

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	24
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 17x10b; D/A 1x5b, 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1718t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Quartz

Crystal

Note 1: A series resistor (Rs) may be required for quartz crystals with low drive level. 2: The value of RF varies with the Oscillator mode selected (typically between 2 MΩ to 10 MΩ).

RF⁽²⁾

Sleep

- Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 2: Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Application Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)

FIGURE 6-4:

CERAMIC RESONATOR OPERATION (XT OR HS MODE)

6.2.1.3 Oscillator Start-up Timer (OST)

If the oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations from OSC1. This occurs following a Power-on Reset (POR) and when the Power-up Timer (PWRT) has expired (if configured), or a wake-up from Sleep. During this time, the program counter does not increment and program execution is suspended, unless either FSCM or Two-Speed Start-Up are enabled. In this case, code will continue to execute at the selected INTOSC frequency while the OST is counting. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the oscillator module.

In order to minimize latency between external oscillator start-up and code execution, the Two-Speed Clock Start-up mode can be selected (see **Section 6.4 "Two-Speed Clock Start-up Mode"**).

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	NCOIF	COGIF	ZCDIF	CLC4IF	CLC3IF	CLC2IF	CLC1IF
bit 7		1	1	1	l	1	bit 0
Legend:							
R = Read	dable bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is	unchanged	x = Bit is unk	nown	-n/n = Value	at POR and BO	R/Value at all o	other Resets
'1' = Bit is	s set	'0' = Bit is cle	ared				
bit 7	Unimplemer	nted: Read as	0'				
bit 6	NCOIF: NCC	Interrupt Flag	bit				
	1 = Interrupt 0 = Interrupt	is pending is not pending					
bit 5	COGIF: COC	G Auto-Shutdov	vn Interrupt Fl	ag bit			
	1 = Interrupt	is pending					
bit 4	7CDIF : Zero	-Cross Detection	on Interrupt Fla	aa hit			
Sit 1	1 = Interrupt	is pending		29.010			
	0 = Interrupt	is not pending					
bit 3	CLC4IF: CLC	C4 Interrupt Fla	ig bit				
	1 = Interrupt	is pending					
bit 2	CI C3IF: CI (C3 Interrupt Fla	a bit				
	1 = Interrupt	is pending	.9 ~				
	0 = Interrupt	is not pending					
bit 1	CLC2IF: CLC	C2 Interrupt Fla	ig bit				
	1 = Interrupt 0 = Interrupt	1 = Interrupt is pending 0 = Interrupt is not pending					
bit 0	CLC1IF: CLC	C1 Interrupt Fla	ig bit				
	1 = Interrupt	is pending	-				
	0 = Interrupt	is not pending					
Note:	Interrupt flag bits a	are set when ar	interrupt				
	condition occurs, i	egardless of th	e state of				
	its corresponding	enable bit or the	ne Global				
	User software	should ens	ure the				
	appropriate interr	upt flag bits	are clear				
	prior to enabling a	n interrupt.					

REGISTER 7-7: PIR3: PERIPHERAL INTERRUPT REQUEST REGISTER 3

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB		—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	131
INLVLB	INLVLB7	INLVLB6	INLVLB5	INLVLB4	INLVLB3	INLVLB2	INLVLB1	INLVLB0	132
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	130
ODCONB	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	132
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	130
SLRCONB	SLRB7	SLRB6	SLRB5	SLRB4	SLRB3	SLRB2	SLRB1	SLRB0	132
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	130
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	131

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTB.

11.8 Register Definitions: PORTD

REGISTER 11-25: PORTD: PORTD REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0
bit 7	·	·		·			bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'	
u = Bit is unchanged x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 **RD<7:0>**: PORTD General Purpose I/O Pin bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

Note 1: Writes to PORTD are actually written to corresponding LATD register. Reads from PORTD register is return of actual I/O pin values.

