

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 28x10b; D/A 1x5b, 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1719-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description		
RB1/AN10/C1IN3-/C2IN3-/	RB1	TTL/ST	CMOS	General purpose I/O.		
OPA2OUT	AN10	AN	_	ADC Channel 10 input.		
	C1IN3-	AN	—	Comparator C1 negative input.		
	C2IN3-	AN	—	Comparator C2 negative input.		
	OPA2OUT		AN	Operational Amplifier 2 output.		
RB2/AN8/OPA2IN-	RB2	TTL/ST	CMOS	General purpose I/O.		
	AN8	AN	_	ADC Channel 8 input.		
	OPA2IN-	AN	—	Operational Amplifier 2 inverting input.		
RB3/AN9/C1IN2-/C2IN2-/	RB3	TTL/ST	CMOS	General purpose I/O.		
OPA2IN+	AN9	AN	_	ADC Channel 9 input.		
	C1IN2-	AN	_	Comparator C1 negative input.		
	C2IN2-	AN	_	Comparator C2 negative input.		
	OPA2IN+	AN	_	Operational Amplifier 2 non-inverting input.		
RB4/AN11	RB4	TTL/ST	CMOS	General purpose I/O.		
	AN11	AN	_	ADC Channel 11 input.		
RB5/AN13/T1G ⁽¹⁾	RB5	TTL/ST	CMOS	General purpose I/O.		
	AN13	AN		ADC Channel 13 input.		
	T1G	TTL/ST		Timer1 gate input.		
RB6/CLCIN2 ⁽¹⁾ /ICSPCLK	RB6	TTL/ST	CMOS	General purpose I/O.		
	CLCIN2	TTL/ST		Configurable Logic Cell source input.		
	ICSPCLK	ST		Serial Programming Clock.		
RB7/DAC1OUT2/DAC2OUT2/	RB7	TTL/ST	CMOS	General purpose I/O.		
CLCIN3 ⁽¹⁾ /ICSPDAT	DAC1OUT2	_	AN	Digital-to-Analog Converter output.		
	DAC2OUT2	_	AN	Digital-to-Analog Converter output.		
	CLCIN3	TTL/ST		Configurable Logic Cell source input.		
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.		
RC0/T1CKI ⁽¹⁾ /SOSCO	RC0	TTL/ST	CMOS	General purpose I/O.		
	T1CKI	ST		Timer1 clock input.		
	SOSCO	XTAL	XTAL	Secondary Oscillator Connection.		
RC1/SOSCI/CCP2 ⁽¹⁾	RC1	TTL/ST	CMOS	General purpose I/O.		
	SOSCI	XTAL	XTAL	Secondary Oscillator Connection.		
	CCP2	TTL/ST		Capture input.		
RC2/AN14/CCP1 ⁽¹⁾	RC2	TTL/ST	CMOS	General purpose I/O.		
	AN14	AN	_	ADC Channel 14 input.		
	CCP1	TTL/ST	_	Capture input.		
RC3/AN15/SCK ⁽¹⁾ /SCL ⁽¹⁾	RC3	TTL/ST	CMOS	General purpose I/O.		
	AN15	AN		ADC Channel 15 input.		
	SCK	TTL/ST	—	SPI clock input.		
	0.01	120				

OD **Legend:** AN = Analog input or output CMOS = CMOS compatible input or output OD = Open-Drain = Schmitt Trigger input with CMOS levels I^2C = Schmitt Trigger input with I^2C TTL = TTL compatible input ST

l²C

SCL

HV = High Voltage XTAL = Crystal levels

Note 1: Default peripheral input. Alternate pins can be selected as the peripheral input with the PPS input selection registers. 2: All pin digital outputs default to PORT latch data. Alternate outputs can be selected as the peripheral digital output with the PPS output selection registers.

