Microchip Technology - PIC16F1718-I/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	24
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 17x10b; D/A 1x5b, 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1718-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-6: PIC16(L)F1718/9 MEMORY MAP, BANK 8-23

	BANK 8		BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h		480h		500h		580h		600h		680h		700h		780h	
	Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)
40Bh		48Bh		50Bh		58Bh		60Bh		68Bh		70Bh		78Bh	
40Ch	—	48Ch	—	50Ch	_	58Ch	—	60Ch		68Ch	—	70Ch		78Ch	_
40Dh	—	48Dh	—	50Dh	—	58Dh	—	60Dh		68Dh	—	70Dh		78Dh	—
40Eh	—	48Eh	_	50Eh	—	58Eh	_	60Eh	_	68Eh		70Eh	_	78Eh	_
40Fh	—	48Fh	_	50Fh	—	58Fh	_	60Fh	_	68Fh	—	70Fh	_	78Fh	_
410h	—	490h	_	510h		590h	—	610h	_	690h	-	710h	_	790h	_
411h	_	491h		511h	OPA1CON	591h		611h		691h	COG1PHR COG1PHF	711h		791h	
412h	—	492h	_	512h	_	592h		612h		692h		712h		792h	_
413h	_	493h		513h	_	593h	_	613h		693h	COG1BLKR COG1BLKF	713h		793h	
414h	 TMR4	494h		514h	 OPA2CON	594h		614h		694h	COGIDER	714h		794h 795h	
415h		495h		515h		595h		615h		695h	COG1DBR	715h			
416h 417h	PR4 T4CON	496h 497h		516h 517h	_	596h 597h	_	616h 617h	PWM3DCL	696h 697h	COG1CON0	716h 717h		796h 797h	_
41711 418h		49711 498h	NC01ACCL	517n 518h		597n 598h		618h	PWM3DCL PWM3DCH	698h	COG1CON0	718h		797n 798h	
41011 419h		49011 499h	NCOTACCE	510h		590h		619h	PWM3DCH PWM3CON	699h	COG1RIS	719h		7901 799h	
41911 41Ah		49911 49Ah	NCO1ACCU	519h		59911 59Ah		61Ah	PWM4DCL	69Ah	COG1RSIM	71Ah		79911 79Ah	
41An		49An 49Bh	NCOTINCL	51An 51Bh		59An 59Bh		61Bh	PWM4DCL PWM4DCH	69Bh	COG1FIS	71Bh		79An 79Bh	
41Ch	 TMR6	49Ch	NCO1INCH	51Ch		59Ch		61Ch	PWM4CON	69Ch	COG1FSIM	71Ch		79Ch	
41Dh	PR6	49Dh	NCO1INCU	51Dh		59Dh		61Dh		69Dh	COG1ASD0	71Dh		79Dh	
41Eh	TECON	49Eh	NCO1CON	51Eh		59Eh		61Eh		69Eh	COG1ASD1	71Eh		79Eh	
41Fh	_	49Fh	NCO1CLK	51Fh		59Fh		61Fh		69Fh	COG1STR	71Fh		79Eh	
420h		4A0h	NOOTOEN	520h		5A0h		620h		6A0h	00010111	720h		7A0h	
-	General	-	General		General		General		General		General	_	General	-	General
	Purpose		Purpose		Purpose		Purpose		Purpose		Purpose		Purpose		Purpose
	Register		Register		Register		Register		Register		Register		Register		Register
	80 Bytes		80 Bytes		80 Bytes		80 Bytes		80 Bytes		80 Bytes		80 Bytes		80 Bytes
46Fh		4EFh		56Fh		5EFh		66Fh		6EFh		76Fh		7EFh	
470h		4F0h		570h		5F0h		670h		6F0h		770h		7F0h	
	Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses
	70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh
47Fh		4FFh		57Fh		5FFh		67Fh		6FFh		77Fh		7FFh	
	BANK 16		BANK 17		BANK 18		BANK 19		BANK 20		BANK 21		BANK 22		BANK 23
800h		880h		900h		980h		A00h		A80h		B00h		B80h	
	Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers		Core Registers
	(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)		(Table 3-2)
80Bh		88Bh		90Bh		98Bh		A0Bh		A8Bh		B0Bh		B8Bh	
80Ch	General	88Ch	General	90Ch	General	98Ch	General	A0Ch	General	A8Ch	General	B0Ch	General	B8Ch	General
	Purpose	50.011	Purpose	20011	Purpose	20011	Purpose		Purpose	1.0011	Purpose	20011	Purpose	20011	Purpose
	Register		Register		Register		Register		Register		Register		Register		Register
	80 Bytes	000	80 Bytes		80 Bytes	9EFh	80 Bytes		80 Bytes	AEFh	80 Bytes	DOC	80 Bytes	BEFh	80 Bytes
86Fh	,	8EFh	,	96Fh	,	-	,	A6Fh	,		,	B6Fh	,		,
870h	A	8F0h	A	970h	A	9F0h	A	A70h	A	AF0h	A	B70h	A	BF0h	A
	Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh
	/011 - /FII		/011 - /FII		/011 - /FII		7011 - 7FII		-	:	-		-		/ UII - / FII
87Fh		8FFh		97Fh		9FFh		A7Fh		AFFh		B7Fh		BFFh	

