

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	24
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 17x10b; D/A 1x5b, 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1718-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Reference Comparato Zero Cross Amp EUSART Interrupt Timers UQFN Pullup Basic TQFP MSSP PDIP ADC DAC ССР NCO PWM 000 СГС I/O⁽²⁾ ð C1IN0-17 CLCIN0⁽¹⁾ IOC 2 AN0 Υ RA0 19 C2IN0-C1IN1-18 AN1 OPA10UT CLCIN1⁽¹⁾ IOC Υ RA1 3 20 C2IN1-C1IN0+ V_{REF} Y RA2 4 21 19 AN2 DAC10UT1 IOC C2IN0+ RA3 22 20 AN3 V_{REF}+ C1IN1+ IOC Υ 5 23 21 OPA1IN+ IOC RA4 6 ·T0CKI⁽¹⁾ Υ RA5 7 24 22 AN4 OPA1IN- DAC2OUT1 nSS⁽¹⁾ IOC Υ OSC2 14 29 IOC Υ RA6 31 CLKOUT OSC1 RA7 30 28 IOC Υ 13 CLKIN INT⁽¹⁾ 8 AN12 COG1IN⁽¹⁾ RB0 33 8 C2IN1+ ZCD Υ IOC C1IN3-9 AN10 OPA2OUT IOC Y RB1 34 9 C2IN3-RB2 35 10 10 AN8 **OPA2IN-**IOC Υ C1IN2-11 36 AN9 OPA2IN+ IOC Υ RB3 11 C2IN2-RB4 37 14 12 AN11 IOC Υ RB5 15 13 AN13 IOC Υ 38 T1G⁽¹⁾ RB6 16 14 IOC Y ICSPCLK 39 CLCIN2⁽¹⁾ DAC1OUT2 15 CLCIN3⁽¹⁾ IOC ICSPDAT RB7 40 17 Υ DAC2OUT2 T1CKI⁽¹⁾ loc 30 RC0 15 32 Υ sosco RC1 16 35 31 SOSCI CCP2⁽¹ . ÌÓĆ∙ Υ RC2 17 36 32 AN14 CCP1⁽¹ 100 Υ RC3 18 37 33 AN15 IOC. Υ SCL/SCK

PIC16(L)F1717/8/9

TABLE 2: 40/44-PIN ALLOCATION TABLE (PIC16(L)F1717/9)

Note 1: Default peripheral input. Alternate pins can be selected as the peripheral input with the PPS input selection registers.

2: All pin digital outputs default to PORT latch data. Alternate outputs can be selected as the peripheral digital output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

4: Alternate outputs are excluded from solid shaded areas.

5: Alternate inputs are excluded from dot shaded areas.