I²C clock.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

TABLE 3-9: PIC16(L)F1717/8/9 MEMORY MAP, BANK 28-30

	Bank 28		Bank 29		Bank 30
E0Ch		E8Ch		F0Ch	
E0Dh	_	E8Dh	_	F0Dh	_
E0Eh	_	E8Eh	_	F0Eh	_
E0Fh	PPSLOCK	E8Fh	_	F0Fh	CLCDATA
E10h	INTPPS	E90h	RA0PPS	F10h	CLC1CON
E11h	TOCKIPPS	E91h	RA1PPS	F11h	CLC1POL
E12h	T1CKIPPS	E92h	RA2PPS	F12h	CLC1SEL0
E13h	T1GPPS	E93h	RA3PPS	F13h	CLC1SEL1
E14h	CCP1PPS	E94h	RA4PPS	F14h	CLC1SEL2
E15h	CCP2PPS	E95h	RA5PPS	F15h	CLC1SEL3
E16h	_	E96h	RA6PPS	F16h	CLC1GLS0
E17h	COGINPPS	E97h	RA7PPS	F17h	CLC1GLS1
E18h	_	E98h	RB0PPS	F18h	CLC1GLS2
E19h		E99h	RB1PPS	F19h	CLC1GLS3
E1Ah		E9Ah	RB2PPS	F1Ah	CLC2CON
E1Bh		E9Bh	RB3PPS	F1Bh	CLC2POL
E1Ch		E9Ch	RB4PPS ⁽¹⁾	F1Ch	CLC2SEL0
			RB5PPS ⁽¹⁾		
E1Dh	_	E9Dh		F1Dh	CLC2SEL1
E1Eh	—	E9Eh	RB6PPS ⁽¹⁾	F1Eh	CLC2SEL2
E1Fh	—	E9Fh	RB7PPS ⁽¹⁾	F1Fh	CLC2SEL3
E20h	SSPCLKPPS	EA0h	RC0PPS	F20h	CLC2GLS0
E21h	SSPDATPPS	EA1h	RC1PPS	F21h	CLC2GLS1
E22h	SSPSSPPS	EA2h	RC2PPS	F22h	CLC2GLS2
E23h		EA3h	RC3PPS	F23h	CLC2GLS3
E24h	RXPPS	EA4h	RC4PPS	F24h	CLC3CON
E25h	CKPPS	EA5h	RC5PPS	F25h	CLC3POL
E26h	—	EA6h	RC6PPS	F26h	CLC3SEL0
E27h	_	EA7h	RC7PPS	F27h	CLC3SEL1
E28h	CLCIN0PPS	EA8h	RD0PPS ⁽¹⁾	F28h	CLC3SEL2
E29h	CLCIN1PPS	EA9h	RD1PPS ⁽¹⁾	F29h	CLC3SEL3
E2911 E2Ah		EASI	RD2PPS ⁽¹⁾	F2911 F2Ah	
	CLCIN2PPS			1	CLC3GLS0
E2Bh	CLCIN3PPS	EABh	RD3PPS ⁽¹⁾	F2Bh	CLC3GLS1
E2Ch	—	EACh	RD4PPS ⁽¹⁾	F2Ch	CLC3GLS2
E2Dh	—	EADh	RD5PPS ⁽¹⁾	F2Dh	CLC3GLS3
E2Eh	—	EAEh	RD6PPS ⁽¹⁾	F2Eh	CLC4CON
E2Fh	_	EAFh	RD7PPS ⁽¹⁾	F2Fh	CLC4POL
E30h		EB0h	RE0PPS ⁽¹⁾	F30h	CLC4SEL0
E31h		EB1h	RE1PPS ⁽¹⁾	F31h	CLC4SEL1
E32h		EB2h	RE2PPS ⁽¹⁾	F32h	CLC4SEL2
			NEZPES'	•	CLC4SEL2 CLC4SEL3
E33h E34h		EB3h		F33h	CLC4SEL3 CLC4GLS0
		EB4h EB5h		F34h	
E35h E36h	_		_	F35h	CLC4GLS1
E37h		EB6h		F36h	CLC4GLS2 CLC4GLS3
E38h		EB7h EB8h		F37h F38h	01040133
E39h		EB9h		F39h	
E390 E3Ah		EBAh		F3Ah	
E3An E3Bh		EBBh		F3Bh	
E3Ch		EBCh		F3Ch	
E3Dh		EBDh		F3Dh	
E3Eh		EBEh		F3Eh	
E3Fh		EBFh		F3En	
E3FN E40h		EBFn EC0h		F40h	
	—		—		—
E6Fh		EEFh		F6Fh	

4.7 Register Definitions: Device and Revision

R	Р	-	_		
	R	R	R	R	R
		DEV<	<13:8>		
bit 13					bit 8
R	R	R	R	R	R
	DEV	<7:0>			
					bit 0
		R R	bit 13	R R R R	bit 13 R R R R R

REGISTER 4-3: DEVID: DEVICE ID REGISTER

Legend:

