

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	24
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 17x10b; D/A 1x5b, 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1718-i-sp

Email: info@E-XFL.COM

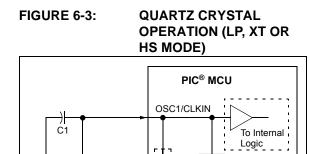
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-3: PIC16(L)F1717/9 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description
RA0/AN0/C1IN0-/C2IN0-/	RA0	TTL/ST	CMOS	General purpose I/O.
CLCIN0 ⁽¹⁾	AN0	AN	_	ADC Channel 0 input.
	C1IN0-	AN	_	Comparator C2 negative input.
	C2IN0-	AN	—	Comparator C3 negative input.
	CLCIN0	TTL/ST	—	Configurable Logic Cell source input.
RA1/AN1/C1IN1-/C2IN1-/	RA1	TTL/ST	CMOS	General purpose I/O.
OPA1OUT/CLCIN1 ⁽¹⁾	AN1	AN	_	ADC Channel 1 input.
	C1IN1-	AN	_	Comparator C1 negative input.
	C2IN1-	AN	—	Comparator C2 negative input.
	OPA10UT	_	AN	Operational Amplifier 1 output.
	CLCIN1	TTL/ST	—	Configurable Logic Cell source input.
RA2/AN2/VREF-/C1IN0+/C2IN0+/	RA2	TTL/ST	CMOS	General purpose I/O.
DAC1OUT1	AN2	AN	—	ADC Channel 2 input.
	VREF-	AN	—	ADC Negative Voltage Reference input.
	C1IN0+	AN	—	Comparator C2 positive input.
	C2IN0+	AN	—	Comparator C3 positive input.
	DAC1OUT1	_	AN	Digital-to-Analog Converter output.
RA3/AN3/VREF+/C1IN1+	RA3	TTL/ST	CMOS	General purpose I/O.
	AN3	AN	—	ADC Channel 3 input.
	VREF+	AN	—	ADC Voltage Reference input.
	C1IN1+	AN	_	Comparator C1 positive input.
RA4/OPA1IN+/T0CKI ⁽¹⁾	RA4	TTL/ST	CMOS	General purpose I/O.
	OPA1IN+	AN	_	Operational Amplifier 1 non-inverting input.
	TOCKI	TTL/ST	—	Timer0 gate input.
RA5/AN4/OPA1IN-/DAC2OUT1/	RA5	TTL/ST	CMOS	General purpose I/O.
<u>SS</u> (1)	AN4	AN	—	ADC Channel 4 input.
	OPA1IN-	AN	—	Operational Amplifier 1 inverting input.
	DAC2OUT1	_	AN	Digital-to-Analog Converter output.
	SS	—	—	Slave Select enable input.
RA6/OSC2/CLKOUT	RA6	TTL/ST	CMOS	General purpose I/O.
	OSC2	_	XTAL	Crystal/Resonator (LP, XT, HS modes).
	CLKOUT	_	CMOS	Fosc/4 output.
RA7/OSC1/CLKIN	RA7	TTL/ST	CMOS	General purpose I/O.
	OSC1	_	XTAL	Crystal/Resonator (LP, XT, HS modes).
	CLKIN	ST	—	External clock input (EC mode).
RB0/AN12/C2IN1+/ZCD/	RB0	TTL/ST	CMOS	General purpose I/O.
COGIN ⁽¹⁾	AN12	AN	—	ADC Channel 12 input.
	C2IN1+	AN	—	Comparator C2 positive input.
	ZCD	AN	_	Zero-Cross Detection Current Source/Sink.
	COGIN	TTL/ST		Complementary Output Generator input.

.egend:AN = Analog input or outputCMOS = CMOS compatible input or outputOD = Open-DrainTTL = TTL compatible inputST = Schmitt Trigger input with CMOS levelsI²C = Schmitt Trigger input with I²CHV = High VoltageXTAL = Crystal levels

Note 1: Default peripheral input. Alternate pins can be selected as the peripheral input with the PPS input selection registers.


2: All pin digital outputs default to PORT latch data. Alternate outputs can be selected as the peripheral digital output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