TABLE 3-8: PIC16(L)F1718/9 MEMORY MAP, BANK 24-31

	BANK 24		BANK 25		BANK 26		BANK 27		BANK 28		BANK 29		BANK 30		BANK 31
C00h	Core Registers (Table 3-2)	C80h	Core Registers (Table 3-2)	D00h	Core Registers (Table 3-2)	D80h	Core Registers (Table 3-2)	E00h	Core Registers (Table 3-2)	E80h	Core Registers (Table 3-2)	F00h	Core Registers (Table 3-2)	F80h	Core Registers (Table 3-2)
COBh		C8Bh		D0Bh		D8Bh		E0Bh		E8Bh		F0Bh		F8Bh	
COCh	_	C8Ch	_	D0Ch	—	D8Ch		E0Ch		E8Ch		F0Ch		F8Ch	
C0Dh	_	C8Dh	—	D0Dh	—	D8Dh	—	E0Dh		E8Dh		F0Dh		F8Dh	
C0Eh	—	C8Eh	—	D0Eh	—	D8Eh	—	E0Eh		E8Eh		F0Eh		F8Eh	
C0Fh	_	C8Fh	—	D0Fh	—	D8Fh	—	E0Fh		E8Fh		F0Fh		F8Fh	
C10h	_	C90h	_	D10h	_	D90h		E10h		E90h		F10h		F90h	
C11h	—	C91h	—	D11h	—	D91h	—	E11h		E91h		F11h		F91h	
C12h	—	C92h	—	D12h	—	D92h	—	E12h		E92h		F12h		F92h	
C13h	_	C93h	—	D13h	—	D93h		E13h		E93h		F13h		F93h	
C14h	_	C94h	—	D14h	—	D94h	_	E14h		E94h		F14h		F94h	
C15h	_	C95h	_	D15h	—	D95h	_	E15h		E95h		F15h		F95h	
C16h	_	C96h	_	D16h	—	D96h	_	E16h		E96h		F16h		F96h	
C17h	—	C97h	—	D17h	—	D97h	_	E17h	Soo Toblo 2 0 for	E97h	Soo Table 2.0 for	F17h	Soo Table 2.0 for	F97h	Soo Table 2 10 for
C18h	—	C98h	—	D18h	—	D98h	_	E18h	register mapping	E98h	register mapping	F18h	register mapping	F98h	register mapping
C19h	—	C99h		D19h	_	D99h		E19h	details	E99h	details	F19h	details	F99h	details
C1Ah	_	C9Ah	-	D1Ah		D9Ah	_	E1Ah		E9Ah		F1Ah		F9Ah	
C1Bh	_	C9Bh	-	D1Bh		D9Bh	_	E1Bh		E9Bh		F1Bh		F9Bh	
C1Ch	_	C9Ch	—	D1Ch	-	D9Ch	—	E1Ch		E9Ch		F1Ch		F9Ch	
C1Dh	_	C9Dh	—	D1Dh	-	D9Dh	—	E1Dh		E9Dh		F1Dh		F9Dh	
C1Eh	_	C9Eh	—	D1Eh	-	D9Eh	—	E1Eh		E9Eh		F1Eh		F9Eh	
C1Fh	_	C9Fh	_	D1Fh	_	D9Fh	_	E1Fh		E9Fh		F1Fh		F9Fh	
C20h		CA0h	General Purpose	D20h		DA0h		E20h		EA0h		F20h		FA0h	
	General	CBFh	Register 32 Bytes												
	Purpose	CC0h			Unimplemented		Unimplemented								
	Register		Unimplemented		Read as '0'		Read as '0'								
	80 Bytes		Read as '0'												
C6Fh		CEFh		D6Fh		DEFh		E6Fh		EEFh		F6Fh		FEFh	
C70h		CF0h		D70h		DF0h		E70h		EF0h		F70h		FF0h	
	Accesses														
	70h – 7Fh														
CFFh		CFFh		D7Fh		DFFh		E7Fh		EFFh		F7Fh		FFFh	

Legend: = Unimplemented data memory locations, read as '0'.

PIC16(L)F1717/8/9

TABLE 3-9: PIC16(L)F1717/8/9 MEMORY MAP, BANK 28-30

	Bank 28		Bank 29		Bank 30
E0Ch	_	E8Ch		F0Ch	_
E0Dh		E8Dh		F0Dh	—
E0Eh	—	E8Eh	—	F0Eh	—
E0Fh	PPSLOCK	E8Fh	—	F0Fh	CLCDATA
E10h	INTPPS	E90h	RA0PPS	F10h	CLC1CON
E11h	TOCKIPPS	E91h	RA1PPS	F11h	CLC1POL
E12h	T1CKIPPS	E92h	RA2PPS	F12h	CLC1SEL0
E13h	T1GPPS	E93h	RA3PPS	F13h	CLC1SEL1
E14h	CCP1PPS	E94h	RA4PPS	F14h	CLC1SEL2
E15h	CCP2PPS	E95h	RA5PPS	F15h	CLC1SEL3
E16h	_	E96h	RA6PPS	F16h	CLC1GLS0
E17h	COGINPPS	E97h	RA7PPS	F17h	CLC1GLS1
E18h		E98h	RB0PPS	F18h	CLC1GLS2
E19h		E99h	RB1PPS	F19h	CLC1GLS3
EIAN	_	E9An	RB2PPS	FIAN	CLC2CON
E1Bh	_	E9Bh	RB3PPS	F1Bh	CLC2POL
E1Ch		E9Ch	RB4PPS ⁽¹⁾	F1Ch	CLC2SEL0
E1Dh	—	E9Dh	RB5PPS ⁽¹⁾	F1Dh	CLC2SEL1
E1Eh	_	E9Eh	RB6PPS ⁽¹⁾	F1Eh	CLC2SEL2
F1Fh		F9Fh	RB7PPS(1)	F1Fh	CLC2SEL3
E20h	SSPCI KPPS	EA0h	RCOPPS	F20h	CLC2GLS0
F21h	SSPDATPPS	FA1h	RC1PPS	F21h	CI C2GI S1
F22h	SSPSSPPS	FA2h	RC2PPS	F22h	CLC2GLS2
E23h	_	EA3h	RC3PPS	F23h	CLC2GLS3
E24h	RXPPS	EA4h	RC4PPS	F24h	CLC3CON
E25h	CKPPS	EA5h	RC5PPS	F25h	CLC3POL
E26h		EA6h	RC6PPS	F26h	
				- 1 2011	
E2/11			RC/PP3		
E28h	CLCINOPPS	EA8h	RDOPPS()	F28h	CLC3SEL2
E29h	CLCIN1PPS	EA9h	RD1PPS ⁽¹⁾	F29h	CLC3SEL3
E2Ah	CLCIN2PPS	EAAh	RD2PPS ⁽¹⁾	F2Ah	CLC3GLS0
E2Bh	CLCIN3PPS	EABh	RD3PPS ⁽¹⁾	F2Bh	CLC3GLS1
F2Ch		FACh	RD4PPS(1)	F2Ch	CLC3GLS2
E2Dh		EADh		E2Dh	
EZEN		EAEN	RD6PP5(*)	FZEN	CLC4CON
E2Fh		EAFh	RD7PPS()	F2Fh	CLC4POL
E30h		EB0h	RE0PPS ⁽¹⁾	F30h	CLC4SEL0
E31h	_	EB1h	RE1PPS ⁽¹⁾	F31h	CLC4SEL1
E32h	_	EB2h	RE2PPS ⁽¹⁾	F32h	CLC4SEL2
E33h		EB3h	_	F33h	CLC4SEL3
E34h		EB4h		F34h	CLC4GLS0
E35h		EB5h		F35h	CLC4GLS1
E36h		EB6h		F36h	CLC4GLS2
E37h	_	EB7h		F37h	CLC4GLS3
E38h	_	EB8h	_	F38h	_
E39h	_	EB9h	_	F39h	_
E3Ah	_	EBAh	_	F3Ah	_
E3Bh	_	EBBh	_	F3Bh	
E3Ch	—	EBCh	—	F3Ch	
E3Dh		EBDh		F3Dh	
E3Eh	—	EBEh	—	F3Eh	
E3Fh		EBFh		F3Fh	
E40h		EC0h		F40h	
	_		_		_
E6Fh		EEFh		F6Fh	
Legend	: = Unimplem	nented d	ata memory loca	tions, re	ad as '0',
Note 1:	Only available o	n PIC16	(L)F1717/9 devic	ces.	

