

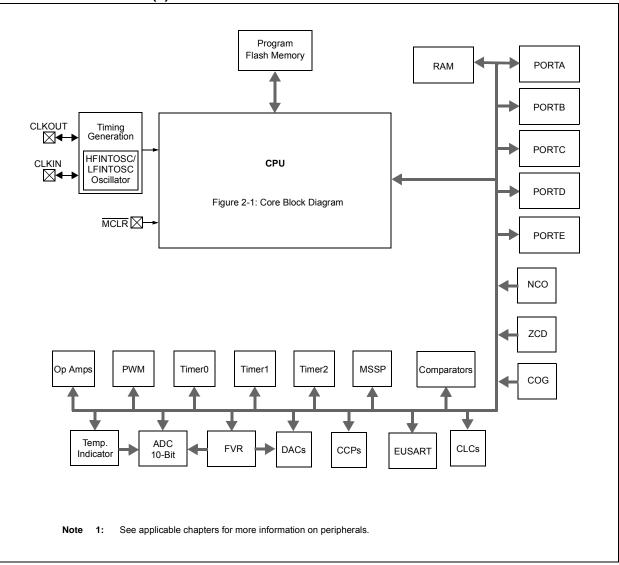
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

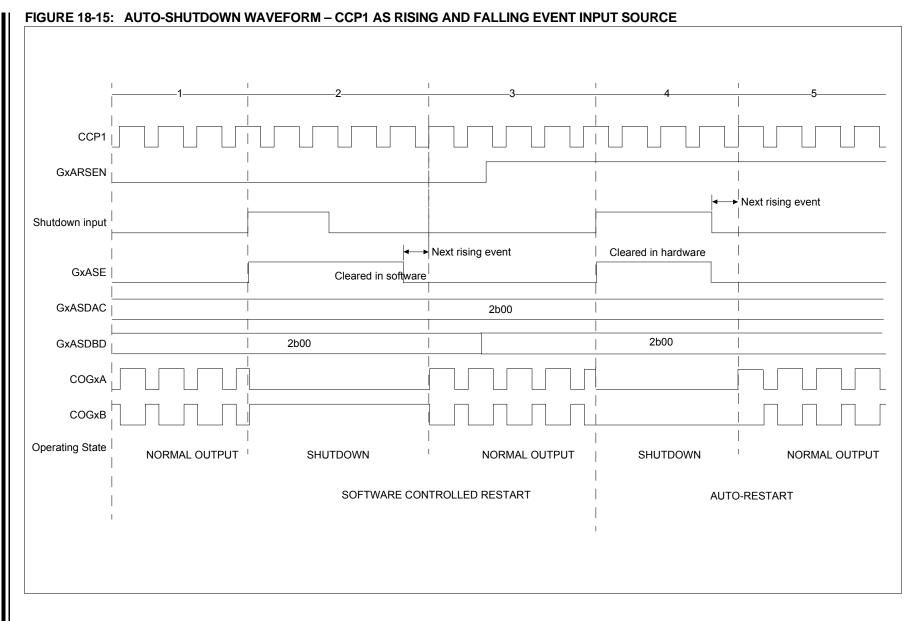

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 28x10b; D/A 1x5b, 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1719t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-7: PIC16(L)F1717 MEMORY MAP, BANK 24-31


= Unimplemented data memory locations, read as '0'.

