

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 28x10b; D/A 1x5b, 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1719-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

TABLE 1-2: PIC16(L)F1718 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
RB1/AN10/C1IN3-/C2IN3-/	RB1	TTL/ST	CMOS	General purpose I/O.
OPA2OUT	AN10	AN	—	ADC Channel 10 input.
	C1IN3-	AN	_	Comparator C1 negative input.
	C2IN3-	AN	—	Comparator C2 negative input.
	OPA2OUT	_	AN	Operational Amplifier 2 output.
RB2/AN8/OPA2IN-	RB2	TTL/ST	CMOS	General purpose I/O.
	AN8	AN	—	ADC Channel 8 input.
	OPA2IN-	AN	_	Operational Amplifier 2 inverting input.
RB3/AN9/C1IN2-/C2IN2-/	RB3	TTL/ST	CMOS	General purpose I/O.
OPA2IN+	AN9	AN	_	ADC Channel 9 input.
	C1IN2-	AN	_	Comparator C1 negative input.
	C2IN2-	AN	_	Comparator C2 negative input.
	OPA2IN+	AN	_	Operational Amplifier 2 non-inverting input.
RB4/AN11	RB4	TTL/ST	CMOS	General purpose I/O.
	AN11	AN	_	ADC Channel 11 input.
RB5/AN13/T1G ⁽¹⁾	RB5	TTL/ST	CMOS	General purpose I/O.
	AN13	AN	_	ADC Channel 13 input.
	T1G	TTL/ST	_	Timer1 gate input.
RB6/CLCIN2 ⁽¹⁾ /ICSPCLK	RB6	TTL/ST	CMOS	General purpose I/O.
	CLCIN2	TTL/ST	—	Configurable Logic Cell source input.
	ICSPCLK	ST	_	Serial Programming Clock.
RB7/DAC1OUT2/DAC2OUT2/	RB7	TTL/ST	CMOS	General purpose I/O.
CLCIN3	DAC10UT2		AN	Digital-to-Analog Converter output.
	DAC2OUT2		AN	Digital-to-Analog Converter output.
	CLCIN3	TTL/ST	—	Configurable Logic Cell source input.
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.
RC0/T1CKI ⁽¹⁾ /SOSCO	RC0	TTL/ST	CMOS	General purpose I/O.
	T1CKI	TTL/ST	—	Timer1 clock input.
	SOSCO	XTAL	XTAL	Secondary Oscillator Connection.
RC1/SOSCI/CCP2 ⁽¹⁾	RC1	TTL/ST	CMOS	General purpose I/O.
	SOSCI	XTAL	XTAL	Secondary Oscillator Connection.
	CCP2	TTL/ST	_	Capture input
RC2/AN14/CCP1 ⁽¹⁾	RC2	TTL/ST	CMOS	General purpose I/O.
	AN14	AN	—	ADC Channel 14 input.
	CCP1	TTL/ST	—	Capture input
RC3/AN15/SCK ⁽¹⁾ /SCL ⁽¹⁾	RC3	TTL/ST	CMOS	General purpose I/O.
	AN15	AN	_	ADC Channel 15 input.
	SCK	TTL/ST	—	SPI clock input
	SCL	I ² C	_	I ² C clock input.

 Legend:
 AN = Analog input or output
 CMOS = CMOS compatible input or output
 OD = Open-Drain

 TTL = TTL compatible input
 ST = Schmitt Trigger input with CMOS levels
 I²C = Schmitt Trigger input with I²C

 HV = High Voltage
 XTAL = Crystal levels

Note 1: Default peripheral input. Alternate pins can be selected as the peripheral input with the PPS input selection registers.

2: All pin digital outputs default to PORT latch data. Alternate outputs can be selected as the peripheral digital output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

3.4.5 CORE FUNCTION REGISTERS SUMMARY

The Core Function registers listed in Table 3-11 can be addressed from any Bank.

Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value or POR, BO	n R	Value on all other Resets
Bank (Bank 0-31											
x00h or x80h	INDF0	Address data me	Idressing this location uses contents of FSR0H/FSR0L to address xxxx xxxx uuuu uuuu ta memory (not a physical register)								uuuu uuuu	
x01h or x81h	INDF1	Address data me	sing this I emory (no	ocation u	ses conte cal registe	nts of FS er)	R1H/FSF	R1L to a	ddress	XXXX XXX	x	uuuu uuuu
x02h or x82h	PCL	Progran	n Counte	r (PC) Le	ast Signif	icant Byte	9			0000 000	00	0000 0000
x03h or x83h	STATUS	_	_	—	TO	PD	Z	DC	С	1 100	00	q quuu
x04h or x84h	FSR0L	Indirect	Indirect Data Memory Address 0 Low Pointer							0000 000	00	uuuu uuuu
x05h or x85h	FSR0H	Indirect	ndirect Data Memory Address 0 High Pointer 0000 0000 0000 0000						0000 0000			
x06h or x86h	FSR1L	Indirect	Data Me	mory Add	lress 1 Lo	w Pointe	r			0000 000	00	uuuu uuuu
x07h or x87h	FSR1H	Indirect	Data Me	mory Ado	lress 1 Hi	gh Pointe	er			0000 000	00	0000 0000
x08h or x88h	BSR	_	_	—	BSR4	BSR3	BSR2	BSR1	BSR0	0 000	00	0 0000
x09h or x89h	WREG	Working	Working Register							0000 000	00	uuuu uuuu
x0Ah or x8Ah	PCLATH	_	Write Bu	uffer for th	e upper 7	bits of th	ne Progra	m Coun	ter	-000 000	0	-000 0000
x0Bh or x8Bh	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 000	00	0000 0000

TABLE 3-11: CORE FUNCTION REGISTERS SUMMARY ⁽¹⁾

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from any bank.

EXAMPLE 10-2: ERASING ONE ROW OF PROGRAM MEMORY

- ; This row erase routine assumes the following:
- ; 1. A valid address within the erase row is loaded in ADDRH:ADDRL

; 2. ADDRH and ADDRL are located in shared data memory $0\,\mathrm{x}70$ - $0\,\mathrm{x}7F$ (common RAM)

	BCF BANKSEL MOVF MOVF MOVF BCF BSF	INTCON,GIE PMADRL ADDRL,W PMADRL ADDRH,W PMADRH PMCON1,CFGS PMCON1,FREE	<pre>; Disable ints so required sequences will execute properly ; Load lower 8 bits of erase address boundary ; Load upper 6 bits of erase address boundary ; Not configuration space ; Specify an erase operation</pre>
	BSF	PMCON1,WREN	; Enable writes
Required Sequence	MOVLW MOVWF MOVWF BSF NOP NOP	55h PMCON2 0AAh PMCON2 PMCON1,WR	<pre>; Start of required sequence to initiate erase ; Write 55h ; ; Write AAh ; Set WR bit to begin erase ; NOP instructions are forced as processor starts ; row erase of program memory. ; ; ; The processor stalls until the erase process is complete ; after erase processor continues with 3rd instruction</pre>
	BCF BSF	PMCON1,WREN INTCON,GIE	; Disable writes ; Enable interrupts

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown		nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets		
'1' = Bit is set '0' = Bit is cleared			ared					

REGISTER 11-3: LATA: PORTA DATA LATCH REGISTER

bit 7-0 LATA<7:0>: RA<7:0> Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

REGISTER 11-4: ANSELA: PORTA ANALOG SELECT REGISTER

U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
—	—	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

- bit 5-0 **ANSA<5:0>**: Analog Select between Analog or Digital Function on Pins RA<5:0>, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
 - 0 = Digital I/O. Pin is assigned to port or digital special function.
- **Note 1:** When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELD	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	141
INLVLD	INLVLD7	INLVLD6	INLVLD5	INLVLD4	INLVLD3	INLVLD2	INLVLD1	INLVLD0	142
LATD	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	140
ODCOND	ODD7	ODD6	ODD5	ODD4	ODD3	ODD2	ODD1	ODD0	142
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	140
SLRCOND	SLRD7	SLRD6	SLRD5	SLRD4	SLRD3	SLRD2	SLRD1	SLRD0	142
TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	140
WPUD	WPUD7	WPUD6	WPUD5	WPUD4	WPUD3	WPUD2	WPUD1	WPUD0	141

TABLE 11-6:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTD
-------------	--

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTD.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set '0' = Bit is cleared			ared					

REGISTER 13-7: IOCCP: INTERRUPT-ON-CHANGE PORTC POSITIVE EDGE REGISTER

bit 7-0

bit 7-0

IOCCP<7:0>: Interrupt-on-Change PORTC Positive Edge Enable bits

1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCCFx bit and IOCIF flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 13-8: IOCCN: INTERRUPT-ON-CHANGE PORTC NEGATIVE EDGE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCCN7 | IOCCN6 | IOCCN5 | IOCCN4 | IOCCN3 | IOCCN2 | IOCCN1 | IOCCN0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