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page			
BORCON	SBOREN	BORFS	_	_		_	_	BORRDY	62			
PCON	STKOVF	STKUNF	_	RWDT	RMCLR	RI	POR	BOR	66			
STATUS	_	_		TO	PD	Z	DC	С	28			
WDTCON	_	_		V	SWDTEN	104						

TABLE 5-5: SUMMARY OF REGISTERS ASSOCIATED WITH RESETS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Resets.

PIC16(L)F1717/8/9

FIGURE 10-2: FLASH PROGRAM MEMORY READ CYCLE EXECUTION

EXAMPLE 10-1: FLASH PROGRAM MEMORY READ

* This code block will read 1 word of program

- * memory at the memory address:
- PROG_ADDR_HI : PROG_ADDR_LO
- * data will be returned in the variables;
- * PROG_DATA_HI, PROG_DATA_LO

BANKSEL	PMADRL	; Select Bank for PMCON registers
MOVLW	PROG_ADDR_LO	;
MOVWF	PMADRL	; Store LSB of address
MOVLW	PROG_ADDR_HI	;
MOVWF	PMADRH	; Store MSB of address
BCF BSF NOP NOP	PMCON1,CFGS PMCON1,RD	; Do not select Configuration Space ; Initiate read ; Ignored (Figure 10-1) ; Ignored (Figure 10-1)
MOVF	PMDATL,W	; Get LSB of word
MOVWF	PROG_DATA_LO	; Store in user location
MOVF	PMDATH,W	; Get MSB of word
MOVWF	PROG_DATA_HI	; Store in user location

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	
SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown			iown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					

REGISTER 11-7: SLRCONA: PORTA SLEW RATE CONTROL REGISTER

bit 7-0 SLRA<7:0>: PORTA Slew Rate Enable bits For RA<7:0> pins, respectively 1 = Port pin slew rate is limited 0 = Port pin slews at maximum rate

REGISTER 11-8: INLVLA: PORTA INPUT LEVEL CONTROL REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLA7 | INLVLA6 | INLVLA5 | INLVLA4 | INLVLA3 | INLVLA2 | INLVLA1 | INLVLA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 INLVLA<7:0>: PORTA Input Level Select bits

For RA<7:0> pins, respectively

1 = Port pin digital input operates with ST thresholds

0 = Port pin digital input operates with TTL thresholds

R/W-0/0 R/W-0/0 <t< th=""><th></th><th></th><th></th><th></th><th colspan="5">-n/n = Value at POR and BOR/Value at all other Resets</th></t<>					-n/n = Value at POR and BOR/Value at all other Resets							
R/W-0/0 R/W-0/0 <t< th=""><th colspan="3">R = Readable bit W = Writable bit</th><th>bit</th><th colspan="6">U = Unimplemented bit, read as '0'</th></t<>	R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'							
R/W-0/0 R/W-0/0 <t< th=""><th>Legend:</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Legend:											
R/W-0/0 R/W-0/0 <t< th=""><th></th><th colspan="11"></th></t<>												
R/W-0/0 R/W-0/0 <t< td=""><td>bit 7</td><td>•</td><td></td><td>•</td><td></td><td></td><td>•</td><td>bit 0</td></t<>	bit 7	•		•			•	bit 0				
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0				
	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				