Legend: = Unimplemented data memory locations, read as '0'.

6.4 Two-Speed Clock Start-up Mode

Two-Speed Start-up mode provides additional power savings by minimizing the latency between external oscillator start-up and code execution. In applications that make heavy use of the Sleep mode, Two-Speed Start-up will remove the external oscillator start-up time from the time spent awake and can reduce the overall power consumption of the device. This mode allows the application to wake-up from Sleep, perform a few instructions using the INTOSC internal oscillator block as the clock source and go back to Sleep without waiting for the external oscillator to become stable.

Two-Speed Start-up provides benefits when the oscillator module is configured for LP, XT or HS modes. The Oscillator Start-up Timer (OST) is enabled for these modes and must count 1024 oscillations before the oscillator can be used as the system clock source.

If the oscillator module is configured for any mode other than LP, XT or HS mode, then Two-Speed Start-up is disabled. This is because the external clock oscillator does not require any stabilization time after POR or an exit from Sleep.

If the OST count reaches 1024 before the device enters Sleep mode, the OSTS bit of the OSCSTAT register is set and program execution switches to the external oscillator. However, the system may never operate from the external oscillator if the time spent awake is very short.

Note:	Executing a SLEEP instruction will abort
	the oscillator start-up time and will cause
	the OSTS bit of the OSCSTAT register to
	remain clear.

6.4.1 TWO-SPEED START-UP MODE CONFIGURATION

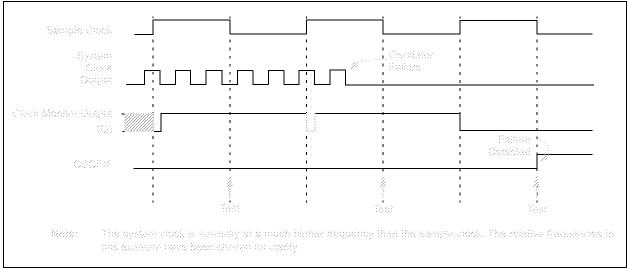
Two-Speed Start-up mode is configured by the following settings:

- IESO (of the Configuration Words) = 1; Internal/External Switchover bit (Two-Speed Start-up mode enabled).
- SCS (of the OSCCON register) = 00.
- FOSC<2:0> bits in the Configuration Words configured for LP, XT or HS mode.

Two-Speed Start-up mode is entered after:

- Power-on Reset (POR) and, if enabled, after Power-up Timer (PWRT) has expired, or
- · Wake-up from Sleep.

Switch From	Switch To	Frequency	Oscillator Delay
Sleep	LFINTOSC ⁽¹⁾ MFINTOSC ⁽¹⁾ HFINTOSC ⁽¹⁾	31 kHz 31.25 kHz-500 kHz 31.25 kHz-16 MHz	Oscillator Warm-up Delay (Twarm) ⁽²⁾
Sleep/POR	EC, RC ⁽¹⁾	DC – 32 MHz	2 cycles
LFINTOSC	EC, RC ⁽¹⁾	DC – 32 MHz	1 cycle of each
Sleep/POR	Secondary Oscillator LP, XT, HS ⁽¹⁾	32 kHz-20 MHz	1024 Clock Cycles (OST)
Any clock source	MFINTOSC ⁽¹⁾ HFINTOSC ⁽¹⁾	31.25 kHz-500 kHz 31.25 kHz-16 MHz	2 μs (approx.)
Any clock source	LFINTOSC ⁽¹⁾	31 kHz	1 cycle of each
Any clock source	Secondary Oscillator	32 kHz	1024 Clock Cycles (OST)
PLL inactive	PLL active	16-32 MHz	2 ms (approx.)