 TABLE 3-10:
 PIC16(L)F1717/8/9 MEMORY

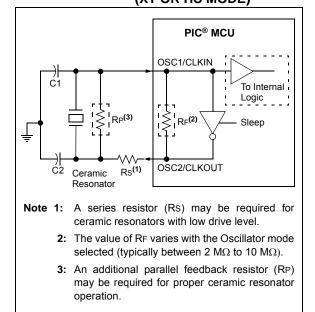
 MAP, BANK 31

F8Ch FE3h FE4h STATUS_SHAD FE5h WREG_SHAD FE6h BSR_SHAD FE7h PCLATH_SHAD FE8h FSROL_SHAD FE9h FSROH_SHAD FEAh FSR1L_SHAD FEAh FSR1H_SHAD FEAH TOSL FEAH TOSH FFFh TOSH Legend: = Unimplemented data memory locations, read as '		Bank 31	
FE4h STATUS_SHAD FE5h WREG_SHAD FE6h BSR_SHAD FE7h PCLATH_SHAD FE8h FSR0L_SHAD FE9h FSR0H_SHAD FEAh FSR1L_SHAD FEBh FSR1H_SHAD FECh — FECh TOSL FEFh TOSH FFFh = Unimplemented data memory locations,	F8Ch		
FE4h STATUS_SHAD FE5h WREG_SHAD FE6h BSR_SHAD FE7h PCLATH_SHAD FE8h FSR0L_SHAD FE9h FSR0H_SHAD FEAh FSR1L_SHAD FEBh FSR1H_SHAD FECh — FECh TOSL FEFh TOSH FFFh = Unimplemented data memory locations,			
FE4h STATUS_SHAD FE5h WREG_SHAD FE6h BSR_SHAD FE7h PCLATH_SHAD FE8h FSR0L_SHAD FE9h FSR0H_SHAD FE8h FSR1L_SHAD FE8h FSR1L_SHAD FE8h FSR1H_SHAD FE7h TOSL FE7h TOSH FF7h — FF7h = Unimplemented data memory locations,			
FE5h WREG_SHAD FE5h BSR_SHAD FE6h BSR_SHAD FE7h PCLATH_SHAD FE8h FSR0L_SHAD FE9h FSR0H_SHAD FEAh FSR1L_SHAD FEBh FSR1H_SHAD FECh — FEDh STKPTR FEFh TOSL FF7h — FF7h = Unimplemented data memory locations,	FE3h		
FE6h BSR_SHAD FE7h PCLATH_SHAD FE8h FSR0L_SHAD FE9h FSR0H_SHAD FEAh FSR1L_SHAD FEBh FSR1H_SHAD FECh — FEDh STKPTR FEFh TOSH FF7h	FE4h	STATUS_SHAD	
FE7h PCLATH_SHAD FE8h FSR0L_SHAD FE9h FSR0H_SHAD FEAh FSR1L_SHAD FEBh FSR1H_SHAD FECh — FEDh STKPTR FEFh TOSL FF7h — FFFh = Unimplemented data memory locations,	FE5h	WREG_SHAD	
FE8h FSR0L_SHAD FE9h FSR0H_SHAD FEAh FSR1L_SHAD FEBh FSR1H_SHAD FECh — FEDh STKPTR FEEh TOSL FF7h — FFFh = Legend: = Unimplemented data memory locations,	FE6h	· _ ·	
FE9h FSR0H_SHAD FEAh FSR1L_SHAD FEBh FSR1H_SHAD FECh — FEDh STKPTR FEEh TOSL FEFh TOSH FFFh = Legend: = Unimplemented data memory locations,	FE7h	_	
FEAh FSR1L_SHAD FEBh FSR1H_SHAD FECh — FEDh STKPTR FEEh TOSL FEFh TOSH FF0h — FFFh = Legend: = Unimplemented data memory locations,	FE8h	_	
FEBh FSR1H_SHAD FECh — FEDh STKPTR FEEh TOSL FEFh TOSH FF0h — FFFh = Legend: = Unimplemented data memory locations,	FE9h	-	
FECh	,	-	
FEDh STKPTR FEEh TOSL FEFh TOSH FF0h		FSR1H_SHAD	
FEEh TOSL FEFh TOSH FFOh FFFh = Unimplemented data memory locations,		_	
FEFh TOSH FF0h			
FF0h			
FFFh		TOSH	
Legend: = Unimplemented data memory locations,	FFUN		
Legend: = Unimplemented data memory locations,		_	
iedu do 0,			ata memory locations,
		ieau dS U,	

Quartz

Crystal

Note 1: A series resistor (Rs) may be required for quartz crystals with low drive level. 2: The value of RF varies with the Oscillator mode selected (typically between 2 MΩ to 10 MΩ).


RF⁽²⁾

Sleep

- Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 2: Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Application Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)

FIGURE 6-4:

CERAMIC RESONATOR OPERATION (XT OR HS MODE)

6.2.1.3 Oscillator Start-up Timer (OST)

If the oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations from OSC1. This occurs following a Power-on Reset (POR) and when the Power-up Timer (PWRT) has expired (if configured), or a wake-up from Sleep. During this time, the program counter does not increment and program execution is suspended, unless either FSCM or Two-Speed Start-Up are enabled. In this case, code will continue to execute at the selected INTOSC frequency while the OST is counting. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the oscillator module.

In order to minimize latency between external oscillator start-up and code execution, the Two-Speed Clock Start-up mode can be selected (see **Section 6.4 "Two-Speed Clock Start-up Mode"**).

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkn	nown	-n/n = Value a	at POR and BOI	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 11-5: WPUA: WEAK PULL-UP PORTA REGISTER^(1,2)

bit 7-0	WPUA<7:0>: Weak Pull-up Register bits
	1 = Pull-up enabled
	0 = Pull-up disabled

Note 1: Global WPUEN bit of the OPTION REG register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is configured as an output.

REGISTER 11-6: **ODCONA: PORTA OPEN-DRAIN CONTROL REGISTER**

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ODA7 | ODA6 | ODA5 | ODA4 | ODA3 | ODA2 | ODA1 | ODA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ODA<7:0>: PORTA Open-Drain Enable bits

For RA<7:0> pins, respectively

- 1 = Port pin operates as open-drain drive (sink current only)
- 0 = Port pin operates as standard push-pull drive (source and sink current)

11.5 PORTC Registers

11.5.1 DATA REGISTER

PORTC is an 8-bit wide bidirectional port. The corresponding data direction register is TRISC (Register 11-18). Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 11-1 shows how to initialize an I/O port.

Reading the PORTC register (Register 11-17) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATC).

11.5.2 DIRECTION CONTROL

The TRISC register (Register 11-18) controls the PORTC pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISC register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

11.5.3 INPUT THRESHOLD CONTROL

The INLVLC register (Register 11-24) controls the input voltage threshold for each of the available PORTC input pins. A selection between the Schmitt Trigger CMOS or the TTL compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTC register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See Table 34-4: I/O Ports for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

11.5.4 OPEN-DRAIN CONTROL

The ODCONC register (Register 11-22) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCONC bit is set, the corresponding port output becomes an open-drain driver capable of sinking current only. When an ODCONC bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

11.5.5 SLEW RATE CONTROL

The SLRCONC register (Register 11-23) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCONC bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONC bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

11.5.6 ANALOG CONTROL

The ANSELC register (Register 11-20) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELC bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELC bits has no effect on digital output functions. A pin with TRIS clear and ANSELC set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELC bits default to the Analog
	mode after Reset. To use any pins as
	digital general purpose or peripheral
	inputs, the corresponding ANSEL bits
	must be initialized to '0' by user software.

11.5.7 PORTC FUNCTIONS AND OUTPUT PRIORITIES

Each pin defaults to the PORT latch data after Reset. Other functions are selected with the peripheral pin select logic. See **Section 12.0** "**Peripheral Pin Select (PPS) Module**" for more information.

Analog input functions, such as ADC and comparator inputs, are not shown in the peripheral pin select lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELC register. Digital output functions may continue to control the pin when it is in Analog mode.

				700001/					
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2		_	136
INLVLC	INLVLC7	INLVLC6	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	137
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	135
ODCONC	ODC7	ODC6	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0	137
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	135
SLRCONC	SLRC7	SLRC6	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	137
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	135
WPUC	WPUC7	WPUC6	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	136

TABLE 11-5: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTC.

15.0 TEMPERATURE INDICATOR MODULE

This family of devices is equipped with a temperature circuit designed to measure the operating temperature of the silicon die. The circuit's range of operating temperature falls between -40° C and $+85^{\circ}$ C. The output is a voltage that is proportional to the device temperature. The output of the temperature indicator is internally connected to the device ADC.