REGISTER 13-4: IOCBP: INTERRUPT-ON-CHANGE PORTB POSITIVE EDGE REGISTER

bit 7-0 **IOCBP<7:0>:** Interrupt-on-Change PORTB Positive Edge Enable bits

'0' = Bit is cleared

- 1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCBFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin

REGISTER 13-5: IOCBN: INTERRUPT-ON-CHANGE PORTB NEGATIVE EDGE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCBN7 | IOCBN6 | IOCBN5 | IOCBN4 | IOCBN3 | IOCBN2 | IOCBN1 | IOCBN0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

1' = Bit is set

- **IOCBN<7:0>:** Interrupt-on-Change PORTB Negative Edge Enable bits
- 1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCBFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 13-6: IOCBF: INTERRUPT-ON-CHANGE PORTB FLAG REGISTER

| R/W/HS-0/0 |
|------------|------------|------------|------------|------------|------------|------------|------------|
| IOCBF7 | IOCBF6 | IOCBF5 | IOCBF4 | IOCBF3 | IOCBF2 | IOCBF1 | IOCBF0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-0

- IOCBF<7:0>: Interrupt-on-Change PORTB Flag bits
- 1 = An enabled change was detected on the associated pin.
 - Set when IOCBPx = 1 and a rising edge was detected on RBx, or when IOCBNx = 1 and a falling edge was detected on RBx.
- 0 = No change was detected, or the user cleared the detected change.

U-0	U-0	U-0	U-0	R/W/HS-0/0	U-0	U-0	U-0
—	—	—	—	IOCEF3	—	—	—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimpler	mented bit, read	as '0'		

REGISTER 13-12: IOCEF: INTERRUPT-ON-CHANGE PORTE FLAG REGISTER

x = Bit is unknown

'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware
bit 7-4	Unimplemented: Read as '0'	
bit 3	IOCEF3: Interrupt-on-Change PORTE	Flag bits
	1 = An enabled change was detected	on the associated pin.
	Set when IOCEPx = 1 and a rising	edge was detected on REx, or when IOCENx = 1 and a fal

ing edge was detected on REx.

-n/n = Value at POR and BOR/Value at all other Resets

0 = No change was detected, or the user cleared the detected change.

Unimplemented: Read as '0' bit 2-0

u = Bit is unchanged

TABLE 13-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANGE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA			ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	125
ANSELB	—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	131
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	_	_	136
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	90
IOCAF	IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	158
IOCAN	IOCAN7	IOCAN6	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	158
IOCAP	IOCAP7	IOCAP6	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	158
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	159
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	159
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	159
IOCCF	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	160
IOCCN	IOCCN7	IOCCN6	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	160
IOCCP	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	160
IOCEF	—	—	—	—	IOCEF3	—	_	—	162
IOCEN	—	—	—	—	IOCEN3	—	_	—	161
IOCEP	_	—	—	—	IOCEP3	—	_	—	161
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	124
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	130
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	135

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupt-on-change.

17.2 Register Definitions: PWM Control

REGIOTERT							
R/W-0/0	U-0	R-0/0	R/W-0/0	U-0	U-0	U-0	U-0
PWMxEN	—	PWMxOUT	PWMxPOL	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	PWMxEN: P\	VM Module En	able bit				
	1 = PWM mc	dule is enable	b				
	0 = PWM mc	dule is disable	d				
bit 6	Unimplemen	ted: Read as '	0'				
bit 5	PWMxOUT: F	PWM module o	utput level whe	en bit is read.			
bit 4	PWMxPOL:	PWMx Output F	Polarity Select	bit			
	1 = PWM out	tput is active lo	w.				
	0 = PWM out	tput is active hi	gh.				
bit 3-0	Unimplemen	ted: Read as '	0'				

REGISTER 17-1: PWMxCON: PWM CONTROL REGISTER

REGISTER 17-2: PWMxDCH: PWM DUTY CYCLE HIGH BITS

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
PWMxDCH<7:0>									
bit 7							bit 0		

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PWMxDCH<7:0>:** PWM Duty Cycle Most Significant bits These bits are the MSbs of the PWM duty cycle. The two LSbs are found in PWMxDCL Register.