TABLE 6-1: OSCILLATOR SWITCHING DELAYS

Note 1: PLL inactive.

2: See Section 34.0 "Electrical Specifications".

PIC16(L)F1717/8/9

8.2 Low-Power Sleep Mode

The PIC16F1717/8/9 device contains an internal Low Dropout (LDO) voltage regulator, which allows the device I/O pins to operate at voltages up to 5.5V while the internal device logic operates at a lower voltage. The LDO and its associated reference circuitry must remain active when the device is in Sleep mode. The PIC16F1717/8/9 allows the user to optimize the operating current in Sleep, depending on the application requirements.

A Low-Power Sleep mode can be selected by setting the VREGPM bit of the VREGCON register. With this bit set, the LDO and reference circuitry are placed in a low-power state when the device is in Sleep.

8.2.1 SLEEP CURRENT VS. WAKE-UP TIME

In the default operating mode, the LDO and reference circuitry remain in the normal configuration while in Sleep. The device is able to exit Sleep mode quickly since all circuits remain active. In Low-Power Sleep mode, when waking up from Sleep, an extra delay time is required for these circuits to return to the normal configuration and stabilize.

The Low-Power Sleep mode is beneficial for applications that stay in Sleep mode for long periods of time. The Normal mode is beneficial for applications that need to wake from Sleep quickly and frequently.

8.2.2 PERIPHERAL USAGE IN SLEEP

Some peripherals that can operate in Sleep mode will not operate properly with the Low-Power Sleep mode selected. The Low-Power Sleep mode is intended for use only with the following peripherals:

- Brown-out Reset (BOR)
- Watchdog Timer (WDT)
- External interrupt pin/Interrupt-on-Change pins
- Timer1 (with external clock source < 100 kHz)
 - Note: The PIC16LF1717/8/9 does not have a configurable Low-Power Sleep mode. PIC16LF1717/8/9 is an unregulated device and is always in the lowest power state when in Sleep, with no wake-up time penalty. This device has a lower maximum VDD and I/O voltage than the PIC16F1717/8/9. See Section 34.0 "Electrical Specifications" for more information.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	
bit 7							bit 0	
Legend:								
R = Readable I	R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
u = Bit is uncha	= Bit is unchanged x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared					

REGISTER 11-3: LATA: PORTA DATA LATCH REGISTER

bit 7-0 LATA<7:0>: RA<7:0> Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

REGISTER 11-4: ANSELA: PORTA ANALOG SELECT REGISTER

U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
—	—	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

- bit 5-0 **ANSA<5:0>**: Analog Select between Analog or Digital Function on Pins RA<5:0>, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
 - 0 = Digital I/O. Pin is assigned to port or digital special function.
- **Note 1:** When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

11.10 Register Definitions: PORTE

U-0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
—	—	—	-	RE3	RE2 ⁽²⁾	RE1 ⁽²⁾	RE0 ⁽²⁾	
bit 7							bit 0	
Legend:								
R = Readable b	R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
u = Bit is uncha	I = Bit is unchanged x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared					

REGISTER 11-33: PORTE: PORTE REGISTER

bit 7-4	Unimplemented: Read as '0'
bit 3-0	RE<3:0> : PORTE General Purpose I/O Pin bits ⁽¹⁾ 1 = Port pin is \geq VIH 0 = Port pin is \leq VIL

- **Note 1:** Writes to PORTE are actually written to corresponding LATE register. Reads from PORTE register is return of actual I/O pin values.
 - 2: PIC16(L)F1717/9 only.

REGISTER 11-34: TRISE: PORTE TRI-STATE REGISTER

U-0	U-0	U-0	U-0	R-1	R/W-1/1	R/W-1/1	R/W-1/1
—	—	—	—	TRISE3	TRISE2 ⁽¹⁾	TRISE1 ⁽¹⁾	TRISE0 ⁽¹⁾
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	Unimplemented: Read as '0'
---------	----------------------------

bit 3-0 **TRISE<3:0>:** PORTE Tri-State Control bits 1 = PORTE pin configured as an input (tri-stated) 0 = PORTE pin configured as an output

Note 1: PIC16(L)F1717/9 only.

16.6 Comparator Positive Input Selection

Configuring the CxPCH<2:0> bits of the CMxCON1 register directs an internal voltage reference or an analog pin to the non-inverting input of the comparator:

- CxIN+ analog pin
- DAC output
- FVR (Fixed Voltage Reference)
- Vss (Ground)

See **Section 14.0** "Fixed Voltage Reference (FVR)" for more information on the Fixed Voltage Reference module.