	BANK 24		BANK 25		BANK 26		BANK 27		BANK 28		BANK 29		BANK 30		BANK 31
C00h	Core Registers (Table 3-2)	C80h	Core Registers (Table 3-2)	D00h	Core Registers (Table 3-2)	D80h	Core Registers (Table 3-2)	E00h	Core Registers (Table 3-2)	E80h	Core Registers (Table 3-2)	F00h	Core Registers (Table 3-2)	F80h	Core Registers (Table 3-2)
C0Bh		C8Bh		D0Bh		D8Bh		E0Bh		E8Bh		F0Bh		F8Bh	
C0Ch	—	C8Ch	—	D0Ch	—	D8Ch	_	E0Ch		E8Ch		F0Ch		F8Ch	
C0Dh	_	C8Dh	-	D0Dh	-	D8Dh	—	E0Dh		E8Dh		F0Dh		F8Dh	
C0Eh	—	C8Eh	_	D0Eh	_	D8Eh	_	E0Eh		E8Eh		F0Eh		F8Eh	
C0Fh	—	C8Fh	—	D0Fh	—	D8Fh		E0Fh		E8Fh		F0Fh		F8Fh	
C10h	—	C90h	_	D10h	_	D90h	_	E10h		E90h		F10h		F90h	
C11h	—	C91h	—	D11h	_	D91h		E11h		E91h		F11h		F91h	
C12h	—	C92h	—	D12h	—	D92h	_	E12h		E92h		F12h		F92h	
C13h	_	C93h	_	D13h	_	D93h		E13h		E93h		F13h		F93h	
C14h	—	C94h	—	D14h	—	D94h	_	E14h		E94h		F14h		F94h	
C15h	—	C95h	—	D15h	—	D95h		E15h		E95h		F15h		F95h	
C16h	—	C96h	—	D16h	_	D96h		E16h		E96h		F16h		F96h	
C17h	_	C97h	_	D17h	_	D97h	_	E17h	See Table 3-9 for	E97h	See Table 3-9 for	F17h	See Table 3-9 for	F97h	See Table 3-10 for
C18h	_	C98h	_	D18h	_	D98h	_	E18h	register mapping	E98h	register mapping	F18h	register mapping	F98h	register mapping
C19h	—	C99h	—	D19h	—	D99h	—	E19h	details	E99h	details	F19h	details	F99h	details
C1Ah	—	C9Ah	—	D1Ah	—	D9Ah	—	E1Ah		E9Ah		F1Ah		F9Ah	
C1Bh	—	C9Bh	—	D1Bh	—	D9Bh	_	E1Bh		E9Bh		F1Bh		F9Bh	
C1Ch	_	C9Ch	_	D1Ch	_	D9Ch	_	E1Ch		E9Ch		F1Ch		F9Ch	
C1Dh	_	C9Dh	_	D1Dh	_	D9Dh	_	E1Dh		E9Dh		F1Dh		F9Dh	
C1Eh	_	C9Eh	_	D1Eh	_	D9Eh	_	E1Eh		E9Eh		F1Eh		F9Eh	
C1Fh	_	C9Fh	_	D1Fh	_	D9Fh	—	E1Fh		E9Fh		F1Fh		F9Fh	
C20h		CA0h		D20h		DA0h		E20h		EA0h		F20h		FA0h	
	Unimplemented Read as '0'														
C6Fh		CEFh		D6Fh		DEFh		E6Fh		EEFh		F6Fh		FEFh	
C70h		CF0h		D70h		DF0h		E70h		EF0h		F70h		FF0h	
	Accesses 70h – 7Fh														
CFFh		CFFh		D7Fh		DFFh		E7Fh		EFFh		F7Fh		FFFh	

Legend:

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
CxINTP	CxINTN		CxPCH<2:0>	> CxNCH<2:0>						
bit 7							bit			
Lagandi										
Legend:										
R = Readable		W = Writable		•	mented bit, rea					
u = Bit is unc	•	x = Bit is unkr		-n/n = Value a	at POR and BC	R/Value at all	other Resets			
'1' = Bit is set		'0' = Bit is clea	ared							
bit 7	CxINTP: Co	mparator Interru	pt on Positive	e Going Edge E	nable bits					
		F interrupt flag v rupt flag will be								
bit 6	CxINTN: Co	mparator Interru	ipt on Negativ	e Going Edge I	Enable bits					
		F interrupt flag								
	0 = No inter	rupt flag will be	set on a nega	tive going edge	e of the CxOUT	bit				
bit 5-3	CxPCH<2:0	Comparator I	Positive Input	Channel Select	t bits					
	-	111 = CxVP connects to AGND								
	110 = CxVP connects to FVR Buffer 2									
	101 = CxVP connects to DAC1_output 100 = CxVP connects to DAC2 output									
	$100 = CxVP$ connects to DAC2_output 011 = CxVP unconnected, input floating									
	010 = CxVP unconnected, input floating									
		001 = CxVP connects to CxIN1+ pin								
	000 = CxVP connects to CxIN0+ pin									
bit 2-0	CxNCH<2:0	>: Comparator I	Vegative Input	t Channel Seleo	ct bits					
	111 = CxVN	111 = CxVN connects to AGND								
	110 = CxVN connects to FVR Buffer 2									
	101 = CxVN unconnected, input floating									
		unconnected, i								
		connects to Cx								
		connects to Cx connects to Cx	•							