REGISTER 17-3: PWMxDCL: PWM DUTY CYCLE LOW BITS

R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0	U-0	U-0
PWMxDCL<7:6>		—	_	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	PWMxDCL<7:6>: PWM Duty Cycle Least Significant bits					
	These bits are the LSbs of the PWM duty cycle. The MSbs are found in PWMxDCH Register.					
bit 5-0	Unimplemented: Read as '0'					

PIC16(L)F1717/8/9

19.1.2 DATA GATING

Outputs from the input multiplexers are directed to the desired logic function input through the data gating stage. Each data gate can direct any combination of the four selected inputs.

Note: Data gating is undefined at power-up.

The gate stage is more than just signal direction. The gate can be configured to direct each input signal as inverted or non-inverted data. Directed signals are ANDed together in each gate. The output of each gate can be inverted before going on to the logic function stage.

The gating is in essence a 1-to-4 input AND/NAND/OR/NOR gate. When every input is inverted and the output is inverted, the gate is an OR of all enabled data inputs. When the inputs and output are not inverted, the gate is an AND or all enabled inputs.

Table 19-2 summarizes the basic logic that can be obtained in gate 1 by using the gate logic select bits. The table shows the logic of four input variables, but each gate can be configured to use less than four. If no inputs are selected, the output will be zero or one, depending on the gate output polarity bit.

CLCxGLS0	LCxG1POL	Gate Logic		
0x55	1	AND		
0x55	0	NAND		
0xAA	1	NOR		
0xAA	0	OR		
0x00	0	Logic 0		
0x00	1	Logic 1		

TABLE 19-2: DATA GATING LOGIC

It is possible (but not recommended) to select both the true and negated values of an input. When this is done, the gate output is zero, regardless of the other inputs, but may emit logic glitches (transient-induced pulses). If the output of the channel must be zero or one, the recommended method is to set all gate bits to zero and use the gate polarity bit to set the desired level.

Data gating is configured with the logic gate select registers as follows:

- Gate 1: CLCxGLS0 (Register 19-7)
- Gate 2: CLCxGLS1 (Register 19-8)
- Gate 3: CLCxGLS2 (Register 19-9)
- Gate 4: CLCxGLS3 (Register 19-10)

Register number suffixes are different than the gate numbers because other variations of this module have multiple gate selections in the same register.

Data gating is indicated in the right side of Figure 19-2. Only one gate is shown in detail. The remaining three gates are configured identically with the exception that the data enables correspond to the enables for that gate.

19.1.3 LOGIC FUNCTION

There are eight available logic functions including:

- AND-OR
- OR-XOR
- AND
- S-R Latch
- D Flip-Flop with Set and Reset
- D Flip-Flop with Reset
- J-K Flip-Flop with Reset
- Transparent Latch with Set and Reset

Logic functions are shown in Figure 19-3. Each logic function has four inputs and one output. The four inputs are the four data gate outputs of the previous stage. The output is fed to the inversion stage and from there to other peripherals, an output pin, and back to the CLCx itself.

19.1.4 OUTPUT POLARITY

The last stage in the configurable logic cell is the output polarity. Setting the LCxPOL bit of the CLCxCON register inverts the output signal from the logic stage. Changing the polarity while the interrupts are enabled will cause an interrupt for the resulting output transition.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
	NCOxACC<15:8>										
bit 7							bit 0				
Legend:											
R = Readable bit W = Writable bit		it	U = Unimplemented bit, read as '0'								
u = Bit is unchanged x = Bit is unknown		own	-n/n = Value at POR and BOR/Value at all other Resets								
'1' = Bit is set		'0' = Bit is clea	red								

REGISTER 20-4: NCOXACCH: NCOX ACCUMULATOR REGISTER – HIGH BYTE

bit 7-0 NCOxACC<15:8>: NCOx Accumulator, High Byte

REGISTER 20-5: NCOxACCU: NCOx ACCUMULATOR REGISTER – UPPER BYTE

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0					
—	—	_	_	NCOXACC<19:16>								
bit 7	bit 7 bit 0											
Legend:												
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'								
u = Bit is unch	anged	x = Bit is unkr	iown	-n/n = Value at POR and BOR/Value at all other Resets								

bit 7-4	Unimplemented: Read as '0	,
---------	---------------------------	---

'1' = Bit is set

bit 3-0 NCOxACC<19:16>: NCOx Accumulator, Upper Byte

'0' = Bit is cleared

REGISTER 20-6: NCOxINCL: NCOx INCREMENT REGISTER – LOW BYTE⁽¹⁾

R/W-0/0	R/W-1/1						
			NCOxIN	C<7:0>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NCOxINC<7:0>: NCOx Increment, Low Byte

Note 1: Write the NCOxINCH register first, then the NCOxINCL register. See Section 20.1.4 "Increment Registers" for more information.