R = Readable bit

'1' = Bit is set '0' = Bit is cleared

bit 13-0 **DEV<13:0>:** Device ID bits

Device	DEVID<13:0> Values							
PIC16F1717	11 0000 0101 1100 (305Ch)							
PIC16LF1717	11 0000 0101 1111 (305Fh)							
PIC16F1718	11 0000 0101 1011 (305Bh)							
PIC16LF1718	11 0000 0101 1110 (305Eh)							
PIC16F1719	11 0000 0101 1010 (305Ah)							
PIC16LF1719	11 0000 0101 1101 (305Dh)							

REGISTER 4-4: REVID: REVISION ID REGISTER

R	R	R	R	R	R				
REV<13:8>									
bit 13 bit 8									

R	R	R	R	R	R	R	R		
REV<7:0>									
bit 7									

Legend:	
R = Readable bit	
'1' = Bit is set	'0' = Bit is cleared

bit 13-0 **REV<13:0>:** Revision ID bits

6.2.2.5 Internal Oscillator Frequency Selection

The system clock speed can be selected via software using the Internal Oscillator Frequency Select bits IRCF<3:0> of the OSCCON register.

The postscaled output of the 16 MHz HFINTOSC, 500 kHz MFINTOSC, and 31 kHz LFINTOSC connect to a multiplexer (see Figure 6-1). The Internal Oscillator Frequency Select bits IRCF<3:0> of the OSCCON register select the frequency output of the internal oscillators. One of the following frequencies can be selected via software:

- 32 MHz (requires 4 x PLL)
- 16 MHz
- 8 MHz
- 4 MHz
- 2 MHz
- 1 MHz
- 500 kHz (default after Reset)
- 250 kHz
- 125 kHz
- 62.5 kHz
- 31.25 kHz
- 31 kHz (LFINTOSC)

Note:	Following any Reset, the IRCF<3:0> bits
	of the OSCCON register are set to '0111'
	and the frequency selection is set to
	500 kHz. The user can modify the IRCF
	bits to select a different frequency.

The IRCF<3:0> bits of the OSCCON register allow duplicate selections for some frequencies. These duplicate choices can offer system design trade-offs. Lower power consumption can be obtained when changing oscillator sources for a given frequency. Faster transition times can be obtained between frequency changes that use the same oscillator source.

6.2.2.6 32 MHz Internal Oscillator Frequency Selection

The Internal Oscillator Block can be used with the 4x PLL associated with the External Oscillator Block to produce a 32 MHz internal system clock source. The following settings are required to use the 32 MHz internal clock source:

- The FOSC bits in Configuration Words must be set to use the INTOSC source as the device system clock (FOSC<2:0> = 100).
- The SCS bits in the OSCCON register must be cleared to use the clock determined by FOSC<2:0> in Configuration Words (SCS<1:0> = 00).
- The IRCF bits in the OSCCON register must be set to the 8 MHz HFINTOSC set to use (IRCF<3:0> = 1110).
- The SPLLEN bit in the OSCCON register must be set to enable the 4x PLL, or the PLLEN bit of the Configuration Words must be programmed to a '1'.

Note:	When	using	the	PLLEN	bit	of	the		
	Config	uration	Word	s, the 4x	PLL	. ca	nnot		
	be disabled by software and the SPLLEN								
				ailable.					

The 4x PLL is not available for use with the internal oscillator when the SCS bits of the OSCCON register are set to '1x'. The SCS bits must be set to '00' to use the 4x PLL with the internal oscillator.

7.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIE1 or PIE2 registers)

The INTCON, PIR1 and PIR2 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Critical registers are automatically saved to the shadow registers (See "Section 7.5 "Automatic Context Saving")
- · PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

Note 1:	Individual	inte	rrupt	flag	bits	s are	e set,
	regardless	of	the	state	of	any	other
	enable bits						

2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

7.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 7-2 and Figure 7-3 for more details.

11.4 Register Definitions: PORTB

REGISTER 11-9: PORTB: PORTB REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown		iown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared					

bit 7-0 **RB<7:0>**: PORTB General Purpose I/O Pin bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

REGISTER 11-10: TRISB: PORTB TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISB7 | TRISB6 | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

TRISB<7:0>: PORTB Tri-State Control bits

1 = PORTB pin configured as an input (tri-stated)

0 = PORTB pin configured as an output

REGISTER 11-11: LATB: PORTB DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATB7 | LATB6 | LATB5 | LATB4 | LATB3 | LATB2 | LATB1 | LATB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATB<7:0>: PORTB Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.