See Section 23.0 "8-Bit Digital-to-Analog Converter (DAC1) Module" for more information on the DAC input signal.

Any time the comparator is disabled (CxON = 0), all comparator inputs are disabled.

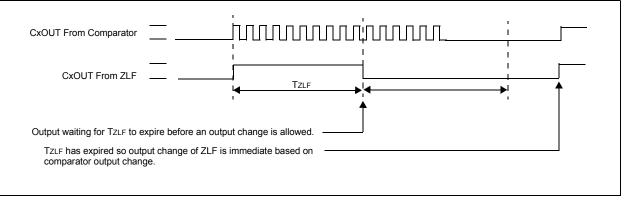
16.7 Comparator Negative Input Selection

The CxNCH<2:0> bits of the CMxCON1 register direct an analog input pin and internal reference voltage or analog ground to the inverting input of the comparator:

- CxIN- pin
- FVR (Fixed Voltage Reference)
- Analog Ground

Some inverting input selections share a pin with the operational amplifier output function. Enabling both functions at the same time will direct the operational amplifier output to the comparator inverting input.

Note: To use CxINy+ and CxINy- pins as analog input, the appropriate bits must be set in the ANSEL register and the corresponding TRIS bits must also be set to disable the output drivers.


16.8 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in Table 34-18: Comparator Specifications for more details.

16.9 Zero Latency Filter

In high-speed operation, and under proper circuit conditions, it is possible for the comparator output to oscillate. This oscillation can have adverse effects on the hardware and software relying on this signal. Therefore, a digital filter has been added to the comparator output to suppress the comparator output oscillation. Once the comparator output changes, the output is prevented from reversing the change for a nominal time of 20 ns. This allows the comparator output to stabilize without affecting other dependent devices. Refer to Figure 16-3.

FIGURE 16-3: COMPARATOR ZERO LATENCY FILTER OPERATION

18.8 Auto-shutdown Control

Auto-shutdown is a method to immediately override the COG output levels with specific overrides that allow for safe shutdown of the circuit.

The shutdown state can be either cleared automatically or held until cleared by software. In either case, the shutdown overrides remain in effect until the first rising event after the shutdown is cleared.

18.8.1 SHUTDOWN

The shutdown state can be entered by either of the following two mechanisms:

- · Software generated
- External Input

18.8.1.1 Software Generated Shutdown

Setting the GxASE bit of the COGxASD0 register (Register 18-7) will force the COG into the shutdown state.

When auto-restart is disabled, the shutdown state will persist until the first rising event after the GxASE bit is cleared by software.

When auto-restart is enabled, the GxASE bit will clear automatically and resume operation on the first rising event after the shutdown input clears. See Figure 18-15 and **Section 18.8.3.2** "**Auto-Restart**".

18.8.1.2 External Shutdown Source

External shutdown inputs provide the fastest way to safely suspend COG operation in the event of a Fault condition. When any of the selected shutdown inputs goes true, the output drive latches are reset and the COG outputs immediately go to the selected override levels without software delay.

Any combination of the input sources can be selected to cause a shutdown condition. Shutdown occurs when the selected source is low. Shutdown input sources include:

- Any input pin selected with the COGxPPS control
- C2OUT
- C10UT
- CLC2OUT

Shutdown inputs are selected independently with bits of the COGxASD1 register (Register 18-8).

Note:	Shutdown inputs are level sensitive, n edge sensitive. The shutdown state cann be cleared as long as the shutdown inp						
		persists, hutdown,	exc	ept	by	disab	oling

18.8.2 PIN OVERRIDE LEVELS

The levels driven to the output pins, while the shutdown is active, are controlled by the GxASDAC<1:0> and GxASDBC<1:0> bits of the COGxASD0 register (Register 18-7). GxASDAC<1:0> controls the COGxA and COGxC override levels and GxASDBC<1:0> controls the COGxB and COGxD override levels. There are four override options for each output pair:

- · Forced low
- · Forced high
- Tri-state
- PWM inactive state (same state as that caused by a falling event)

Note: The polarity control does not apply to the forced low and high override levels but does apply to the PWM inactive state.

18.8.3 AUTO-SHUTDOWN RESTART

After an auto-shutdown event has occurred, there are two ways to resume operation:

- Software controlled
- Auto-restart

The restart method is selected with the GxARSEN bit of the COGxASD0 register. Waveforms of a software controlled automatic restart are shown in Figure 18-15.