IOCCN<7:0>: Interrupt-on-Change PORTC Negative Edge Enable bits

1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCCFx bit and IOCIF flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 13-9: IOCCF: INTERRUPT-ON-CHANGE PORTC FLAG REGISTER

| R/W/HS-0/0 |
|------------|------------|------------|------------|------------|------------|------------|------------|
| IOCCF7 | IOCCF6 | IOCCF5 | IOCCF4 | IOCCF3 | IOCCF2 | IOCCF1 | IOCCF0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-0

IOCCF<7:0>: Interrupt-on-Change PORTC Flag bits

- 1 = An enabled change was detected on the associated pin.
 - Set when IOCCPx = 1 and a rising edge was detected on RCx, or when IOCCNx = 1 and a falling edge was detected on RCx.
- 0 = No change was detected, or the user cleared the detected change.

15.0 TEMPERATURE INDICATOR MODULE

This family of devices is equipped with a temperature circuit designed to measure the operating temperature of the silicon die. The circuit's range of operating temperature falls between -40° C and $+85^{\circ}$ C. The output is a voltage that is proportional to the device temperature. The output of the temperature indicator is internally connected to the device ADC.

The circuit may be used as a temperature threshold detector or a more accurate temperature indicator, depending on the level of calibration performed. A one-point calibration allows the circuit to indicate a temperature closely surrounding that point. A two-point calibration allows the circuit to sense the entire range of temperature more accurately. Reference Application Note AN1333, *"Use and Calibration of the Internal Temperature Indicator"* (DS01333) for more details regarding the calibration process.

15.1 Circuit Operation

Figure 15-1 shows a simplified block diagram of the temperature circuit. The proportional voltage output is achieved by measuring the forward voltage drop across multiple silicon junctions.

Equation 15-1 describes the output characteristics of the temperature indicator.

EQUATION 15-1: VOUT RANGES

High Range:
$$V_{OUT} = V_{DD} - 4V_T$$

Low Range: $V_{OUT} = V_{DD} - 2V_T$

The temperature sense circuit is integrated with the Fixed Voltage Reference (FVR) module. See **Section 14.0 "Fixed Voltage Reference (FVR)"** for more information.

The circuit is enabled by setting the TSEN bit of the FVRCON register. When disabled, the circuit draws no current.

The circuit operates in either high or low range. The high range, selected by setting the TSRNG bit of the FVRCON register, provides a wider output voltage. This provides more resolution over the temperature range, but may be less consistent from part to part. This range requires a higher bias voltage to operate and thus, a higher VDD is needed.

The low range is selected by clearing the TSRNG bit of the FVRCON register. The low range generates a lower voltage drop and thus, a lower bias voltage is needed to operate the circuit. The low range is provided for low voltage operation.

FIGURE 15-1: TEMPERATURE CIRCUIT DIAGRAM

15.2 Minimum Operating VDD

When the temperature circuit is operated in low range, the device may be operated at any operating voltage that is within specifications.

When the temperature circuit is operated in high range, the device operating voltage, VDD, must be high enough to ensure that the temperature circuit is correctly biased.

Table 15-1 shows the recommended minimum $\mathsf{V}\mathsf{D}\mathsf{D}$ vs. range setting.