REGISTER 11-26: TRISD: PORTD TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISD7 | TRISD6 | TRISD5 | TRISD4 | TRISD3 | TRISD2 | TRISD1 | TRISD0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

- TRISD<7:0>: PORTD Tri-State Control bits
- 1 = PORTD pin configured as an input (tri-stated)
- 0 = PORTD pin configured as an output

REGISTER 11-27: LATD: PORTD DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATD7 | LATD6 | LATD5 | LATD4 | LATD3 | LATD2 | LATD1 | LATD0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATD<7:0>: PORTD Output Latch Value bits

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELD	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	141
INLVLD	INLVLD7	INLVLD6	INLVLD5	INLVLD4	INLVLD3	INLVLD2	INLVLD1	INLVLD0	142
LATD	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	140
ODCOND	ODD7	ODD6	ODD5	ODD4	ODD3	ODD2	ODD1	ODD0	142
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	140
SLRCOND	SLRD7	SLRD6	SLRD5	SLRD4	SLRD3	SLRD2	SLRD1	SLRD0	142
TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	140
WPUD	WPUD7	WPUD6	WPUD5	WPUD4	WPUD3	WPUD2	WPUD1	WPUD0	141

TABLE 11-6:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTD
-------------	--

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTD.

19.1 CLCx Setup

Programming the CLCx module is performed by configuring the four stages in the logic signal flow. The four stages are:

- Data selection
- Data gating
- Logic function selection
- Output polarity

Each stage is setup at run time by writing to the corresponding CLCx Special Function Registers. This has the added advantage of permitting logic reconfiguration on-the-fly during program execution.

19.1.1 DATA SELECTION

There are 32 signals available as inputs to the configurable logic. Four 32-input multiplexers are used to select the inputs to pass on to the next stage.

Data selection is through four multiplexers as indicated on the left side of Figure 19-2. Data inputs in the figure are identified by a generic numbered input name.

Table 19-1 correlates the generic input name to the actual signal for each CLC module. The column labeled lcxdy indicates the MUX selection code for the selected data input. DxS is an abbreviation for the MUX select input codes: LCxD1S<4:0> through LCxD4S<4:0>.

Data inputs are selected with CLCxSEL0 through CLCxSEL3 registers (Register 19-3 through Register 19-6).

Note:	Data selections are undefined at power-up.
-------	--

TABLE 19-1: CLCx DATA INPUT SELECTION

Data Input	lcxdy DxS	CLCx				
LCx_in[31]	11111	Fosc				
LCx_in[30]	11110	HFINTOSC				
LCx_in[29]	11101	LFINTOSC				
LCx_in[28]	11100	ADCRC				
LCx_in[27]	11011	IOCIF set signal				
LCx_in[26]	11010	T2_match				
LCx_in[25]	11001	T1_overflow				
LCx_in[24]	11000	T0_overflow				
LCx_in[23]	10111	T6_match				
LCx_in[22]	10110	T4_match				
LCx_in[21]	10101	DT from EUSART				
LCx_in[20]	10100	TX/CK from EUSART				
LCx_in[19]	10011	ZCDx_out from Zero-Cross Detect				
LCx_in[18]	10010	NCO1_out				
LCx_in[17]	10001	SDO/SDA from MSSP				
LCx_in[16]	10000	SCK from MSSP				
LCx_in[15]	01111	PWM4_out				
LCx_in[14]	01110	PWM3_out				
LCx_in[13]	01101	CCP2 output				
LCx_in[12]	01100	CCP1 output				
LCx_in[11]	01011	COG1B				
LCx_in[10]	01010	COG1A				
LCx_in[9]	01001	sync_C2OUT				
LCx_in[8]	01000	sync_C1OUT				
LCx_in[7]	00111	LC4_out from the CLC4				
LCx_in[6]	00110	LC3_out from the CLC3				
LCx_in[5]	00101	LC2_out from the CLC2				
LCx_in[4]	00100	LC1_out from the CLC1				
LCx_in[3]	00011	CLCIN3 pin input selected in CLCIN3PPS register				
LCx_in[2]	00010	CLCIN2 pin input selected in CLCIN2PPS register				
LCx_in[1]	00001	CLCIN1 pin input selected in CLCIN1PPS register				
LCx_in[0]	00000	CLCIN0 pin input selected in CLCIN0PPS register				

20.2 Fixed Duty Cycle (FDC) Mode

In Fixed Duty Cycle (FDC) mode, every time the accumulator overflows (NCO_overflow), the output is toggled. This provides a 50% duty cycle, provided that the increment value remains constant. For more information, see Figure 20-2.