The circuit may be used as a temperature threshold detector or a more accurate temperature indicator, depending on the level of calibration performed. A one-point calibration allows the circuit to indicate a temperature closely surrounding that point. A two-point calibration allows the circuit to sense the entire range of temperature more accurately. Reference Application Note AN1333, *"Use and Calibration of the Internal Temperature Indicator"* (DS01333) for more details regarding the calibration process.

15.1 Circuit Operation

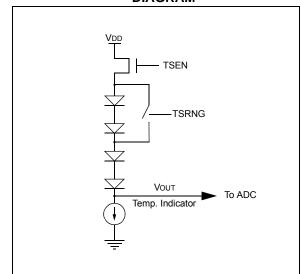
Figure 15-1 shows a simplified block diagram of the temperature circuit. The proportional voltage output is achieved by measuring the forward voltage drop across multiple silicon junctions.

Equation 15-1 describes the output characteristics of the temperature indicator.

EQUATION 15-1: VOUT RANGES

High Range:
$$V_{OUT} = V_{DD} - 4V_T$$

Low Range: $V_{OUT} = V_{DD} - 2V_T$


The temperature sense circuit is integrated with the Fixed Voltage Reference (FVR) module. See **Section 14.0 "Fixed Voltage Reference (FVR)"** for more information.

The circuit is enabled by setting the TSEN bit of the FVRCON register. When disabled, the circuit draws no current.

The circuit operates in either high or low range. The high range, selected by setting the TSRNG bit of the FVRCON register, provides a wider output voltage. This provides more resolution over the temperature range, but may be less consistent from part to part. This range requires a higher bias voltage to operate and thus, a higher VDD is needed.

The low range is selected by clearing the TSRNG bit of the FVRCON register. The low range generates a lower voltage drop and thus, a lower bias voltage is needed to operate the circuit. The low range is provided for low voltage operation.

FIGURE 15-1: TEMPERATURE CIRCUIT DIAGRAM

15.2 Minimum Operating VDD

When the temperature circuit is operated in low range, the device may be operated at any operating voltage that is within specifications.

When the temperature circuit is operated in high range, the device operating voltage, VDD, must be high enough to ensure that the temperature circuit is correctly biased.

Table 15-1 shows the recommended minimum $\mathsf{V}\mathsf{D}\mathsf{D}$ vs. range setting.

TABLE 15-1: RECOMMENDED VDD VS. RANGE

Min. VDD, TSRNG = 1	Min. VDD, TSRNG = 0
3.6V	1.8V

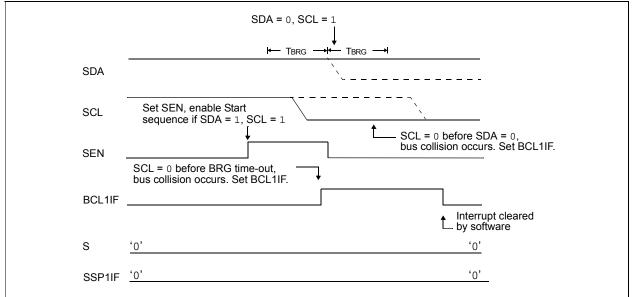
15.3 Temperature Output

The output of the circuit is measured using the internal Analog-to-Digital Converter. A channel is reserved for the temperature circuit output. Refer to **Section 21.0 "Analog-to-Digital Converter (ADC) Module"** for detailed information.

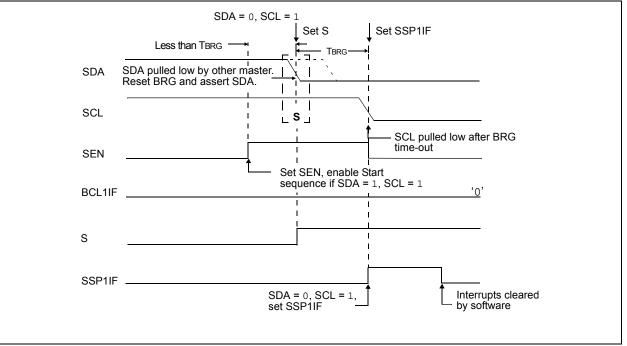
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
GxRSIM7	GxRSIM6	GxRSIM5	GxRSIM4	GxRSIM3	GxRSIM2	GxRSIM1	GxRSIM0
bit 7							bit 0
<u> </u>							
Legend:		\A/\A/_:+= - -	L 14	11 II. in the second second		(0)	
R = Readable		W = Writable		•	nented bit, read		han Daasta
u = Bit is uncha	angeo	x = Bit is unkr			at POR and BOF		ner Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = value dep	pends on condition	on	
bit 7	<u>GxRIS7 = 1:</u> 1 = NCO1_0 0 = NCO1_0 <u>GxRIS7 = 0:</u>	ut high level wil	ansition will ca l cause an imn	ause a rising ev	vent after rising e event	event phase de	lay
	_	is no effect on r	-				
bit 6	<u>GxRIS6 = 1:</u> 1 = PWM3 o 0 = PWM3 o <u>GxRIS6 = 0:</u>	DGx Rising Eve utput low-to-hig utput high level t has no effect c	h transition wil will cause an i	l cause a rising	g event after risin ig event	ng event phase	delay
bit 5	$\frac{GxRIS5 = 1:}{1 = CCP2 \text{ ou}}$ $0 = CCP2 \text{ ou}$ $\frac{GxRIS5 = 0:}{2}$	DGx Rising Event htput low-to-high htput high level has no effect of	n transition will will cause an ir	cause a rising	event after rising g event	g event phase o	delay
bit 4	$\frac{GxRIS4 = 1}{1 = CCP1 low}$ $0 = CCP1 hig$ $GxRIS4 = 0$	DGx Rising Eve w-to-high transi gh level will cau effect on rising	tion will cause se an immedia	a rising event a	after rising event	phase delay	
bit 3	GxRSIM3: CO GxRIS3 = 1:	OGx Rising Eve	ent Input Sourc	e 3 Mode bit			
	1 = CLC1 ou 0 = CLC1 ou GxRIS3 = 0:	tput low-to-high tput high level v has no effect or	vill cause an in		event after rising gevent	g event phase o	delay
bit 2	<u>GxRIS2 = 1:</u> 1 = Compara 0 = Compara <u>GxRIS2 = 0:</u>	DGx Rising Eve ator 2 low-to-hig ator 2 high level 2 has no effect o	h transition wil will cause an i	l cause a rising	g event after risir Ig event	ng event phase	delay
bit 1	<u>GxRIS1 = 1:</u> 1 = Compara 0 = Compara <u>GxRIS1 = 0:</u>	DGx Rising Eve ator 1 low-to-hig ator 1 high level has no effect c	h transition wil will cause an i	l cause a rising	g event after risir ng event	ng event phase	delay

REGISTER 18-4: COGxRSIM: COG RISING EVENT SOURCE INPUT MODE REGISTER

30.5.3.2 7-Bit Transmission


A master device can transmit a read request to a slave, and then clock data out of the slave. The list below outlines what software for a slave will need to do to accomplish a standard transmission. Figure 30-18 can be used as a reference to this list.