22.0 OPERATIONAL AMPLIFIER (OPA) MODULES

The Operational Amplifier (OPA) is a standard three-terminal device requiring external feedback to operate. The OPA module has the following features:

- External connections to I/O ports
- Low leakage inputs
- · Factory Calibrated Input Offset Voltage

22.1 OPA Module Performance

Common AC and DC performance specifications for the OPA module:

- Common Mode Voltage Range
- Leakage Current
- Input Offset Voltage
- Open Loop Gain
- Gain Bandwidth Product

Common mode voltage range is the specified voltage range for the OPA+ and OPA- inputs, for which the OPA module will perform to within its specifications. The OPA module is designed to operate with input voltages between Vss and VDD. Behavior for Common mode voltages greater than VDD, or below Vss, are not guaranteed.

Leakage current is a measure of the small source or sink currents on the OPA+ and OPA- inputs. To minimize the effect of leakage currents, the effective impedances connected to the OPA+ and OPA- inputs should be kept as small as possible and equal.

Input offset voltage is a measure of the voltage difference between the OPA+ and OPA- inputs in a closed loop circuit with the OPA in its linear region. The offset voltage will appear as a DC offset in the output equal to the input offset voltage, multiplied by the gain of the circuit. The input offset voltage is also affected by the Common mode voltage. The OPA is factory calibrated to minimize the input offset voltage of the module.

Open loop gain is the ratio of the output voltage to the differential input voltage, (OPA+) - (OPA-). The gain is greatest at DC and falls off with frequency.

Gain Bandwidth Product or GBWP is the frequency at which the open loop gain falls off to 0 dB.

22.1.1 **OPA Module Control**

The OPA module is enabled by setting the OPAxEN bit of the OPAxCON register. When enabled, the OPA forces the output driver of OPAxOUT pin into tri-state to prevent contention between the driver and the OPA output.

Note: When the OPA module is enabled, the OPAxOUT pin is driven by the op amp output, not by the PORT digital driver. Refer to Table 34-17: Operational Amplifier (OPA) for the op amp output drive capability.

22.1.2 UNITY GAIN MODE

The OPAxUG bit of the OPAxCON register selects the Unity Gain mode. When unity gain is selected, the OPA output is connected to the inverting input and the OPAxIN pin is relinquished, releasing the pin for general purpose input and output.

22.2 Effects of Reset

A device Reset forces all registers to their Reset state. This disables the OPA module.

PIC16(L)F1717/8/9

FIGURE 27-5:	TIMER1 GATE SINGLE-PULSE MODE	
TMR1GE		
T1GPOL		
T1GSPM		
T1GG <u>O/</u> DONE	Cleared by Set by software Counting enabled on	hardware on of T1GVAL
t1g_in	rising edge of T1G	
T1CKI		
T1GVAL		
Timer1	N N + 1 N + 2	
TMR1GIF	Cleared by software Set by hard- falling edge	ware on Cleared by of T1GVAL software

	SYNC = 0, BRGH = 0, BRG16 = 0												
BAUD	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300		_	_	_			_		_	_	_	_	
1200	—	—	—	1221	1.73	255	1200	0.00	239	1200	0.00	143	
2400	2404	0.16	207	2404	0.16	129	2400	0.00	119	2400	0.00	71	
9600	9615	0.16	51	9470	-1.36	32	9600	0.00	29	9600	0.00	17	
10417	10417	0.00	47	10417	0.00	29	10286	-1.26	27	10165	-2.42	16	
19.2k	19.23k	0.16	25	19.53k	1.73	15	19.20k	0.00	14	19.20k	0.00	8	
57.6k	55.55k	-3.55	3	_	_	_	57.60k	0.00	7	57.60k	0.00	2	
115.2k		_	_	—	_	_	—	_	_	—	_	_	

TABLE 31-5: BAUD RATES FOR ASYNCHRONOUS MODES

		SYNC = 0, BRGH = 0, BRG16 = 0														
BAUD	Fosc = 8.000 MHz			Fos	Fosc = 4.000 MHz			; = 3.686	4 MHz	Fos	Fosc = 1.000 MHz					
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)				
300	_	_	_	300	0.16	207	300	0.00	191	300	0.16	51				
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12				
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	—	—	—				
9600	9615	0.16	12	—		—	9600	0.00	5	_	_	—				
10417	10417	0.00	11	10417	0.00	5	_	_	_	_	_	_				
19.2k	—	—	—	—		—	19.20k	0.00	2	—	—	—				
57.6k	—	—	—	—	—	—	57.60k	0.00	0	—	—	—				
115.2k	_	—	—	—		_	—	_	—	—	_	—				