The FDC mode is selected by clearing the NxPFM bit in the NCOxCON register.

20.3 Pulse Frequency (PF) Mode

In Pulse Frequency (PF) mode, every time the accumulator overflows (NCO_overflow), the output becomes active for one or more clock periods. Once the clock period expires, the output returns to an inactive state. This provides a pulsed output.

The output becomes active on the rising clock edge immediately following the overflow event. For more information, see Figure 20-2.

The value of the active and inactive states depends on the polarity bit, NxPOL in the NCOxCON register.

The PF mode is selected by setting the NxPFM bit in the NCOxCON register.

20.3.1 OUTPUT PULSE WIDTH CONTROL

When operating in PF mode, the active state of the output can vary in width by multiple clock periods. Various pulse widths are selected with the NxPWS<2:0> bits in the NCOxCLK register.

When the selected pulse width is greater than the accumulator overflow time frame, the output of the NCOx operation is indeterminate.

20.4 Output Polarity Control

The last stage in the NCOx module is the output polarity. The NxPOL bit in the NCOxCON register selects the output polarity. Changing the polarity while the interrupts are enabled will cause an interrupt for the resulting output transition.

The NCOx output can be used internally by source code or other peripherals. Accomplish this by reading the NxOUT (read-only) bit of the NCOxCON register.

The NCOx output signal is available to the following peripherals:

- CLC
- CWG

20.5 Interrupts

When the accumulator overflows (NCO_overflow), the NCOx Interrupt Flag bit, NCOxIF, of the PIRx register is set. To enable the interrupt event (NCO_interrupt), the following bits must be set:

- NxEN bit of the NCOxCON register
- · NCOxIE bit of the PIEx register
- PEIE bit of the INTCON register
- · GIE bit of the INTCON register

The interrupt must be cleared by software by clearing the NCOxIF bit in the Interrupt Service Routine.

20.6 Effects of a Reset

All of the NCOx registers are cleared to zero as the result of a Reset.

20.7 Operation in Sleep

The NCO module operates independently from the system clock and will continue to run during Sleep, provided that the clock source selected remains active.

The HFINTOSC remains active during Sleep when the NCO module is enabled and the HFINTOSC is selected as the clock source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and the NCO clock source, when the NCO is enabled, the CPU will go idle during Sleep, but the NCO will continue to operate and the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current.

DS40001740B-page 236

© 2014-2015 Microchip Technology Inc

C16(L)F1717/8/9

U

29.2 Compare Mode

The Compare mode function described in this section is available and identical for all CCP modules.

Compare mode makes use of the 16-bit Timer1 resource. The 16-bit value of the CCPRxH:CCPRxL register pair is constantly compared against the 16-bit value of the TMR1H:TMR1L register pair. When a match occurs, one of the following events can occur:

- Toggle the CCPx output
- Set the CCPx output
- Clear the CCPx output
- Generate an Auto-conversion Trigger
- · Generate a Software Interrupt

The action on the pin is based on the value of the CCPxM<3:0> control bits of the CCPxCON register. At the same time, the interrupt flag CCPxIF bit is set.

All Compare modes can generate an interrupt.

Figure 29-2 shows a simplified diagram of the compare operation.

FIGURE 29-2: COMPARE MODE OPERATION BLOCK DIAGRAM

29.2.1 CCPX PIN CONFIGURATION

The user must configure the CCPx pin as an output by clearing the associated TRIS bit.

Note:	Clearing the CCPxCON register will force						
	the CCPx compare output latch to the						
	default low level. This is not the PORT I/O						
	data latch.						