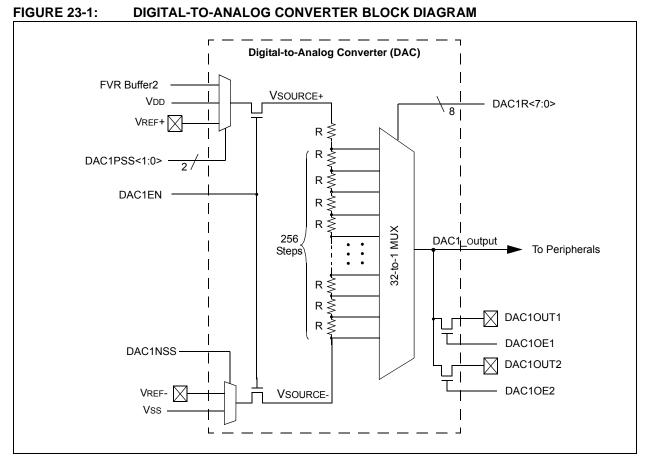
18.8.3.1 Software Controlled Restart

When the GxARSEN bit of the COGxASD0 register is cleared, software must clear the GxASE bit to restart COG operation after an auto-shutdown event.

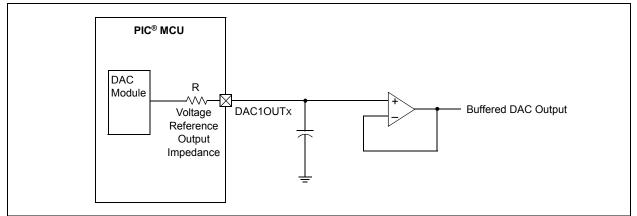
The COG will resume operation on the first rising event after the GxASE bit is cleared. Clearing the shutdown state requires all selected shutdown inputs to be false, otherwise, the GxASE bit will remain set.

18.8.3.2 Auto-Restart

When the GxARSEN bit of the COGxASD0 register is set, the COG will restart from the auto-shutdown state automatically.


The GxASE bit will clear automatically and the COG will resume operation on the first rising event after all selected shutdown inputs go false.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0
GxASE	GxARSEN	GxASDBD<1:0>		GxASDAC<1:0>		—	
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpleme	ented bit, read a	as 'O'	
u = Bit is unch	nanged	x = Bit is unkr	iown	-n/n = Value at	POR and BOR	/Value at all oth	ner Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value depe	ends on conditio	n	
bit 7	bit 7 GxASE: Auto-Shutdown Event Status bit 1 = COG is in the shutdown state 0 = COG is either not in the shutdown state or will exit the shutdown state on the next rising event						
bit 6	GxARSEN: Auto-Restart Enable bit 1 = Auto-restart is enabled 0 = Auto-restart is disabled						
bit 5-4	 bit 5-4 GxASDBD<1:0>: COGxB and COGxD Auto-shutdown Override Level Select bits 11 = A logic '1' is placed on COGxB and COGxD when shutdown is active 10 = A logic '0' is placed on COGxB and COGxD when shutdown is active 01 = COGxB and COGxD are tri-stated when shutdown is active 00 = The inactive state of the pin, including polarity, is placed on COGxB and COGxD when shutdown is active 						
bit 3-2 GxASDAC<1:0>: COGxA and COGxC Auto-shutdown Override Level Select bits 11 = A logic '1' is placed on COGxA and COGxC when shutdown is active 10 = A logic '0' is placed on COGxA and COGxC when shutdown is active 01 = COGxA and COGxC are tri-stated when shutdown is active 00 = The inactive state of the pin, including polarity, is placed on COGxA and COGxC when shutdown is active							hen shutdown
bit 1-0	Unimplemen	ted: Read as ')'				