	SYNC = 0, BRGH = 1, BRG16 = 0													
BAUD	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc	; = 18.43	2 MHz	Fosc = 11.0592 MHz				
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)		
300	—	_	_	—	_	_	_	—	—	_	—	—		
1200	_	—	—	—	—	—	—	_	—	—	_	—		
2400	_	_	_	—	_	_	—	_	_	—	_	_		
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71		
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65		
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35		
57.6k	57.14k	-0.79	34	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11		
115.2k	117.64k	2.12	16	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5		

32.0 IN-CIRCUIT SERIAL PROGRAMMING (ICSP™)

ICSP programming allows customers to manufacture circuit boards with unprogrammed devices. Programming can be done after the assembly process, allowing the device to be programmed with the most recent firmware or a custom firmware. Five pins are needed for ICSP programming:

- ICSPCLK
- ICSPDAT
- MCLR/VPP
- VDD
- Vss

In Program/Verify mode the program memory, user IDs and the Configuration Words are programmed through serial communications. The ICSPDAT pin is a bidirectional I/O used for transferring the serial data and the ICSPCLK pin is the clock input. For more information on ICSP refer to the "*PIC16(L)F170X Memory Programming Specification*" (DS41683).

32.1 High-Voltage Programming Entry Mode

The device is placed into High-Voltage Programming Entry mode by holding the ICSPCLK and ICSPDAT pins low then raising the voltage on MCLR/VPP to VIHH.

32.2 Low-Voltage Programming Entry Mode

The Low-Voltage Programming Entry mode allows the PIC Flash MCUs to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Words is set to '1', the low-voltage ICSP programming entry is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'.

Entry into the Low-Voltage Programming Entry mode requires the following steps:

- 1. MCLR is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

Once the key sequence is complete, $\overline{\text{MCLR}}$ must be held at VIL for as long as Program/Verify mode is to be maintained.

If low-voltage programming is enabled (LVP = 1), the $\overline{\text{MCLR}}$ Reset function is automatically enabled and cannot be disabled. See **Section 5.5 "MCLR**" for more information.

The LVP bit can only be reprogrammed to '0' by using the High-Voltage Programming mode.

32.3 Common Programming Interfaces

Connection to a target device is typically done through an ICSP header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6-pin, 6-connector) configuration. See Figure 32-1.

Another connector often found in use with the PICkit[™] programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 32-2.

For additional interface recommendations, refer to your specific device programmer manual prior to PCB design.

It is recommended that isolation devices be used to separate the programming pins from other circuitry. The type of isolation is highly dependent on the specific application and may include devices such as resistors, diodes, or even jumpers. See Figure 32-3 for more information.

Mnen	nonic,	Description	Cycles		14-Bit	Opcode	9	Status	Notos
Оре	rands	Description	Cycles	MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE REGIS	TER OPE	RATIO	NS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	2
ADDWFC	f, d	Add with Carry W and f	1	11	1101	dfff	ffff	C, DC, Z	2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	2
ASRF	f, d	Arithmetic Right Shift	1	11	0111	dfff	ffff	C, Z	2
LSLF	f, d	Logical Left Shift	1	11	0101	dfff	ffff	C, Z	2
LSRF	f, d	Logical Right Shift	1	11	0110	dfff	ffff	C, Z	2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	_	Clear W	1	00	0001	0000	00xx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	2	2
INCE	f, d	Increment f	1	00	1010	diii	tttt	2	2
IORWE	f, d	Inclusive OR W with f	1	00	0100	diii	tttt	2	2
MOVE	t, a		1	00	1000	diii	tttt	Z	2
	T f al	Move w to f	1	00	0000	liii	1111	~	2
	1, 0 f. d	Rotate Left I through Carry	1	00	1101	dIII	LILL		2
	l, u f d	Rotate Right I through Carry	1	00	1100	airi	LILL		2
SUBWE	i, u f. d	Subtract with Porrow W from f	1	11	1011	dIII	LIII		2
SUBWFB	i, u f d	Subiraci with Borrow W Ironn I	1	11	1011	dIII	LIII	C, DC, Z	2
	i, u f d	Exclusive OP W with f	1	00	0110	dIII dfff	LLLL	7	2
XORWI	i, u				0110	uIII	LLLL	2	2
DE0507	fd	Decrement f Skin if 0	1(2)		1011	dff	fff		1 2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1, 2
		BIT-ORIENTED FILE REGIST			IS				
2.05	fh	Bit Clear f	1	0.1	0.0bb	bfff	ffff		2
BCF	I, D f b	Bit Set f	1	01	0000	DIII	LILL		2
BSF	1, D		1	01	ddru	DIII	LLLL		2
		BIT-ORIENTED SKIP O	PERATIO	NS				1	
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		1, 2
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		1, 2
LITERAL	OPERATIO	NS							
ADDLW	k	Add literal and W	1	11	1110	kkkk	kkkk	C, DC, Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLB	k	Move literal to BSR	1	00	0000	001k	kkkk		
MOVLP	k	Move literal to PCLATH	1	11	0001	1kkk	kkkk		
MOVLW	k	Move literal to W	1	11	0000	kkkk	kkkk		
SUBLW	k	Subtract W from literal	1	11	1100	kkkk	kkkk	C, DC, Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	
		CONTROL OPERA	TIONS						
BRA	k	Relative Branch	2	11	001k	kkkk	kkkk		
BRW	-	Relative Branch with W	2	00	0000	0000	1011		
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk		
CALLW	-	Call Subroutine with W	2	00	0000	0000	1010		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
RETFIE	k	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	0100	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		