TABLE 15-1: RECOMMENDED VDD VS. RANGE

Min. VDD, TSRNG = 1	Min. VDD, TSRNG = 0
3.6V	1.8V

15.3 Temperature Output

The output of the circuit is measured using the internal Analog-to-Digital Converter. A channel is reserved for the temperature circuit output. Refer to **Section 21.0 "Analog-to-Digital Converter (ADC) Module"** for detailed information.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
GxRIS7	GxRIS6	GxRIS5	GxRIS4	GxRIS3	GxRIS2	GxRIS1	GxRIS0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unki	nown	-n/n = Value	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared	q = Value de	pends on condit	ion	
bit 7	GxRIS7: CO	Gx Rising Ever	t Input Source	e 7 Enable bit			
	1 = NCO1_0	ut is enabled a	s a rising eve	nt input			
	0 = NCO1_0	ut has no effec	t on the rising	event			
bit 6	GxRIS6: CO	Gx Rising Ever	t Input Source	e 6 Enable bit			
	1 = PWM30 0 = PWM3b	utput is enable	d as a rising e	event input			
bit 5	GYRISS: CO	Gy Rising Ever	t Input Source	a 5 Enable bit			
bit o	1 = CCP2 or	itout is enabled	l as a rising ev	vent input			
	0 = CCP2 out	tput has no eff	ect on the risi	ng event			
bit 4	GxRIS4: CO	Gx Rising Ever	t Input Source	e 4 Enable bit			
	1 = CCP1 is	enabled as a r	ising event inp	out			
	0 = CCP1 ha	as no effect on	the rising eve	nt			
bit 3	GxRIS3: CO	Gx Rising Ever	nt Input Source	e 3 Enable bit			
	1 = CLC1 ou	Itput is enabled	l as a rising e	/ent input			
h it 0		Reput has no en	ect on the risi	ng event			
DIT 2		GX RISING EVER	on a second second	e 2 Enable bit	t		
	1 = Compara0 = Compara	ator 2 output is	as no effect or	the rising event in	nt		
bit 1	GxRIS1: CO	Gx Rising Ever	t Input Source	e 1 Enable bit			
1 = Comparator 1 output is enabled as a rising event input							
	0 = Compara	ator 1 output ha	as no effect or	the rising eve	nt		
bit 0	GxRIS0: CO	Gx Rising Ever	t Input Source	e 0 Enable bit			
	1 = Pin selection	cted with COG	PPS control r	register is enab	oled as rising ev	ent input	
	0 = Pin selection	cted with COG	PPS control h	has no effect of	n the rising ever	nt	

REGISTER 18-3: COGxRIS: COG RISING EVENT INPUT SELECTION REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
GxFIS7	GxFIS6	GxFIS5	GxFIS4	GxFIS3	GxFIS2	GxFIS1	GxFIS0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared	q = Value dep	pends on condit	ion	
bit 7	GxFIS7: COC	Gx Falling Ever	t Input Source	e 7 Enable bit			
	1 = NCO1_0	ut is enabled a	s a falling eve	nt input			
	$0 = NCO1_0$	ut has no effec	t on the falling	gevent			
DIT 6	$\mathbf{GXFIS6:} \mathbf{COC}$	5x Falling Ever	it input Source	e 6 Enable bit			
	1 = PWM3 h	as no effect on	the falling eve	ent			
bit 5	GxFIS5: COO	Gx Falling Ever	t Input Source	e 5 Enable bit			
	1 = CCP2 ou	itput is enabled	I as a falling e	vent input			
	0 = CCP2 ou	itput has no eff	ect on the fall	ing event			
bit 4	GxFIS4: COC	Gx Falling Ever	t Input Source	e 4 Enable bit			
	1 = CCP1 is	enabled as a fa	alling event in	put			
hit 2			t Input Source	a 2 Enchlo hit			
DIL 3	1 = CLC1 out	tout is enabled	as a falling e	e o Ellable bil			
	0 = CLC1 ou	tput has no effe	ect on the falli	ng event			
bit 2	GxFIS2: COO	Gx Falling Ever	t Input Source	e 2 Enable bit			
	1 = Compara	ator 2 output is	enabled as a	falling event in	put		
	0 = Compara	ator 2 output ha	is no effect on	the falling eve	nt		
bit 1	GxFIS1: COC	Gx Falling Ever	t Input Source	e 1 Enable bit			
	1 = Compara 0 = Compara	ator 1 output is ator 1 output ha	enabled as a is no effect on	falling event in the falling eve	put nt		
bit 0	GxFIS0: COO	Gx Falling Ever	t Input Source	e 0 Enable bit			
	1 = Pin selec	ted with COG	PPS control r	egister is enab	led as falling ev	ent input	
	0 = Pin selec	ted with COGx	PPS control h	nas no effect or	n the falling ever	nt	

REGISTER 18-5: COG FALLING EVENT INPUT SELECTION REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
ADRES<1:0>		—	—	—	—	—	—	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'				
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other R			other Resets	
'1' = Bit is set '0' = Bit is cleared								
bit 7-6	ADRES<1:0>	. ADC Result F	Register bits					

REGISTER 21-5: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0

bit 7-6	ADRES<1:0>: ADC Result Register bits
	Lower two bits of 10-bit conversion result
bit 5-0	Reserved: Do not use.