29.2.2 TIMER1 MODE RESOURCE

In Compare mode, Timer1 must be running in either Timer mode or Synchronized Counter mode. The compare operation may not work in Asynchronous Counter mode. See Section 27.0 "Timer1 Module with Gate Control" for more information on configuring Timer1.

Note: Clocking Timer1 from the system clock (Fosc) should not be used in Compare mode. In order for Compare mode to recognize the trigger event on the CCPx pin, TImer1 must be clocked from the instruction clock (Fosc/4) or from an external clock source.

29.2.3 SOFTWARE INTERRUPT MODE

When Generate Software Interrupt mode is chosen (CCPxM<3:0> = 1010), the CCPx module does not assert control of the CCPx pin (see the CCPxCON register).

29.2.4 AUTO-CONVERSION TRIGGER

When Auto-Conversion Trigger mode is chosen (CCPxM<3:0> = 1011), the CCPx module does the following:

- Resets Timer1
- Starts an ADC conversion if ADC is enabled

The CCPx module does not assert control of the CCPx pin in this mode.

The auto-conversion trigger output of the CCP occurs immediately upon a match between the TMR1H, TMR1L register pair and the CCPRxH, CCPRxL register pair. The TMR1H, TMR1L register pair is not reset until the next rising edge of the Timer1 clock. The auto-conversion trigger output starts an ADC conversion (if the ADC module is enabled). This allows the CCPRxH, CCPRxL register pair to effectively provide a 16-bit programmable period register for Timer1.

Refer to **Section 29.2.4 "Auto-Conversion Trigger"** for more information.

- Note 1: The auto-conversion trigger from the CCP module does not set interrupt flag bit TMR1IF of the PIR1 register.
 - 2: Removing the match condition by changing the contents of the CCPRxH and CCPRxL register pair, between the clock edge that generates the auto-conversion trigger and the clock edge that generates the Timer1 Reset, will preclude the Reset from occurring.

29.2.5 COMPARE DURING SLEEP

The Compare mode is dependent upon the system clock (Fosc) for proper operation. Since Fosc is shut down during Sleep mode, the Compare mode will not function properly during Sleep.

30.5.3.3 7-Bit Transmission with Address Hold Enabled

Setting the AHEN bit of the SSP1CON3 register enables additional clock stretching and interrupt generation after the eighth falling edge of a received matching address. Once a matching address has been clocked in, CKP is cleared and the SSP1IF interrupt is set.

Figure 30-19 displays a standard waveform of a 7-bit address slave transmission with AHEN enabled.

- 1. Bus starts Idle.
- Master sends Start condition; the S bit of SSP1STAT is set; SSP1IF is set if interrupt on Start detect is enabled.
- Master sends matching address with R/W bit set. After the eighth falling edge of the SCL line the CKP bit is cleared and SSP1IF interrupt is generated.
- 4. Slave software clears SSP1IF.
- 5. Slave software reads ACKTIM bit of SSP1CON3 register, and R/\overline{W} and D/\overline{A} of the SSP1STAT register to determine the source of the interrupt.
- 6. Slave reads the address value from the SSP1BUF register clearing the BF bit.
- 7. Slave software decides from this information if it wishes to ACK or not ACK and sets the ACKDT bit of the SSP1CON2 register accordingly.
- 8. Slave sets the CKP bit releasing SCL.
- 9. Master clocks in the \overline{ACK} value from the slave.
- 10. Slave hardware automatically clears the CKP bit and sets SSP1IF after the ACK if the R/W bit is set.
- 11. Slave software clears SSP1IF.
- 12. Slave loads value to transmit to the master into SSP1BUF setting the BF bit.

Note: <u>SSP1BUF</u> cannot be loaded until after the <u>ACK</u>.

13. Slave sets the CKP bit releasing the clock.

- 14. Master clocks out the data from the slave and sends an ACK value on the 9th SCL pulse.
- 15. Slave hardware copies the ACK value into the ACKSTAT bit of the SSP1CON2 register.
- 16. Steps 10-15 are repeated for each byte transmitted to the master from the slave.
- 17. If the master sends a not ACK the slave releases the bus allowing the master to send a Stop and end the communication.