REGISTER 18-7: COGxASD0: COG AUTO-SHUTDOWN CONTROL REGISTER 0

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
LCxG3D4T	LCxG3D4N	LCxG3D3T	LCxG3D3N	LCxG3D2T	LCxG3D2N	LCxG3D1T	LCxG3D1N		
bit 7			•				bit (
Legend: R = Readable	hit	W = Writable	bit	II = I Inimpler	nented bit, read	as '0'			
u = Bit is unch		x = Bit is unkr			at POR and BO		ther Resets		
'1' = Bit is set	anged	'0' = Bit is clea							
			areu						
bit 7	LCxG3D4T: (Gate 3 Data 4 1	rue (non-inver	rted) bit					
		is gated into L0	•	,					
		is not gated int							
bit 6	LCxG3D4N:	Gate 3 Data 4 I	Negated (inver	ted) bit					
	1 = LCxD4N	is gated into L	CxG3						
	0 = LCxD4N	is not gated inf	o LCxG3						
bit 5	LCxG3D3T: 0	Gate 3 Data 3 1	rue (non-inver	rted) bit					
		is gated into L0							
		is not gated int							
bit 4	LCxG3D3N:	Gate 3 Data 3	Negated (inver	ted) bit					
		is gated into L							
		is not gated inf							
bit 3		Sate 3 Data 2 1		rted) bit					
		is gated into L0 is not gated int							
bit 2		Gate 3 Data 2		tod) bit					
		is gated into L	•	ted) bit					
		is not gated into L							
bit 1		•		rted) bit					
	LCxG3D1T: Gate 3 Data 1 True (non-inverted) bit 1 = LCxD1T is gated into LCxG3								
		is not gated int							
bit 0	LCxG3D1N:	Gate 3 Data 1 I	Negated (inver	ted) bit					
	1 = LCxD1N	is gated into L	CxG3						
	0 = LCxD1N								

REGISTER 19-9: CLCxGLS2: GATE 3 LOGIC SELECT REGISTER

FIGURE 23-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

23.4 Operation During Sleep

The DAC continues to function during Sleep. When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the DAC1CON0 register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

23.5 Effects of a Reset

A device Reset affects the following:

- DAC is disabled
- DAC output voltage is removed from the DAC1OUT pin
- The DAC1R<7:0> range select bits are cleared

26.1.3 SOFTWARE PROGRAMMABLE PRESCALER

A software programmable prescaler is available for exclusive use with Timer0. The prescaler is enabled by clearing the PSA bit of the OPTION_REG register.

Note:	The Watchdog Timer (WDT) uses its own
	independent prescaler.

There are eight prescaler options for the Timer0 module ranging from 1:2 to 1:256. The prescale values are selectable via the PS<2:0> bits of the OPTION_REG register. In order to have a 1:1 prescaler value for the Timer0 module, the prescaler must be disabled by setting the PSA bit of the OPTION_REG register.

The prescaler is not readable or writable. All instructions writing to the TMR0 register will clear the prescaler.

26.1.4 TIMER0 INTERRUPT

Timer0 will generate an interrupt when the TMR0 register overflows from FFh to 00h. The TMR0IF interrupt flag bit of the INTCON register is set every time the TMR0 register overflows, regardless of whether or not the Timer0 interrupt is enabled. The TMR0IF bit can only be cleared in software. The Timer0 interrupt enable is the TMR0IE bit of the INTCON register.

Note:	The Timer0 interrupt cannot wake the						
	processor from Sleep since the timer is						
	frozen during Sleep.						

26.1.5 8-BIT COUNTER MODE SYNCHRONIZATION

When in 8-Bit Counter mode, the incrementing edge on the T0CKI pin must be synchronized to the instruction clock. Synchronization can be accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the instruction clock. The high and low periods of the external clocking source must meet the timing requirements as shown in Table 34-12: Timer0 and Timer1 External Clock Requirements.

26.1.6 OPERATION DURING SLEEP

Timer0 cannot operate while the processor is in Sleep mode. The contents of the TMR0 register will remain unchanged while the processor is in Sleep mode.

PIC16(L)F1717/8/9

DECFSZ	Decrement f, Skip if 0					
Syntax:	[label] DECFSZ f,d					
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$					
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0					
Status Affected:	None					
Description:	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2-cycle instruction.					

GOTO	Unconditional Branch					
Syntax:	[<i>label</i>] GOTO k					
Operands:	$0 \leq k \leq 2047$					
Operation:	$k \rightarrow PC < 10:0>$ PCLATH<6:3> $\rightarrow PC < 14:11>$					
Status Affected:	None					
Description:	GOTO is an unconditional branch. The 11-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a 2-cycle instruction.					

INCFSZ	Increment f, Skip if 0					
Syntax:	[label] INCFSZ f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0					
Status Affected:	None					
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a 2-cycle instruction.					

IORLW	Inclusive OR literal with W					
Syntax:	[<i>label</i>] IORLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	(W) .OR. $k \rightarrow$ (W)					
Status Affected:	Z					
Description:	The contents of the W register are OR'ed with the 8-bit literal 'k'. The result is placed in the W register.					