- 1. Master sends a Start condition on SDA and SCL.
- 2. S bit of SSP1STAT is set; SSP1IF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit set is received by the Slave setting SSP1IF bit.
- 4. Slave hardware generates an ACK and sets SSP1IF.
- 5. SSP1IF bit is cleared by user.
- 6. Software reads the received address from SSP1BUF, clearing BF.
- 7. R/\overline{W} is set so CKP was automatically cleared after the ACK.
- 8. The slave software loads the transmit data into SSP1BUF.
- 9. CKP bit is set releasing SCL, allowing the master to clock the data out of the slave.
- 10. SSP1IF is set after the ACK response from the master is loaded into the ACKSTAT register.
- 11. SSP1IF bit is cleared.
- 12. The slave software checks the ACKSTAT bit to see if the master wants to clock out more data.


Note 1: If the master ACKs the clock will be stretched.

- 2: ACKSTAT is the only bit updated on the rising edge of SCL (9th) rather than the falling.
- 13. Steps 9-13 are repeated for each transmitted byte.
- 14. If the master sends a not ACK; the clock is not held, but SSP1IF is still set.
- 15. The master sends a Restart condition or a Stop.
- 16. The slave is no longer addressed.

31.4 EUSART Baud Rate Generator (BRG)

The Baud Rate Generator (BRG) is an 8-bit or 16-bit timer that is dedicated to the support of both the asynchronous and synchronous EUSART operation. By default, the BRG operates in 8-bit mode. Setting the BRG16 bit of the BAUD1CON register selects 16-bit mode.

The SP1BRGH, SP1BRGL register pair determines the period of the free running baud rate timer. In Asynchronous mode the multiplier of the baud rate period is determined by both the BRGH bit of the TX1STA register and the BRG16 bit of the BAUD1CON register. In Synchronous mode, the BRGH bit is ignored.

Table 31-3 contains the formulas for determining the baud rate. Example 31-1 provides a sample calculation for determining the baud rate and baud rate error.

Typical baud rates and error values for various Asynchronous modes have been computed for your convenience and are shown in Table 31-5. It may be advantageous to use the high baud rate (BRGH = 1), or the 16-bit BRG (BRG16 = 1) to reduce the baud rate error. The 16-bit BRG mode is used to achieve slow baud rates for fast oscillator frequencies.

Writing a new value to the SP1BRGH, SP1BRGL register pair causes the BRG timer to be reset (or cleared). This ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

If the system clock is changed during an active receive operation, a receive error or data loss may result. To avoid this problem, check the status of the RCIDL bit to make sure that the receive operation is idle before changing the system clock.

EXAMPLE 31-1: CALCULATING BAUD RATE ERROR

For a device with Fosc of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:

Desired Baud Rate = $\frac{FOSC}{64([SPBRGH:SPBRGL] + 1)}$

Solving for SP1BRGH:SP1BRGL:

$X = \frac{Fosc}{\frac{Desired Baud Rate}{64} - 1}$
$=\frac{\frac{16000000}{9600}}{64}-1$
= [25.042] = 25
$Calculated Baud Rate = \frac{16000000}{64(25+1)}$
= 9615
Error = Calc. Baud Rate – Desired Baud Rate Desired Baud Rate
$=\frac{(9615-9600)}{9600} = 0.16\%$

31.5.1.5 Synchronous Master Reception

Data is received at the RX/DT pin. The RX/DT pin output driver is automatically disabled when the EUSART is configured for synchronous master receive operation.

In Synchronous mode, reception is enabled by setting either the Single Receive Enable bit (SREN of the RC1STA register) or the Continuous Receive Enable bit (CREN of the RC1STA register).

When SREN is set and CREN is clear, only as many clock cycles are generated as there are data bits in a single character. The SREN bit is automatically cleared at the completion of one character. When CREN is set, clocks are continuously generated until CREN is cleared. If CREN is cleared in the middle of a character the CK clock stops immediately and the partial character is discarded. If SREN and CREN are both set, then SREN is cleared at the completion of the first character and CREN takes precedence.

To initiate reception, set either SREN or CREN. Data is sampled at the RX/DT pin on the trailing edge of the TX/CK clock pin and is shifted into the Receive Shift Register (RSR). When a complete character is received into the RSR, the RCIF bit is set and the character is automatically transferred to the two character receive FIFO. The Least Significant eight bits of the top character in the receive FIFO are available in RC1REG. The RCIF bit remains set as long as there are unread characters in the receive FIFO.

Note:	If the RX/DT function is on an analog pin,						
	the corresponding ANSEL bit must be						
	cleared for the receiver to function.						

31.5.1.6 Slave Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a slave receives the clock on the TX/CK line. The TX/CK pin output driver is automatically disabled when the device is configured for synchronous slave transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One data bit is transferred for each clock cycle. Only as many clock cycles should be received as there are data bits.

Note: If the device is configured as a slave and the TX/CK function is on an analog pin, the corresponding ANSEL bit must be cleared.

31.5.1.7 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before RC1REG is read to access the FIFO. When this happens the OERR bit of the RC1STA register is set. Previous data in the FIFO will not be overwritten. The two characters in the FIFO buffer can be read, however, no additional characters will be received until the error is cleared. The OERR bit can only be cleared by clearing the overrun condition. If the overrun error occurred when the SREN bit is set and CREN is clear then the error is cleared by reading RC1REG. If the overrun occurred when the CREN bit is set then the error condition is cleared by either clearing the CREN bit of the RC1STA register or by clearing the SPEN bit which resets the EUSART.

31.5.1.8 Receiving 9-Bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RC1STA register is set the EUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RC1STA register is the ninth, and Most Significant, data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RC1REG.

31.5.1.9 Synchronous Master Reception Setup

- 1. Initialize the SP1BRGH, SP1BRGL register pair for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- 3. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 4. Ensure bits CREN and SREN are clear.
- 5. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 6. If 9-bit reception is desired, set bit RX9.
- 7. Start reception by setting the SREN bit or for continuous reception, set the CREN bit.
- 8. Interrupt flag bit RCIF will be set when reception of a character is complete. An interrupt will be generated if the enable bit RCIE was set.
- 9. Read the RC1STA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 10. Read the 8-bit received data by reading the RC1REG register.
- 11. If an overrun error occurs, clear the error by either clearing the CREN bit of the RC1STA register or by clearing the SPEN bit which resets the EUSART.