Note: Master must send a not ACK on the last byte to ensure that the slave releases the SCL line to receive a Stop.

30.6.4 I²C MASTER MODE START CONDITION TIMING

To initiate a Start condition (Figure 30-26), the user sets the Start Enable bit, SEN bit of the SSP1CON2 register. If the SDA and SCL pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSP1ADD<7:0> and starts its count. If SCL and SDA are both sampled high when the Baud Rate Generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low while SCL is high is the Start condition and causes the S bit of the SSP1STAT register to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSP1ADD<7:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit of the SSP1CON2 register will be automatically cleared by hardware; the Baud Rate Generator is suspended, leaving the SDA line held low and the Start condition is complete.

- Note 1: If at the beginning of the Start condition, the SDA and SCL pins are already sampled low, or if during the Start condition, the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCL1IF, is set, the Start condition is aborted and the I²C module is reset into its Idle state.
 - **2:** The Philips I²C specification states that a bus collision cannot occur on a Start.

FIGURE 30-26: FIRST START BIT TIMING

30.8 Register Definitions: MSSP Control

R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0		
SMP	CKE	D/A	Р	S	R/W	UA	BF		
bit 7							bit 0		
Legend:									
R = Readable I	bit	W = Writable	bit	U = Unimplen	nented bit, read a	as '0'			
u = Bit is uncha	anged	x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Res							
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7	SMP: SPI Dat SPI Master me 1 = Input data 0 = Input data SPI Slave mo	a Input Sample ode: sampled at end sampled at mid de:	bit d of data outpu ddle of data out	t time put time					
	ST Slave mode. SMP must be cleared when SPI is used in Slave mode In I ² C Master or Slave mode: 1 = Slew rate control disabled for Standard Speed mode (100 kHz and 1 MHz) 0 = Slew rate control enabled for High-Speed mode (400 kHz)								
bit 6	 CKE: SPI Clock Edge Select bit (SPI mode only) <u>In SPI Master or Slave mode:</u> 1 = Transmit occurs on transition from active to Idle clock state 0 = Transmit occurs on transition from Idle to active clock state <u>In I²C™ mode only:</u> 1 = Enable input logic so that thresholds are compliant with SMBus specification 0 = Disable SMBus specific inputs 								
bit 5	 D/A: Data/Address bit (l²C mode only) 1 = Indicates that the last byte received or transmitted was data 0 = Indicates that the last byte received or transmitted was address 								
bit 4	 P: Stop bit (I²C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.) 1 = Indicates that a Stop bit has been detected last (this bit is '0' on Reset) 0 = Stop bit was not detected last 								
bit 3	 Start bit (I²C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.) 1 = Indicates that a Start bit has been detected last (this bit is '0' on Reset) 0 = Start bit was not detected last 								
bit 2	 R/W: Read/Write bit information (I²C mode only) This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next Start bit, Stop bit, or not ACK bit. In I²C Slave mode: Read Write In I²C Master mode: Transmit is in progress Transmit is not in progress OR-ing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP is in Idle mode. 								
bit 1	 UA: Update Address bit (10-bit I²C mode only) 1 = Indicates that the user needs to update the address in the SSP1ADD register 0 = Address does not need to be updated 								
bit 0	 BF: Buffer Full Status bit <u>Receive (SPI and I²C modes):</u> 1 = Receive complete, SSP1BUF is full 0 = Receive not complete, SSP1BUF is empty <u>Transmit (I²C mode only):</u> 1 = Data transmit in progress (does not include the ACK and Stop bits), SSP1BUF is full 0 = Data transmit complete (does not include the ACK and Stop bits), SSP1BUF is empty 								

TABLE 34-3: POWER-DOWN CURRENTS (IPD)^(1,2)