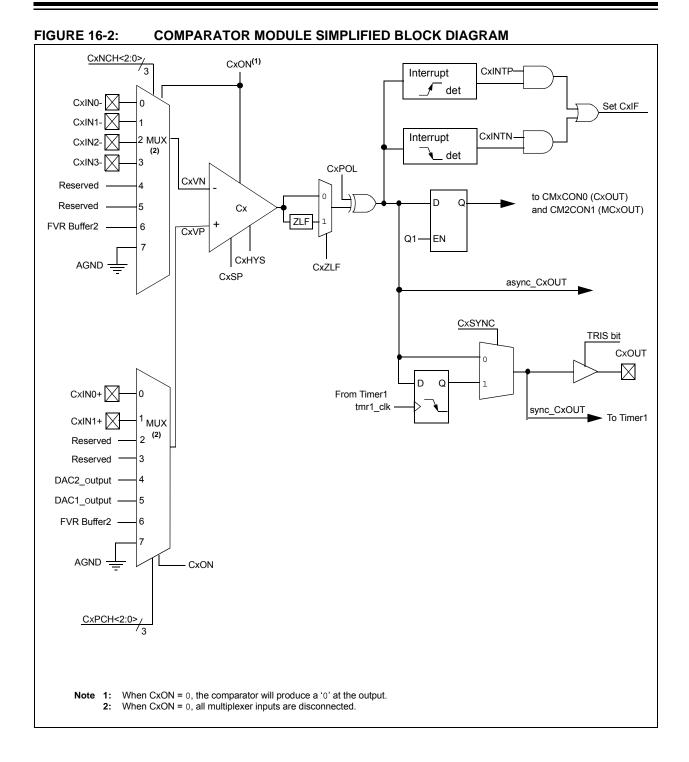
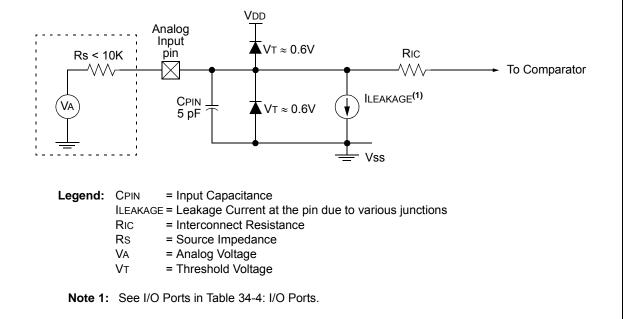

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.

TABLE 11-7: SUMMARY OF REGISTE	RS ASSOCIATED WITH PORTE
--------------------------------	--------------------------

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELE ⁽¹⁾	_	_	_		-	ANSE2	ANSE1	ANSE0	146
INLVLE	_	_	_	_	INLVLE3	INLVLE2 ⁽¹⁾	INLVLE1 ⁽¹⁾	INLVLE0 ⁽¹⁾	148
LATE ⁽¹⁾	—	—	_	_	_	LATE2	LATE1	LATE0	146
ODCONE ⁽¹⁾	—	—	_	_	_	ODE2	ODE1	ODE0	147
PORTE	—	—	_	_	RE3	RE2 ⁽¹⁾	RE1 ⁽¹⁾	RE0 ⁽¹⁾	145
SLRCONE ⁽¹⁾	—	—	_	_	_	SLRE2	SLRE1	SLRE0	148
TRISE				_	TRISE3	TRISE2 ⁽¹⁾	TRISE1 ⁽¹⁾	TRISE0 ⁽¹⁾	145
WPUE				_	WPUE3	WPUE2 ⁽¹⁾	WPUE1 ⁽¹⁾	WPUE0 ⁽¹⁾	147

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTE.

Note 1: PIC16(L)F1717/9 only.