REGISTER 21-6: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1

R/W-x/u	R/W-x/u						
—	—	—		—	—	ADRES<9:8>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2 Reserved: Do not use.

bit 1-0 ADRES<9:8>: ADC Result Register bits Upper two bits of 10-bit conversion result

REGISTER 21-7: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
ADRES<7:0>										
bit 7							bit 0			

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ADRES<7:0>: ADC Result Register bits Lower eight bits of 10-bit conversion result When one device is transmitting a logical one, or letting the line float, and a second device is transmitting a logical zero, or holding the line low, the first device can detect that the line is not a logical one. This detection, when used on the SCL line, is called clock stretching. Clock stretching gives slave devices a mechanism to control the flow of data. When this detection is used on the SDA line, it is called arbitration. Arbitration ensures that there is only one master device communicating at any single time.

30.3.1 CLOCK STRETCHING

When a slave device has not completed processing data, it can delay the transfer of more data through the process of clock stretching. An addressed slave device may hold the SCL clock line low after receiving or sending a bit, indicating that it is not yet ready to continue. The master that is communicating with the slave will attempt to raise the SCL line in order to transfer the next bit, but will detect that the clock line has not yet been released. Because the SCL connection is open-drain, the slave has the ability to hold that line low until it is ready to continue communicating.

Clock stretching allows receivers that cannot keep up with a transmitter to control the flow of incoming data.

30.3.2 ARBITRATION

Each master device must monitor the bus for Start and Stop bits. If the device detects that the bus is busy, it cannot begin a new message until the bus returns to an Idle state.

However, two master devices may try to initiate a transmission on or about the same time. When this occurs, the process of arbitration begins. Each transmitter checks the level of the SDA data line and compares it to the level that it expects to find. The first transmitter to observe that the two levels do not match, loses arbitration, and must stop transmitting on the SDA line.

For example, if one transmitter holds the SDA line to a logical one (lets it float) and a second transmitter holds it to a logical zero (pulls it low), the result is that the SDA line will be low. The first transmitter then observes that the level of the line is different than expected and concludes that another transmitter is communicating.

The first transmitter to notice this difference is the one that loses arbitration and must stop driving the SDA line. If this transmitter is also a master device, it also must stop driving the SCL line. It then can monitor the lines for a Stop condition before trying to reissue its transmission. In the meantime, the other device that has not noticed any difference between the expected and actual levels on the SDA line continues with its original transmission. It can do so without any complications, because so far, the transmission appears exactly as expected with no other transmitter disturbing the message.

Slave Transmit mode can also be arbitrated, when a master addresses multiple slaves, but this is less common.

If two master devices are sending a message to two different slave devices at the address stage, the master sending the lower slave address always wins arbitration. When two master devices send messages to the same slave address, and addresses can sometimes refer to multiple slaves, the arbitration process must continue into the data stage.

Arbitration usually occurs very rarely, but it is a necessary process for proper multi-master support.

30.5.7 CLOCK SYNCHRONIZATION AND THE CKP BIT

Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. However, clearing the CKP bit will not assert the SCL output low until the SCL output is already sampled low. Therefore, the CKP bit will not assert the SCL line until an external I^2C master device has already asserted the SCL line. The SCL output will remain low until the CKP bit is set and all other devices on the I^2C bus have released SCL. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCL (see Figure 30-23).

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	_		ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	131
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	—	—	136
BAUD1CON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	362
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	90
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	91
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	94
RC1REG			EUSA	ART Receiv	e Data Reg	ister			356*
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	361
RXPPS	_	—	—		F	RXPPS<4:0	>		152
SP1BRGL				SP1BR0	G<7:0>				363
SP1BRGH				SP1BRG	6<15:8>				363
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	130
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	135
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	360

TABLE 31-2: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for asynchronous reception.

* Page provides register information.

31.2 Clock Accuracy with Asynchronous Operation

The factory calibrates the internal oscillator block output (INTOSC). However, the INTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind.

The first (preferred) method uses the OSCTUNE register to adjust the INTOSC output. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source. See **Section 6.2.2.3 "Internal Oscillator Frequency Adjustment"** for more information.

The other method adjusts the value in the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see **Section 31.4.1 "Auto-Baud Detect"**). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.

RX/DT pin TX/CK pin (SCKP = 0)	
TX/CK pin	
SREN bit	.º,
RCIF bit (Interrupt) ———— Read	
RC1REG Note: Timing diag	gram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0.

FIGURE 31-12: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

TABLE 31-8: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB		—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	131
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	_	—	136
BAUD1CON	ABDOVF	RCIDL	—	SCKP	BRG16		WUE	ABDEN	362
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	90
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	91
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	94
RC1REG			EUSA	ART Receiv	e Data Reg	ister			356*
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	361
RXPPS	-	—	—		152				
RxyPPS	—	—	—		153				
SP1BRGL				SP1BR0	G<7:0>				363*
SP1BRGH	SP1BRG<15:8>							363*	
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	130
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	135
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	360

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous master reception. * Page provides register information.