INCF	Increment f	IORWF	Inclusive OR W with f
Syntax:	[label] INCF f,d	Syntax:	[<i>label</i>] IORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) + 1 \rightarrow (destination)	Operation:	(W) .OR. (f) \rightarrow (destination)
Status Affected:	Z	Status Affected:	Z
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.	Description:	Inclusive OR the W register with register 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

34.2 Standard Operating Conditions

The standard operating co	conditions for any device are defined as:	
Operating Voltage:	$VDDMIN \leq VDD \leq VDDMAX$	
Operating Temperature:		
VDD — Operating Supply	bly Voltage ⁽¹⁾	
PIC16LF1717/8/9)	
Vddmin (F	(Fosc \leq 16 MHz)	+1.8V
Vddmin (F	(Fosc > 16 MHz)	+2.5V
VDDMAX		+3.6V
PIC16F1717/8/9		
Vddmin (F	(Fosc \leq 16 MHz)	+2.3V
Vddmin (>	(> 16 MHz)	+2.5V
VDDMAX		+5.5V
TA — Operating Ambien	nt Temperature Range	
Industrial Temperat	ature	
TA_MIN		40°C
Та_мах		+85°C
Extended Tempera	ature	
TA_MIN		40°C
Та_мах		+125°C
Note 1: See Paramete	ter D001, DS Characteristics: Supply Voltage.	

PIC16LF1717/8/9				Standard Operating Conditions (unless otherwise stated) Low-Power Sleep Mode					
PIC16F1717/8/9			Low-P	ower Sle	eep Mode	e, VREG	6PM = 1		
Param.	Device	Min.	Typ.†	Max.	Max.	Units		Conditions	
No.	Characteristics	IVIIII.	тур.т	+85°C	+125°C	Vdd	Note		
D029		—	0.05	2	9	μA	1.8	ADC Current (Note 3),	
		_	0.08	3	10	μA	3.0	no conversion in progress	
D029			0.3	4	12	μA	2.3	ADC Current (Note 3),	
			0.4	5	13	μA	3.0	no conversion in progress	
			0.5	7	16	μA	5.0		
D030			250	—	_	μA	1.8	ADC Current (Note 3),	
		—	250		_	μA	3.0	conversion in progress	
D030		—	280	—	—	μA	2.3	ADC Current (Note 3),	
		_	280	_	_	μA	3.0	conversion in progress	
		—	280		—	μA	5.0		
D031		—	250	650	_	μA	3.0	Op Amp (High power)	
D031		—	250	650		μA	3.0	Op Amp (High power)	
		—	350	650	_	μA	5.0		
D032		—	250	600	—	μA	1.8	Comparator,	
		—	300	650	—	μA	3.0	CxSP = 0	
D032		—	280	600	—	μA	2.3	Comparator,	
		_	300	650	_	μA	3.0	CxSP = 0 VREGPM = 0	
		310	650	_	μA	5.0			

TABLE 34-3: POWER-DOWN CURRENTS (IPD)^(1,2) (CONTINUED)

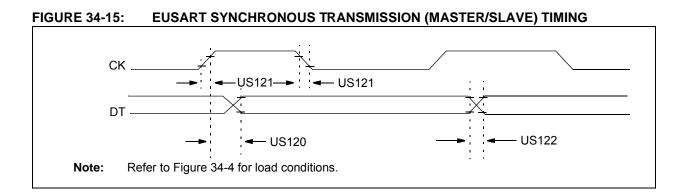
* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to Vss.

3: ADC clock source is FRC.


TABLE 34-12: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)

Operatin	ng Temperature	$e -40^{\circ}C \le TA \le$	+125°C						
Param. No.	Sym.		Characteristic		Min.	Typ.†	Max.	Units	Conditions
40*	Тт0Н	T0CKI High Pulse Width		No Prescaler	0.5 Tcy + 20	_	—	ns	
				With Prescaler	10		_	ns	
41*	TT0L	T0CKI Low Pulse Width No Prescaler		0.5 Tcy + 20		_	ns		
				With Prescaler	10	_	—	ns	
42*	Ττ0Ρ	T0CKI Period	d		Greater of: 20 or <u>Tcy + 40</u> N	—	—	ns	N = prescale value
45*	T⊤1H	T1CKI High Time	Synchronous, No Prescaler		0.5 Tcy + 20	_	_	ns	
			Synchronous, with Prescaler		15		_	ns	
			Asynchronous		30	_	—	ns	
46*	T⊤1L	T1CKI Low Time	Synchronous, No Prescaler		0.5 Tcy + 20		_	ns	
			Synchronous, with Prescaler		15		_	ns	
			Asynchronous		30	_	—	ns	
47*	TT1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	—	—	ns	N = prescale value
			Asynchronous		60	_		ns	
48	F⊤1		ry Oscillator Input Frequency Range r enabled by setting bit T1OSCEN)		32.4	32.76 8	33.1	kHz	
49*	TCKEZTMR1	Delay from E Increment	ay from External Clock Edge to Timer rement		2 Tosc	—	7 Tosc	—	Timers in Sync mode