16.10 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 16-4. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - 2: Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

17.1.9 SETUP FOR PWM OPERATION USING PWMx PINS

The following steps should be taken when configuring the module for PWM operation using the PWMx pins:

- 1. Disable the PWMx pin output driver(s) by setting the associated TRIS bit(s).
- 2. Clear the PWMxCON register.
- 3. Load the PR2 register with the PWM period value.
- 4. Load the PWMxDCH register and bits <7:6> of the PWMxDCL register with the PWM duty cycle value.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIR1 register. See Note below.
 - Configure the T2CKPS bits of the T2CON register with the Timer2 prescale value.
 - Enable Timer2 by setting the TMR2ON bit of the T2CON register.
- Enable PWM output pin and wait until Timer2 overflows, TMR2IF bit of the PIR1 register is set. See Note below.
- 7. Enable the PWMx pin output driver(s) by clearing the associated TRIS bit(s) and setting the desired pin PPS control bits.
- 8. Configure the PWM module by loading the PWMxCON register with the appropriate values.
 - Note 1: In order to send a complete duty cycle and period on the first PWM output, the above steps must be followed in the order given. If it is not critical to start with a complete PWM signal, then move Step 8 to replace Step 4.
 - **2:** For operation with other peripherals only, disable PWMx pin outputs.

17.1.10 SETUP FOR PWM OPERATION TO OTHER DEVICE PERIPHERALS

The following steps should be taken when configuring the module for PWM operation to be used by other device peripherals:

- 1. Disable the PWMx pin output driver(s) by setting the associated TRIS bit(s).
- 2. Clear the PWMxCON register.
- 3. Load the PR2 register with the PWM period value.
- 4. Load the PWMxDCH register and bits <7:6> of the PWMxDCL register with the PWM duty cycle value.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIR1 register. See Note below.
 - Configure the T2CKPS bits of the T2CON register with the Timer2 prescale value.
 - Enable Timer2 by setting the TMR2ON bit of the T2CON register.
- 6. Enable PWM output pin:
- Wait until Timer2 overflows, TMR2IF bit of the PIR1 register is set. See Note below.
- 7. Configure the PWM module by loading the PWMxCON register with the appropriate values.

Note: In order to send a complete duty cycle and period on the first PWM output, the above steps must be included in the setup sequence. If it is not critical to start with a complete PWM signal on the first output, then step 6 may be ignored.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	90
NCO1ACCU		_	_			NCO1AC	C<19:16>		239
NCO1ACCH				NCO1AC	C<15:8>				239
NCO1ACCL				NCO1A	CC<7:0>				238
NCO1CLK	N	1PWS<2:0	>	_	_	_	N1CK	S<1:0>	238
NCO1CON	N1EN	_	N1OUT	N1POL	—	—	—	N1PFM	237
NCO1INCU			_			NCO1IN	C<19:16>		240
NCO1INCH				NCO1IN	C<15:8>				240
NCO1INCL				NCO1IN	NC<7:0>				239
PIE3	_	NCOIE	COGIE	ZCDIE	CLC4IE	CLC3IE	CLC2IE	CLC1IE	93
PIR3	_	NCOIF	COGIF	ZCDIF	CLC4IF	CLC3IF	CLC2IF	CLC1IF	96
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	124
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	135
TRISD ⁽¹⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	140
RxyPPS			_		F	RxyPPS<4:0	>		153

TABLE 20-1: SUMMARY OF REGISTERS ASSOCIATED WITH NCOX

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on condition. Shaded cells are not used for NCOx module.

Note 1: PIC16(L)F1717/9 only.

R/W-0/0							
	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
	TRIGSE	L<3:0>(1)		—	—	—	—
bit 7							bit (
Logondu							
Legend:	b :4		L :4				
R = Readable bit W = Writable bit U = Unimplemented bit, rea							
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
	0001 = CCF		trigger select	eu			

REGISTER 21-3: ADCON2: ADC CONTROL REGISTER 2

- 1110 = Reserved
- 1111 = Reserved
- bit 3-0 Unimplemented: Read as '0'
- Note 1: This is a rising edge sensitive input for all sources.
 - **2:** Signal also sets its corresponding interrupt flag.

REGISTER 21-4: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
		ADRE	S<9:2>			
						bit 0
bit	W = Writable I	bit	U = Unimpler	nented bit, read	d as '0'	
anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BC	R/Value at all o	other Resets
	'0' = Bit is clea	ared				
	pit	pit W = Writable anged x = Bit is unkn	ADRE	ADRES<9:2> Dit W = Writable bit U = Unimpler anged x = Bit is unknown -n/n = Value a	ADRES < 9:2 > Dit W = Writable bit U = Unimplemented bit, read anged x = Bit is unknown -n/n = Value at POR and BC	ADRES < 9:2> Dit W = Writable bit U = Unimplemented bit, read as '0' anged x = Bit is unknown -n/n = Value at POR and BOR/Value at all of

bit 7-0 **ADRES<9:2>**: ADC Result Register bits Upper eight bits of 10-bit conversion result

				•	•				
R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
ADRES	S<1:0>	—	—	—			—		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'			
u = Bit is unch	anged	x = Bit is unkr	iown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7-6	ADRES<1:0>	. ADC Result F	Register bits						

REGISTER 21-5: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0

bit 7-6	ADRES<1:0>: ADC Result Register bits
	Lower two bits of 10-bit conversion result
bit 5-0	Reserved: Do not use.