TABLE 34-4: I/O PORTS

Standard Operating Conditions (unless otherwise stated)

Param.									
No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions		
	VIL	Input Low Voltage							
		I/O PORT:							
D034		with TTL buffer	—		0.8	V	$4.5V \le V\text{DD} \le 5.5V$		
D034A			—	—	0.15 VDD	V	$1.8V \leq V\text{DD} \leq 4.5V$		
D035		with Schmitt Trigger buffer	—	—	0.2 VDD	V	$2.0V \leq V\text{DD} \leq 5.5V$		
		with I ² C levels	—	—	0.3 VDD	V			
		with SMBus levels	—	—	0.8	V	$2.7V \leq V\text{DD} \leq 5.5V$		
D036		MCLR, OSC1 (EXTRC mode)	—	—	0.2 VDD	V	(Note 1)		
D036A		OSC1 (HS mode)	—	—	0.3 VDD	V			
	Vih	Input High Voltage							
		I/O ports:							
D040		with TTL buffer	2.0	—	—	V	$4.5V \leq V\text{DD} \leq 5.5V$		
D040A			0.25 VDD + 0.8	_	—	V	$1.8V \leq V\text{DD} \leq 4.5V$		
D041		with Schmitt Trigger buffer	0.8 Vdd	—	—	V	$2.0V \leq V\text{DD} \leq 5.5V$		
		with I ² C levels	0.7 Vdd	—	—	V			
		with SMBus levels	2.1	—	—	V	$2.7V \leq V\text{DD} \leq 5.5V$		
D042		MCLR	0.8 Vdd	—	—	V			
D043A		OSC1 (HS mode)	0.7 Vdd	—	—	V			
D043B		OSC1 (EXTRC oscillator)	0.9 Vdd	—	—	V	VDD > 2.0V(Note 1)		
	lı∟	Input Leakage Current ⁽²⁾							
D060		I/O Ports	_	± 5	± 125	nA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ Pin \text{ at high-impedance}, \\ 85^\circC \end{array}$		
				± 5	± 1000	nA	$Vss \le VPIN \le VDD$, Pin at high-impedance, 125°C		
D061		MCLR ⁽³⁾	_	± 5	± 200	nA	$Vss \le VPIN \le VDD$, Pin at high-impedance, 85°C		

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in EXTRC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

TABLE 34-19: 8-BIT DIGITAL-TO-ANALOG CONVERTER (DAC) SPECIFICATIONS

Standard	Operating	Conditions	(unless	otherwise	stated)
----------	-----------	------------	---------	-----------	---------

VDD = 3.0V, TA = 25°C

See Section 35.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.

Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
DAC01*	CLSB	Step Size	_	VDD/256	_	V	
DAC02*	CACC	Absolute Accuracy	_	—	± 1.5	LSb	
DAC03*	CR	Unit Resistor Value (R)	_	600	_	Ω	
DAC04*	CST	Settling Time ⁽¹⁾	_	—	10	μS	

These parameters are characterized but not tested.

Note 1: Settling time measured while DACR<7:0> transitions from '0x00' to '0xFF'.

TABLE 34-20: 5-BIT DIGITAL-TO-ANALOG CONVERTER (DAC) SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated) $V_{DD} = 3.0V$, TA = 25°C

See Section 35.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.

Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
DAC05*	CLSB	Step Size		VDD/32	_	V	
DAC06*	CACC	Absolute Accuracy	—	—	± 0.5	LSb	
DAC07*	CR	Unit Resistor Value (R)	—	6000	_	Ω	
DAC08*	CST	Settling Time ⁽¹⁾	—	—	10	μS	

These parameters are characterized but not tested.

Note 1: Settling time measured while DACR<7:0> transitions from '0x00' to '0xFF'.

TABLE 34-21: ZERO-CROSS PIN SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C									
Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments		
ZC01	ZCPINV	Voltage on Zero-Cross Pin		0.75	—	V			
ZC02	ZCSRC	Source current	_	300		μA			
ZC03	ZCSNK	Sink current	_	300		μA			
ZC04	Zcisw	Response Time Rising Edge		1	_	μS			
		Response Time Falling Edge	_	1		μS			
ZC05	ZCOUT	Response Time Rising Edge		1	—	μS			
		Response Time Falling Edge		1	_	μS			

These parameters are characterized but not tested.