TABLE 33-3: PIC16(L)F1717/8/9 INSTRUCTION SET

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

PIC16LF	-1717/8/9	Standard Operating Conditions (unless otherwise stated)										
PIC16F1	1717/8/9											
Param.	Device	Min	Typ +		Unite		Conditions					
No.	Characteristics	with.	тур.т	Wax.	Units	Vdd	Note					
D009	LDO Regulator	—	75	—	μA	—	High-Power mode, normal operation					
		—	15		μA	—	Sleep, VREGCON<1> = 0					
		_	0.3		μA	—	Sleep, VREGCON<1> = 1					
D010		—	8	—	μA	1.8	Fosc = 32 kHz,					
		—	12	—	μA	3.0	LP Oscillator mode (Note 4), -40°C \leq TA \leq +85°C					
D010		—	15		μA	2.3	Fosc = 32 kHz,					
		_	17		μA	3.0	LP Oscillator mode (Note 4, Note 5),					
		_	21		μA	5.0	$-40^{\circ}C \le IA \le +85^{\circ}C$					
D012		—	140	—	μA	1.8	Fosc = 4 MHz,					
		_	250	—	μA	3.0	XT Oscillator mode					
D012		_	210		μA	2.3	Fosc = 4 MHz,					
		—	280		μA	3.0	XT Oscillator mode (Note 5)					
		_	340		μA	5.0						
D014		_	115		μA	1.8	Fosc = 4 MHz,					
		-	210	-	μA	3.0	External Clock (ECM), Medium Power mode					
D014		_	180		μA	2.3	Fosc = 4 MHz,					
		_	240		μA	3.0	External Clock (ECM),					
		_	300		μA	5.0	Medium Power mode (Note 5)					
D015		_	2.1		mA	3.0	Fosc = 32 MHz,					
		—	2.5	—	mA	3.6	External Clock (ECH), High-Power mode					
D015			2.1	_	mA	3.0	Fosc = 32 MHz,					
		_	2.2	—	mA	5.0	External Clock (ECH), High-Power mode (Note 5)					

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in $k\Omega$

4: FVR and BOR are disabled.

5: 0.1 μ F capacitor on VCAP.

6: 8 MHz clock with 4x PLL enabled.

TABLE 34-4: I/O PORTS (CONTINUED)

Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions						
	IPUR	Weak Pull-up Current											
D070*			25	100	200	μA	VDD = 3.3V, VPIN = Vss						
			25	140	300	μA	VDD = 5.0V, VPIN = Vss						
	Vol	Output Low Voltage ⁽⁴⁾											
D080		I/O ports	_	—	0.6	V	IOL = 8mA, VDD = 5V IOL = 6mA, VDD = 3.3V IOL = 1.8mA, VDD = 1.8V						
	Voн	Output High Voltage ⁽⁴⁾											
D090		I/O ports	Vdd - 0.7	—	_	V	IOH = 3.5mA, VDD = 5V IOH = 3mA, VDD = 3.3V IOH = 1mA, VDD = 1.8V						
		Capacitive Loading Specs on Output Pins											
D101*	COSC2	OSC2 pin	_		15	pF	In XT, HS and LP modes when external clock is used to drive OSC1						
D101A*	Сю	All I/O pins	_	—	50	pF	_						

Standard Operating Conditions (unless otherwise stated)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in EXTRC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	Ν	28		
Pitch	е	0.65 BSC		
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.20 REF		
Overall Width	E	6.00 BSC		
Exposed Pad Width	E2	3.65	3.70	4.70
Overall Length	D	6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.70
Terminal Width	b	0.23	0.30	0.35
Terminal Length	L	0.30	0.40	0.50
Terminal-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-124C Sheet 2 of 2