REGISTER 21-6: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| — | — | | — | — | | ADRE | S<9:8> |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2 Reserved: Do not use.

bit 1-0 **ADRES<9:8>**: ADC Result Register bits Upper two bits of 10-bit conversion result

REGISTER 21-7: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
ADRES<7:0>								
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ADRES<7:0>: ADC Result Register bits Lower eight bits of 10-bit conversion result

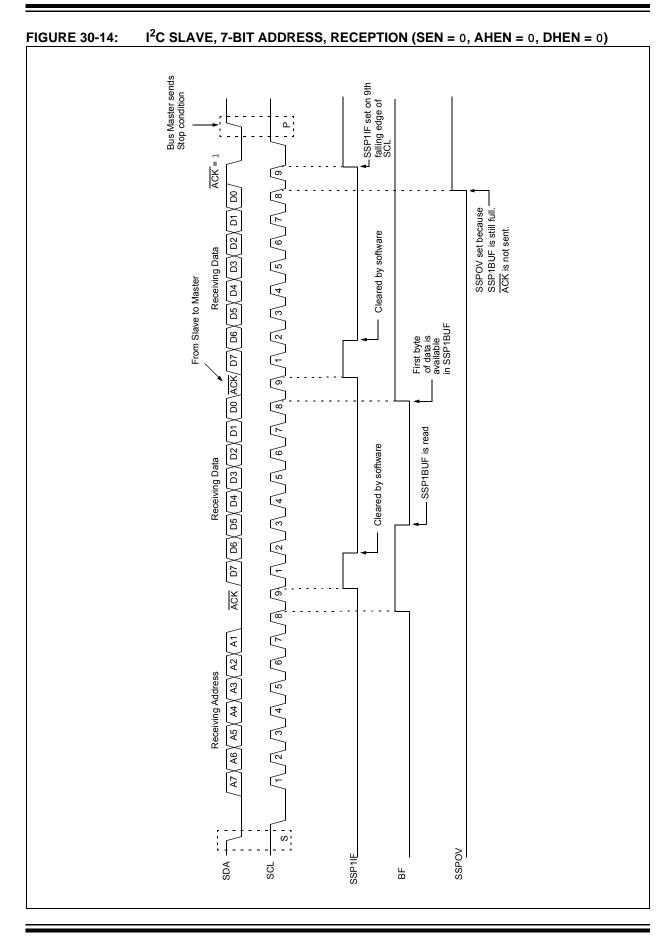
	U-0	R-x/x	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0		
ZCDxEN	—	ZCDxOUT	ZCDxPOL	—	_	ZCDxINTP	ZCDxINTN		
bit 7							bit 0		
Lonondi									
Legend: R = Readable I	h:+	M = Mritable	-:+		nanted bit read	aa 'O'			
		W = Writable			nented bit, read				
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets									
'1' = Bit is set		'0' = Bit is clea	ared	q = value dep	ends on configu	iration bits			
bit 7	1 = Zero-cros 0 = Zero-cros	s detect is disa	bled. ZCD pir abled. ZCD pir	n is forced to o	utput to source a ording to PPS a				
bit 6	Unimplemen	ted: Read as ')'						
bit 5	ZCDxPOL bit 1 = ZCD pin i 0 = ZCD pin i ZCDxPOL bit 1 = ZCD pin i	s sinking curre s sourcing curr <u>= 1</u> : s sourcing curr	nt rent						
	0 = 200 pm	s sinking curre	nt						
bit 4	ZCDxPOL: Ze 1 = ZCD logic	s sinking curre ero-Cross Dete c output is inve c output is not i	ction Logic O rted	utput Polarity b	bit				
bit 4 bit 3-2	ZCDxPOL: Zet 1 = ZCD logic 0 = ZCD logic	ero-Cross Dete c output is inve	ction Logic O rted nverted	utput Polarity b	bit				
	ZCDxPOL: Ze 1 = ZCD logic 0 = ZCD logic Unimplement ZCDxINTP: Z 1 = ZCDIF bit	ero-Cross Dete c output is inve c output is not i	ction Logic Or rted nverted o' itive Edge Inte o-high ZCDxC	errupt Enable b DUT transition	it				

