, clear the error by either clearing the CREN bit of the RC1STA register or by clearing the SPEN bit which resets the EUSART.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
ANSELB	—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	131		
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	—	—	136		
BAUD1CON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	362		
CKPPS	—	—	—		CKPPS<4:0>						
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	90		
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	91		
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	94		
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	361		
RxyPPS	—	—	—		RxyPPS<4:0>						
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	130		
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	135		
TX1REG	EUSART Transmit Data Register										
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	360		

TABLE 31-9:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE
TRANSMISSION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous slave transmission. * Page provides register information.

31.5.2.3 EUSART Synchronous Slave Reception

The operation of the Synchronous Master and Slave modes is identical (Section 31.5.1.5 "Synchronous Master Reception"), with the following exceptions:

- Sleep
- CREN bit is always set, therefore the receiver is never idle
- SREN bit, which is a "don't care" in Slave mode

A character may be received while in Sleep mode by setting the CREN bit prior to entering Sleep. Once the word is received, the RSR register will transfer the data to the RC1REG register. If the RCIE enable bit is set, the interrupt generated will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will branch to the interrupt vector.

31.5.2.4 Synchronous Slave Reception Setup

- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for both the CK and DT pins (if applicable).
- 3. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 4. If 9-bit reception is desired, set the RX9 bit.
- 5. Set the CREN bit to enable reception.
- The RCIF bit will be set when reception is complete. An interrupt will be generated if the RCIE bit was set.
- 7. If 9-bit mode is enabled, retrieve the Most Significant bit from the RX9D bit of the RC1STA register.
- 8. Retrieve the eight Least Significant bits from the receive FIFO by reading the RC1REG register.
- 9. If an overrun error occurs, clear the error by either clearing the CREN bit of the RC1STA register or by clearing the SPEN bit which resets the EUSART.

36.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

36.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-124C Sheet 1 of 2