Mnemonic,		Description		14-Bit Opcode				Status	Neter
Oper	ands	Description	Cycles	MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE R	EGISTER OPE	RATIC	NS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	2
ADDWFC	f, d	Add with Carry W and f	1	11	1101	dfff	ffff	C, DC, Z	2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	2
ASRF	f, d	Arithmetic Right Shift	1	11	0111	dfff	ffff	C, Z	2
LSLF	f, d	Logical Left Shift	1	11	0101	dfff	ffff	C, Z	2
LSRF	f, d	Logical Right Shift	1	11	0110	dfff	ffff	C, Z	2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	_	Clear W	1	00	0001	0000	00xx	z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	2
DECF	f, d	Decrement f	1	00	0011			z	2
INCF	f, d	Increment f	1	00	1010		ffff	z	2
IORWF	f. d	Inclusive OR W with f	1	00	0100		ffff	Z	2
MOVF	f, d	Move f	1	00	1000		ffff	Z	2
MOVWF	f	Move W to f	1	00	0000	1fff	ffff	-	2
RLF	f, d	Rotate Left f through Carry	1	00	1101		ffff	с	2
RRF	f, d	Rotate Right f through Carry	1	00	1100		ffff	c	2
SUBWF	f, d	Subtract W from f	1	00		dfff		C, DC, Z	2
SUBWFB	f, d	Subtract with Borrow W from f	1	11	1011		ffff	C, DC, Z	2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff	C, DC, Z	2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	z	2
XOIWI	i, u	BYTE ORIENTED S	-		0110	uIII	LTTT	2	2
050507	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1, 2
DECFSZ INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1, 2
		BIT-ORIENTED FILE RE			15				
	f, b	Bit Clear f	1	01	00bb	bfff	ffff		2
BCF	f, b	Bit Set f	1	01	01bb	bfff	ffff		2
BSF	1, 0	Dit Get i		UL	0TDD	DITT	TTTT		2
			I	-					
		BIT-ORIENTED SP		NS					1
BTFSC	f, b	Bit Test f, Skip if Clear	KIP OPERATIO	NS 01	10bb	bfff	ffff		1, 2
	f, b f, b			1		bfff bfff			1, 2 1, 2
BTFSS	,	Bit Test f, Skip if Clear Bit Test f, Skip if Set	KIP OPERATIO	01					
BTFSS LITERAL (ADDLW	f, b	Bit Test f, Skip if Clear Bit Test f, Skip if Set	KIP OPERATIO	01		bfff	ffff	C, DC, Z	
BTFSS LITERAL (ADDLW	f, b DPERATIO	Bit Test f, Skip if Clear Bit Test f, Skip if Set NS	KIP OPERATIO 1 (2) 1 (2)	01 01	11bb	bfff kkkk	ffff kkkk	C, DC, Z Z	
BTFSS LITERAL (ADDLW ANDLW	f, b DPERATIO k	Bit Test f, Skip if Clear Bit Test f, Skip if Set NS Add literal and W	(IP OPERATIO 1 (2) 1 (2) 1	01 01 11	11bb 1110	bfff kkkk	ffff kkkk kkkk		
BTFSS LITERAL (ADDLW ANDLW IORLW	f, b DPERATIO k k	Bit Test f, Skip if Clear Bit Test f, Skip if Set NS Add literal and W AND literal with W	Image: Non-Section (Non-Section (N	01 01 11 11	11bb 1110 1001	bfff kkkk kkkk	ffff kkkk kkkk kkkk	Z	
BTFSS LITERAL (ADDLW ANDLW IORLW MOVLB	f, b DPERATIO k k k k	Bit Test f, Skip if Clear Bit Test f, Skip if Set NS Add literal and W AND literal with W Inclusive OR literal with W	I (2) 1 (2) 1 (2) 1 (2)	01 01 11 11 11	11bb 1110 1001 1000 0000	bfff kkkk kkkk kkkk	ffff kkkk kkkk kkkk kkkk	Z	
BTFSS LITERAL (ADDLW ANDLW IORLW MOVLB MOVLP	f, b DPERATIO k k k k k	Bit Test f, Skip if Clear Bit Test f, Skip if Set NS Add literal and W AND literal with W Inclusive OR literal with W Move literal to BSR	I (2) 1 (2) 1 (2) 1 (2)	01 01 11 11 11 00	11bb 1110 1001 1000 0000 0001	bfff kkkk kkkk kkkk 001k	ffff kkkk kkkk kkkk kkkk kkkk	Z	
BTFSS LITERAL (ADDLW ANDLW IORLW MOVLB MOVLP MOVLW	f, b DPERATIO k k k k k k	Bit Test f, Skip if Clear Bit Test f, Skip if Set NS Add literal and W AND literal with W Inclusive OR literal with W Move literal to BSR Move literal to PCLATH	I (2) 1 (2) 1 (2) 1 (2) 1 (2)	01 01 11 11 11 00 11	11bb 1110 1001 1000 0000 0001	bfff kkkk kkkk kkkk 001k 1kkk kkkk	ffff kkkk kkkk kkkk kkkk kkkk	Z	
BTFSS LITERAL (ADDLW ANDLW IORLW MOVLB MOVLB MOVLP MOVLW SUBLW	f, b DPERATIO k k k k k k k	Bit Test f, Skip if Clear Bit Test f, Skip if Set NS Add literal and W AND literal with W Inclusive OR literal with W Move literal to BSR Move literal to PCLATH Move literal to W	I (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2)	01 01 11 11 11 00 11 11	11bb 1110 1001 1000 0000 0001 0000 1100	bfff kkkk kkkk kkkk 001k 1kkk kkkk	ffff kkkk kkkk kkkk kkkk kkkk kkkk kkk	Z Z	
BTFSS LITERAL (ADDLW ANDLW IORLW MOVLB MOVLB MOVLP MOVLW SUBLW XORLW	f, b DPERATIO k k k k k k k k k	Bit Test f, Skip if Clear Bit Test f, Skip if Set NS Add literal and W AND literal with W Inclusive OR literal with W Move literal to BSR Move literal to PCLATH Move literal to W Subtract W from literal Exclusive OR literal with W CONTROL O	I (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) PERATIONS (2)	01 01 11 11 11 00 11 11 11	11bb 1110 1001 1000 0000 0001 0000 1100 1010	bfff kkkk kkkk kkkk 001k 1kkk kkkk kkkk k	ffff kkkk kkkk kkkk kkkk kkkk kkkk kkk	Z Z C, DC, Z	
BTFSS LITERAL (ADDLW ANDLW IORLW MOVLB MOVLB MOVLW SUBLW XORLW BRA	f, b DPERATIO k k k k k k k k k k k	Bit Test f, Skip if Clear Bit Test f, Skip if Set NS Add literal and W AND literal with W Inclusive OR literal with W Move literal to BSR Move literal to PCLATH Move literal to V Subtract W from literal Exclusive OR literal with W CONTROL O Relative Branch	(IP OPERATIO 1 (2) <td>01 01 11 11 11 00 11 11 11 11 11</td> <td>11bb 1110 1001 1000 0000 0001 0000 1100 1010</td> <td>bfff kkkk kkkk kkkk 001k 1kkk kkkk kkkk k</td> <td>ffff kkkk kkkk kkkk kkkk kkkk kkkk kkk</td> <td>Z Z C, DC, Z</td> <td></td>	01 01 11 11 11 00 11 11 11 11 11	11bb 1110 1001 1000 0000 0001 0000 1100 1010	bfff kkkk kkkk kkkk 001k 1kkk kkkk kkkk k	ffff kkkk kkkk kkkk kkkk kkkk kkkk kkk	Z Z C, DC, Z	