TABLE 25-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE ZCD MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 5 Bit 4 Bit 3 Bit 2 Bit 1		Bit 1	Bit 0	Register on page	
PIE3	—	NCOIE	COGIE	ZCDIE	CLC4IE	CLC3IE	CLC2IE	CLC1IE	93
PIR3	—	NCOIF	COGIF	ZCDIF	CLC4IF	CLC3IF	CLC2IF	CLC1IF	96
ZCD1CON	ZCD1EN		ZCD10UT	ZCD1POL			ZCD1INTP	ZCD1INTN	267

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the ZCD module.

TABLE 25-2: SUMMARY OF CONFIGURATION WORD WITH THE ZCD MODULE


Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG2	13:8		_	LVP	DEBUG	LPBOR	BORV	STVREN	PLLEN	57
	7:0	ZCDDIS		_	_		PPS1WAY	WRT	<1:0>	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the ZCD module.

25.9

Register Definitions: 7CD Control

FIGURE 27-5:	TIMER1 GATE SINGLE-PULSE MODE	
TMR1GE		
T1GPOL		
T1GSPM		
T1GG <u>O/</u> DONE	Cleared by falling edge	hardware on of T1GVAL
t1g_in	rising edge of T1G	
T1CKI		
T1GVAL		
Timer1	N N + 1 N + 2	
TMR1GIF	Cleared by software Set by hard- falling edge	ware on Cleared by of T1GVAL software

					SYNC	C = 0, BRGH	l = 0, BRG	616 = 0				
BAUD	Fosc = 32.000 MHz		Fosc = 20.000 MHz			Fosc	; = 18.43	2 MHz	Fosc	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	_		_	_		_	_		_	_		_
1200	—	—	—	1221	1.73	255	1200	0.00	239	1200	0.00	143
2400	2404	0.16	207	2404	0.16	129	2400	0.00	119	2400	0.00	71
9600	9615	0.16	51	9470	-1.36	32	9600	0.00	29	9600	0.00	17
10417	10417	0.00	47	10417	0.00	29	10286	-1.26	27	10165	-2.42	16
19.2k	19.23k	0.16	25	19.53k	1.73	15	19.20k	0.00	14	19.20k	0.00	8
57.6k	55.55k	-3.55	3	—		_	57.60k	0.00	7	57.60k	0.00	2
115.2k	—	—	—	—	_	—	—	—	—	—	—	—

TABLE 31-5: BAUD RATES FOR ASYNCHRONOUS MODES

					SYNC	C = 0, BRG	l = 0, BRG	616 = 0				
BAUD	Fosc = 8.000 MHz		Fosc = 4.000 MHz		Fosc = 3.6864 MHz			Fos	Fosc = 1.000 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	_	_	_	300	0.16	207	300	0.00	191	300	0.16	51
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	—	_	—
9600	9615	0.16	12	_	_	_	9600	0.00	5	—	_	—
10417	10417	0.00	11	10417	0.00	5	_	_	_	—	_	_
19.2k	_	_	_	_	_	_	19.20k	0.00	2	_	_	_
57.6k	—	_	_	—	_	—	57.60k	0.00	0	—	—	—
115.2k	—	_	_	—	_	—	—	_	—	—	—	—

					SYNC	C = 0, BRGH	l = 1, BRC	G16 = 0					
BAUD	Fosc = 32.000 MHz		0 MHz	Fosc = 20.000 MHz			Fosc	: = 18.43	2 MHz	Fosc	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	—	_	—			_			—		—	—	
1200	_	_	—	_	_	—	_	_	—	—	_	—	
2400		_	_	_	_	_	_	_	_	_	_	_	
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71	
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65	
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35	
57.6k	57.14k	-0.79	34	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11	
115.2k	117.64k	2.12	16	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5	

31.5 EUSART Synchronous Mode

Synchronous serial communications are typically used in systems with a single master and one or more slaves. The master device contains the necessary circuitry for baud rate generation and supplies the clock for all devices in the system. Slave devices can take advantage of the master clock by eliminating the internal clock generation circuitry.