PIC16LF1717/8/9			Standard Operating Conditions (unless otherwise stated) Low-Power Sleep Mode							
PIC16F1717/8/9		Low-Power Sleep Mode, VREGPM = 1								
Param. Device		Min	Typ +	Max.	Max.	Unite	Conditions			
No.	Characteristics	WIII.	тур.т	+85°C	+125°C	Units	Vdd	Note		
D023	Base IPD		0.05	1.0	8.0	μA	1.8	WDT, BOR, FVR, and SOSC		
		—	0.08	2.0	9.0	μA	3.0	disabled, all Peripherals Inactive		
D023	Base IPD		0.3	3	11	μA	2.3	WDT, BOR, FVR, and SOSC		
			0.4	4	12	μA	3.0	disabled, all Peripherals Inactive,		
			0.5	6	15	μA	5.0	Low-Power Sleep mode		
D023A	Base IPD		9.8	16	18	μA	2.3	WDT, BOR, FVR and SOSC		
			10.3	18	20	μA	3.0	disabled, all Peripherals inactive,		
		_	11.5	21	26	μA	5.0	VREGPM = 0		
D024		_	0.5	6	14	μΑ	1.8	WDT Current		
		—	0.8	7	17	μΑ	3.0			
D024		-	0.8	6	15	μΑ	2.3	WDT Current		
			0.9	7	20	μΑ	3.0			
			1.0	8	22	μA	5.0			
D025		_	15	28	30	μΑ	1.8	FVR Current		
			18	30	33	μΑ	3.0			
D025			18	33	35	μA	2.3	FVR Current		
			19	35	37	μΑ	3.0			
			20	37	39	μΑ	5.0			
D026			7.5	25	28	μΑ	3.0	BOR Current		
D026			10	25	28	μA	3.0	BOR Current		
			12	28	31	μA	5.0			
D027		—	0.5	4	10	μA	3.0	LPBOR Current		
D027			0.8	6	14	μA	3.0	LPBOR Current		
		—	1	8	17	μA	5.0			
D028		—	0.5	5	9	μA	1.8	SOSC Current		
			0.8	8.5	12	μA	3.0			
D028			1.1	6	10	μA	2.3	SOSC Current		
			1.3	8.5	20	μA	3.0			
		—	1.4	10	25	μA	5.0			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IPD and the additional current consumed when this peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to Vss.

3: ADC clock source is FRC.

Note: Unless otherwise noted, VIN = 5V, FOSC = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 35-55: VOH vs. IOH Over Temperature, VDD = 1.8V, PIC16LF1717/8/9 Only.

FIGURE 35-56: VOL vs. IOL Over Temperature, VDD = 1.8V, PIC16LF1717/8/9 Only.

FIGURE 35-57: LFINTOSC Frequency, PIC16LF1717/8/9 Only.

FIGURE 35-58: LFINTOSC Frequency, PIC16F1717/8/9 Only.

FIGURE 35-59: WDT Time-Out Period, PIC16F1717/8/9 Only.

FIGURE 35-60: WDT Time-Out Period, PIC16LF1717/8/9 Only.

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 35-109: Comparator Output Filter Delay Time Over Temp., NP Mode (CxSP = 1), Typical Measured Values, PIC16F1717/8/9 Only.

FIGURE 35-110: Typical DAC DNL Error, VDD = 3.0V, VREF = External 3V.

FIGURE 35-111: Typical DAC INL Error, VDD = 3.0V, VREF = External 3V.

FIGURE 35-112: Typical DAC INL Error, VDD = 5.0V, VREF = External 5V, PIC16F1717/8/9 Only.

FIGURE 35-113: Typical DAC INL Error, VDD = 5.0V, VREF = External 5V, PIC16F1717/8/9 Only.

FIGURE 35-114: DAC INL Error, VDD = 3.0V, PIC16LF1717/8/9 Only.

28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 4x4 mm Body [UQFN] With 0.40 mm Contact Length

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	Е	0.40 BSC		
Optional Center Pad Width	W2			2.35
Optional Center Pad Length	T2			2.35
Contact Pad Spacing	C1		4.00	
Contact Pad Spacing	C2		4.00	
Contact Pad Width (X28)	X1			0.20
Contact Pad Length (X28)	Y1			0.80
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2152A

40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-156A Sheet 1 of 2