BTFSS LITERAL (ADDLW ANDLW IORLW MOVLB MOVLB MOVLW SUBLW XORLW BRA BRA BRW	f, b DPERATIO k k k k k k k k k	Bit Test f, Skip if Clear Bit Test f, Skip if Set NS Add literal and W AND literal with W Inclusive OR literal with W Move literal to BSR Move literal to PCLATH Move literal to W Subtract W from literal Exclusive OR literal with W CONTROL O	(IP OPERATIO 1 (2) <td>01 01 11 11 11 00 11 11 11 11</td> <td>11bb 1110 1001 1000 0000 0001 0000 1100 1010</td> <td>bfff kkkk kkkk kkkk 001k 1kkk kkkk kkkk k</td> <td>ffff kkkk kkkk kkkk kkkk kkkk kkkk kkk</td> <td>Z Z C, DC, Z</td> <td></td>	01 01 11 11 11 00 11 11 11 11	11bb 1110 1001 1000 0000 0001 0000 1100 1010	bfff kkkk kkkk kkkk 001k 1kkk kkkk kkkk k	ffff kkkk kkkk kkkk kkkk kkkk kkkk kkk	Z Z C, DC, Z	
BTFSS LITERAL (ADDLW ANDLW IORLW MOVLB MOVLB MOVLW SUBLW XORLW BRA	f, b DPERATIO k k k k k k k k k k k	Bit Test f, Skip if Clear Bit Test f, Skip if Set NS Add literal and W AND literal with W Inclusive OR literal with W Move literal to BSR Move literal to PCLATH Move literal to V Subtract W from literal Exclusive OR literal with W CONTROL O Relative Branch	(IP OPERATIO 1 (2) 2 (2) <td>01 01 11 11 11 00 11 11 11 11 11</td> <td>11bb 1110 1001 1000 0000 0001 0000 1100 1010 001k 0001k 0000</td> <td>bfff kkkk kkkk kkkk lkkk kkkk kkkk kkkk</td> <td>ffff kkkk kkkk kkkk kkkk kkkk kkkk kkk</td> <td>Z Z C, DC, Z</td> <td></td>	01 01 11 11 11 00 11 11 11 11 11	11bb 1110 1001 1000 0000 0001 0000 1100 1010 001k 0001k 0000	bfff kkkk kkkk kkkk lkkk kkkk kkkk kkkk	ffff kkkk kkkk kkkk kkkk kkkk kkkk kkk	Z Z C, DC, Z	
BTFSS LITERAL (ADDLW ANDLW IORLW MOVLB MOVLB MOVLW SUBLW XORLW BRA BRA BRW	f, b DPERATIO k k k k k k k k k k k k	Bit Test f, Skip if Clear Bit Test f, Skip if Set NS Add literal and W AND literal with W Inclusive OR literal with W Move literal to BSR Move literal to PCLATH Move literal to V Subtract W from literal Exclusive OR literal with W CONTROL O Relative Branch Relative Branch with W	(IP OPERATIO 1 (2) <td>01 01 11 11 11 11 11 11 11 11 11 00</td> <td>11bb 1110 1001 1000 0000 0001 0000 1100 1010 001k 0001k 0000</td> <td>bfff kkkk kkkk kkkk lkkk kkkk kkkk kkkk</td> <td>ffff kkkk kkkk kkkk kkkk kkkk kkkk kkk</td> <td>Z Z C, DC, Z</td> <td></td>	01 01 11 11 11 11 11 11 11 11 11 00	11bb 1110 1001 1000 0000 0001 0000 1100 1010 001k 0001k 0000	bfff kkkk kkkk kkkk lkkk kkkk kkkk kkkk	ffff kkkk kkkk kkkk kkkk kkkk kkkk kkk	Z Z C, DC, Z	
BTFSS LITERAL (ADDLW ANDLW IORLW MOVLB MOVLB MOVLW SUBLW XORLW BRA BRA BRW CALL	f, b DPERATIO k k k k k k k k k k k k	Bit Test f, Skip if Clear Bit Test f, Skip if Set NS Add literal and W AND literal with W Inclusive OR literal with W Move literal to BSR Move literal to PCLATH Move literal to V Subtract W from literal Exclusive OR literal with W CONTROL O Relative Branch Relative Branch with W Call Subroutine	(IP OPERATIO 1 (2) 2 (2) <td>01 01 11 11 11 11 11 11 11 11 00 10</td> <td>11bb 1110 1001 1000 0000 0001 0000 1100 1010 001k 000k 000kk 0000</td> <td>bfff kkkk kkkk kkkk lkkk kkkk kkkk kkkk</td> <td>ffff kkkk kkkk kkkk kkkk kkkk kkkk kkk</td> <td>Z Z C, DC, Z</td> <td></td>	01 01 11 11 11 11 11 11 11 11 00 10	11bb 1110 1001 1000 0000 0001 0000 1100 1010 001k 000k 000kk 0000	bfff kkkk kkkk kkkk lkkk kkkk kkkk kkkk	ffff kkkk kkkk kkkk kkkk kkkk kkkk kkk	Z Z C, DC, Z	
BTFSS LITERAL (ADDLW ANDLW IORLW MOVLB MOVLB MOVLW SUBLW XORLW BRA BRW CALL CALLW	f, b DPERATIO k k k k k k k k k k - k -	Bit Test f, Skip if Clear Bit Test f, Skip if Set NS Add literal and W AND literal with W Inclusive OR literal with W Move literal to BSR Move literal to PCLATH Move literal to PCLATH Move literal to W Subtract W from literal Exclusive OR literal with W CONTROL O Relative Branch Relative Branch with W Call Subroutine Call Subroutine with W	I (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 2 (2) 2 (2) 2 (2)	01 01 11 11 11 11 11 11 11 11 00 10 00	11bb 1110 1001 1000 0000 0001 1000 1100 1010 001k 0000 0kkk 0000 1kkk	bfff kkkk kkkk kkkk lkkk kkkk kkkk kkkk	ffff kkkk kkkk kkkk kkkk kkkk kkkk kkk	Z Z C, DC, Z	
BTFSS LITERAL (ADDLW ANDLW IORLW MOVLB MOVLP MOVLW SUBLW XORLW SUBLW XORLW BRA BRW CALL CALLW GOTO	f, b DPERATIO k k k k k k k k k k k k k	Bit Test f, Skip if Clear Bit Test f, Skip if Set NS Add literal and W AND literal with W Inclusive OR literal with W Move literal to BSR Move literal to PCLATH Move literal to V Subtract W from literal Exclusive OR literal with W CONTROL O Relative Branch Relative Branch with W Call Subroutine Call Subroutine with W Go to address	I (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 2 (2) 2 (2)	01 01 11 11 11 11 11 11 11 11 11 00 10 00 10	11bb 1110 1001 1000 0000 0001 1000 1100 1010 001k 0000 0kkk 0000 1kkk	bfff kkkk kkkk kkkk lkkk kkkk kkkk kkkk	ffff kkkk kkkk kkkk kkkk kkkk kkkk kkk	Z Z C, DC, Z	