There are two signal lines in Synchronous mode: a bidirectional data line and a clock line. Slaves use the external clock supplied by the master to shift the serial data into and out of their respective receive and transmit shift registers. Since the data line is bidirectional, synchronous operation is half-duplex only. Half-duplex refers to the fact that master and slave devices can receive and transmit data but not both simultaneously. The EUSART can operate as either a master or slave device.

Start and Stop bits are not used in synchronous transmissions.

31.5.1 SYNCHRONOUS MASTER MODE

The following bits are used to configure the EUSART for synchronous master operation:

- SYNC = 1
- CSRC = 1
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TX1STA register configures the device for synchronous operation. Setting the CSRC bit of the TX1STA register configures the device as a master. Clearing the SREN and CREN bits of the RC1STA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RC1STA register enables the EUSART.

31.5.1.1 Master Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a master transmits the clock on the TX/CK line. The TX/CK pin output driver is automatically enabled when the EUSART is configured for synchronous transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One clock cycle is generated for each data bit. Only as many clock cycles are generated as there are data bits.

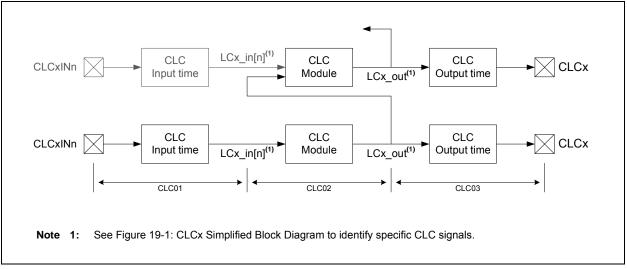
31.5.1.2 Clock Polarity

A clock polarity option is provided for Microwire compatibility. Clock polarity is selected with the SCKP bit of the BAUD1CON register. Setting the SCKP bit sets the clock Idle state as high. When the SCKP bit is set, the data changes on the falling edge of each clock. Clearing the SCKP bit sets the Idle state as low. When the SCKP bit is cleared, the data changes on the rising edge of each clock.

31.5.1.3 Synchronous Master Transmission

Data is transferred out of the device on the RX/DT pin. The RX/DT and TX/CK pin output drivers are automatically enabled when the EUSART is configured for synchronous master transmit operation.

A transmission is initiated by writing a character to the TX1REG register. If the TSR still contains all or part of a previous character the new character data is held in the TX1REG until the last bit of the previous character has been transmitted. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TX1REG is immediately transferred to the TSR. The transmission of the character commences immediately following the transfer of the data to the TSR from the TX1REG.


Each data bit changes on the leading edge of the master clock and remains valid until the subsequent leading clock edge.

Note:	The TSR register is not mapped in data
	memory, so it is not available to the user.

31.5.1.4 Synchronous Master Transmission Setup

- Initialize the SP1BRGH, SP1BRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 31.4 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Disable Receive mode by clearing bits SREN and CREN.
- 4. Enable Transmit mode by setting the TXEN bit.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. If interrupts are desired, set the TXIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in the TX9D bit.
- 8. Start transmission by loading data to the TX1REG register.

FIGURE 34-12: CLC PROPAGATION TIMING

TABLE 34-14: CONFIGURATION LOGIC CELL (CLC) CHARACTERISTICS

	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$											
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions					
CLC01*	TCLCIN	CLC input time			7	OS17	ns	(Note 1)				
CLC02*	TCLC	CLC module input to output progaga	ation time	_	24 12		ns ns	VDD = 1.8V VDD > 3.6V				
CLC03*	TCLCOUT	CLC output time Ris	e Time	_	OS18	_	_	(Note 1)				
		Fal	l Time	—	OS19	_	_	(Note 1)				
CLC04*	FCLCMAX	CLC maximum switching frequency		—	45	_	MHz					

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: See Table 34-10 for OS17, OS18 and OS19 rise and fall times.

36.0 DEVELOPMENT SUPPORT

The PIC microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
 Compilers/Assemblers/Linkers
- MPLAB XC Compiler
- MPASM[™] Assembler
- MPASM™ Assembler - MPLINK™ Object Linker/
- MPLIB[™] Object Librarian
- MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
- MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit 3
- Device Programmers
- MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

36.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac OS[®] X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window

Project-Based Workspaces:

- Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- Local file history feature
- Built-in support for Bugzilla issue tracker