These parameters are characterized but not tested. *

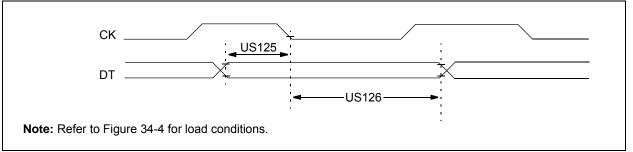

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not † tested.

TABLE 34-22: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)						
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
US120	TCKH2DTV	SYNC XMIT (Master and Slave)		80	ns	$3.0V \leq V\text{DD} \leq 5.5V$
		Clock high to data-out valid	_	100	ns	$1.8V \leq V\text{DD} \leq 5.5V$
US121	TCKRF	Clock out rise time and fall time	_	45	ns	$3.0V \leq V\text{DD} \leq 5.5V$
		(Master mode)	_	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$
US122	TDTRF	Data-out rise time and fall time	_	45	ns	$3.0V \le V\text{DD} \le 5.5V$
			_	50	ns	$1.8V \le V\text{DD} \le 5.5V$

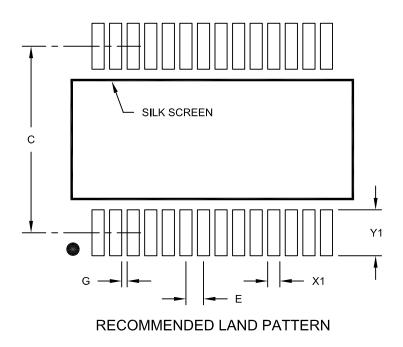
FIGURE 34-16: EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 34-23: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)							
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions	
US125	TDTV2CKL	SYNC RCV (Master and Slave)					
		Data-setup before CK \downarrow (DT hold time)	10	—	ns		
US126	TCKL2DTL	Data-hold after CK \downarrow (DT hold time)	15	_	ns		

TABLE 34-26: I²C BUS DATA REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)								
Param. No. Symbol		Characteristic		Min.	Max.	Units	Conditions	
SP100*	Тнідн	Clock high time	100 kHz mode	4.0	-	μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz	
			SSP module	1.5Tcy				
SP101* TLOW	TLOW	Clock low time	100 kHz mode	4.7	—	μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3	-	μS	Device must operate at a minimum of 10 MHz	
			SSP module	1.5Tcy				
SP102* Tr	TR	SDA and SCL rise time	100 kHz mode	—	1000	ns		
			400 kHz mode	20 + 0.1CB	300	ns	CB is specified to be from 10-400 pF	
SP103*	TF	SDA and SCL fall	100 kHz mode	—	250	ns		
time		ime	400 kHz mode	20 + 0.1CB	250	ns	CB is specified to be from 10-400 pF	
SP106* THD:DAT		Data input hold time	100 kHz mode	0		ns		
			400 kHz mode	0	0.9	μs		
SP107*	TSU:DAT	⊤ Data input setup time	100 kHz mode	250		ns	(Note 2)	
			400 kHz mode	100		ns		
SP109*	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	(Note 1)	
		clock	400 kHz mode	_	—	ns		
SP110*	TBUF	Bus free time	100 kHz mode	4.7	_	μS	Time the bus must be free	
			400 kHz mode	1.3	—	μS	before a new transmission can start	
SP111	Св	Bus capacitive loading	Ig		400	pF		


* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement TsU:DAT \ge 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimensior	MIN	NOM	MAX			
Contact Pitch		0.65 BSC				
Contact Pad Spacing	С		7.20			
Contact Pad Width (X28)	X1			0.45		
Contact Pad Length (X28)	Y1			1.75		
Distance Between Pads	G	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A