TABLE 33-3: PIC16(L)F1717/8/9 INSTRUCTION SET

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

33.2 Instruction Descriptions

ADDFSR	Add Literal to FSRn				
Syntax:	[label] ADDFSR FSRn, k				
Operands:	$-32 \le k \le 31$ n \in [0, 1]				
Operation:	$FSR(n) + k \rightarrow FSR(n)$				
Status Affected:	None				
Description:	The signed 6-bit literal 'k' is added to the contents of the FSRnH:FSRnL register pair.				
	FSRn is limited to the range 0000h-FFFFh. Moving beyond these bounds will cause the FSR to				

ANDLW	AND literal with W				
Syntax:	[<i>label</i>] ANDLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	(W) .AND. (k) \rightarrow (W)				
Status Affected:	Z				
Description:	The contents of W register are AND'ed with the 8-bit literal 'k'. The result is placed in the W register.				

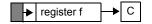
ADDLW	Add literal and W				
Syntax:	[<i>label</i>] ADDLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	$(W) + k \to (W)$				
Status Affected:	C, DC, Z				
Description:	The contents of the W register are added to the 8-bit literal 'k' and the result is placed in the W register.				

wrap-around.

Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

AND W with f

ANDWF


ADDWF	Add W and f			
Syntax:	[label] ADDWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(W) + (f) \rightarrow (destination)			
Status Affected:	C, DC, Z			
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.			

ADDWFC	ADD W and CARRY bit to f
--------	--------------------------

Syntax:	[<i>label</i>] ADDWFC f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(W) + (f) + (C) \rightarrow dest$
Status Affected:	C, DC, Z
Description:	Add W, the Carry flag and data memory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'.

ASRF	Arithmetic Right Shift
Syntax:	[<i>label</i>] ASRF f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f<7>)→ dest<7> (f<7:1>) → dest<6:0>, (f<0>) → C,
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. The MSb remains unchanged. If

one bit to the right through the Carry flag. The MSb remains unchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.

	TABLE 34-9:	PLL CLOCK TIMING SPECIFICATIONS
--	-------------	---------------------------------

Standard Operating Conditions (unless otherwise stated)							
Param. No.	Sym.	Characteristic	Min.	Typ.†	Max.	Units	Conditions
F10	Fosc	Oscillator Frequency Range	4	_	8	MHz	
F11	Fsys	On-Chip VCO System Frequency	16	_	32	MHz	
F12	TRC	PLL Start-up Time (Lock Time)	—	—	2	ms	
F13*	ΔCLK	CLKOUT Stability (Jitter)	-0.25%	_	+0.25%	%	

These parameters are characterized but not tested.

*

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 34-15: ANALOG-TO-DIGITAL CONVERTER (ADC) CHARACTERISTICS^(1,2,3,4)

Standard Operating Conditions (unless otherwise stated)

 $201/T_{1} - 25^{\circ}C$ Cinala 2 0 - \/oo

VDD = 3.0V, IA = 25°C, Single-ended, 2 µs IAD, VREF+ = 3V, VREF- = VSS							
Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions
AD01	NR	Resolution	—	—	10	bit	
AD02	EIL	Integral Error	—	—	±1.7	LSb	VREF = 3.0V
AD03	Edl	Differential Error	-	—	±1	LSb	No missing codes, VREF = 3.0V
AD04	EOFF	Offset Error	-	—	±2.5	LSb	VREF = 3.0V
AD05	Egn	Gain Error	-	—	±2.0	LSb	VREF = 3.0V
AD06	VREF	Reference Voltage	1.8	—	Vdd	V	VREF = (VREF+ minus VREF-)
AD07	VAIN	Full-Scale Range	Vss	—	VREF	V	
AD08	ZAIN	Recommended Impedance of Analog Voltage Source		—	10	kΩ	Can go higher if external $0.01\mu F$ capacitor is present on input pin.

These parameters are characterized but not tested.

t Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

2: The ADC conversion result never decreases with an increase in the input voltage and has no missing codes.

3: ADC VREF is from external VREF+ pin, VDD pin or FVR, whichever is selected as reference input.

4: See Section 35.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.

TABLE 34-16: ADC CONVERSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)							
Param. No.	Sym.	Characteristic		in. Typ.†		Units	Conditions
AD130*	TAD	ADC Clock Period (TADC)	1.0	—	9.0	μS	Fosc-based
		ADC Internal FRC Oscillator Period (TFRC)	1.0	2	6.0	μS	ADCS<1:0> = 11 (ADC FRC mode)
AD131	TCNV	Conversion Time (not including Acquisition Time) ⁽¹⁾		11	—	Tad	Set GO/DONE bit to conversion complete
AD132*	TACQ	Acquisition Time	—	5.0	—	μS	
AD133*	THCD	Holding Capacitor Disconnect	—	1/2 Tad	—		ADCS<2:0> \neq x11 (Fosc-based)
		Time	_	1/2 TAD + 1TCY	_		ADCS<2:0> = x11 (FRC-based)

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and t are not tested.

Note 1: The ADRES register may be read on the following TCY cycle.

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

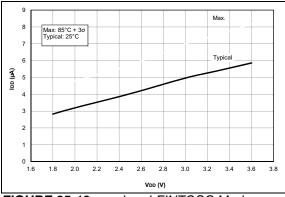


FIGURE 35-19: IDD, LFINTOSC Mode, Fosc = 31 kHz, PIC16LF1717/8/9 Only.

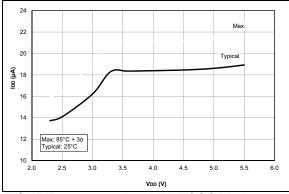


FIGURE 35-20: IDD, LFINTOSC Mode, Fosc = 31 kHz, PIC16F1717/8/9 Only.

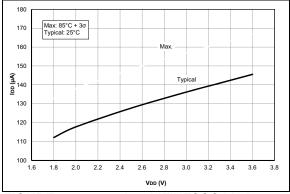


FIGURE 35-21: IDD, MFINTOSC Mode, Fosc = 500 kHz, PIC16LF1717/8/9 Only.

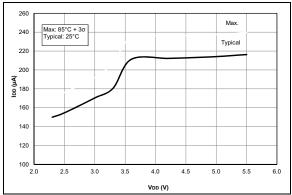


FIGURE 35-22: IDD, MFINTOSC Mode, Fosc = 500 kHz, PIC16F1717/8/9 Only.

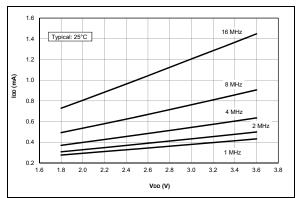


FIGURE 35-23: IDD Typical, HFINTOSC Mode, PIC16LF1717/8/9 Only.

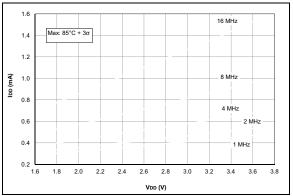
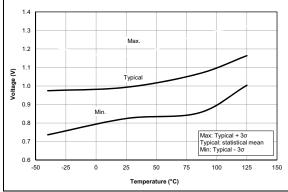



FIGURE 35-24: IDD Maximum, HFINTOSC Mode, PIC16LF1717/8/9 Only.

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

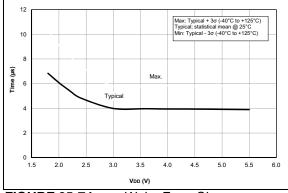
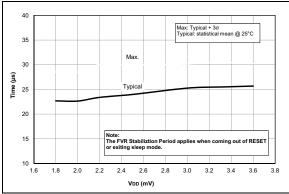
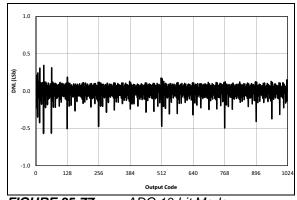
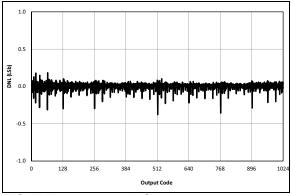


FIGURE 35-74: Wake From Sleep, VREGPM = 0.

VREGPM = 1.

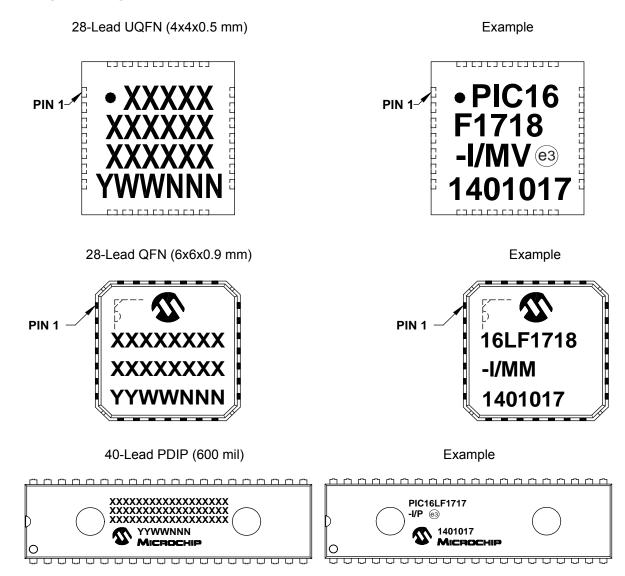
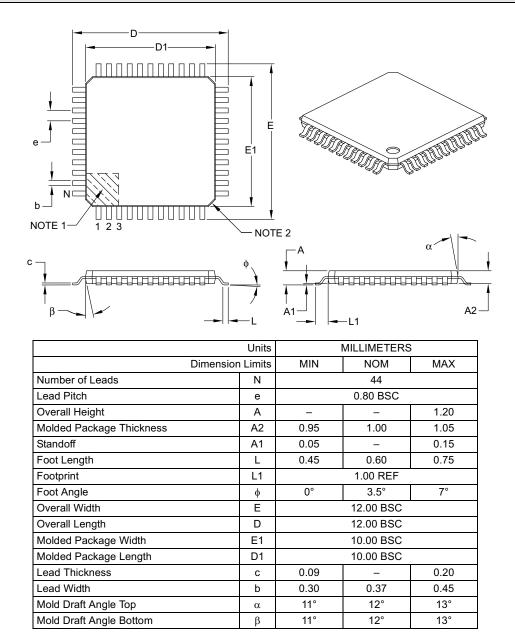

FIGURE 35-76: FVR Stabilization Period, PIC16LF1717/8/9 Only.

FIGURE 35-77: ADC 10-bit Mode, Single-Ended DNL, VDD = 3.0V, $TAD = 1 \ \mu$ S, 25°C.

FIGURE 35-78: ADC 10-bit Mode, Single-Ended DNL, VDD = 3.0V, TAD = 4μ S, 25° C.



Package Marking Information (Continued)

Legend	I: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.		
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.			

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B