REGISTER 16-2: CMxCON1: COMPARATOR Cx CONTROL REGISTER 1

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	90	
NCO1ACCU		— NCO1ACC<19:16>								
NCO1ACCH				NCO1AC	C<15:8>				239	
NCO1ACCL		NCO1ACC<7:0>								
NCO1CLK	N	1PWS<2:0	>	_	_	_	N1CK	S<1:0>	238	
NCO1CON	N1EN — I		N1OUT	N1POL	—	_	—	N1PFM	237	
NCO1INCU	— NCO1INC<19:16>								240	
NCO1INCH				NCO1IN	C<15:8>				240	
NCO1INCL				NCO1IN	NC<7:0>				239	
PIE3	_	NCOIE	COGIE	ZCDIE	CLC4IE	CLC3IE	CLC2IE	CLC1IE	93	
PIR3	_	NCOIF	COGIF	ZCDIF	CLC4IF	CLC3IF	CLC2IF	CLC1IF	96	
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	124	
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	135	
TRISD ⁽¹⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	140	
RxyPPS			_		F	RxyPPS<4:0	>		153	

TABLE 20-1: SUMMARY OF REGISTERS ASSOCIATED WITH NCOX

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on condition. Shaded cells are not used for NCOx module.

Note 1: PIC16(L)F1717/9 only.

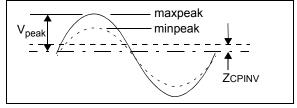
25.0 ZERO-CROSS DETECTION (ZCD) MODULE

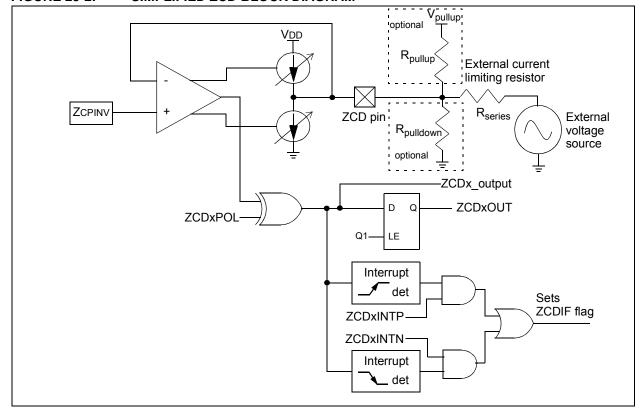
The ZCD module detects when an A/C signal crosses through the ground potential. The actual zero-crossing threshold is the zero-crossing reference voltage, ZCPINV, which is typically 0.75 V above ground.

The connection to the signal to be detected is through a series current limiting resistor. The module applies a current source or sink to the ZCD pin to maintain a constant voltage on the pin, thereby preventing the pin voltage from forward biasing the ESD protection diodes. When the applied voltage is greater than the reference voltage, the module sinks current. When the applied voltage is less than the reference voltage, the module sources current. The current source and sink action keeps the pin voltage constant over the full range of the applied voltage. The ZCD module is shown in the simplified block diagram Figure 25-2.

The ZCD module is useful when monitoring an AC waveform for, but not limited to, the following purposes:

- A/C period measurement
- · Accurate long term time measurement
- · Dimmer phase delayed drive
- · Low EMI cycle switching


25.1 External Resistor Selection


The ZCD module requires a current limiting resistor in series with the external voltage source. The impedance and rating of this resistor depends on the external source peak voltage. Select a resistor value that will drop all of the peak voltage when the current through the resistor is nominally 300 μ A. Refer to Equation 25-1 and Figure 25-1. Make sure that the ZCD I/O pin internal weak pull-up is disabled so it doesn't interfere with the current source and sink.

$$R_{series} = \frac{V_{peak}}{3 \times 10^{-4}}$$

FIGURE 25-2: SIMPLIFIED ZCD BLOCK DIAGRAM

28.5 Register Definitions: Timer2 Control

REGISTER 28-1: T2CON: TIMER2 CONTROL REGISTER

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
_		T2OUT	PS<3:0>		TMR2ON	T2CKPS<1:0>					
bit 7	·						bit				
Legend: R = Readab	le hit	W = Writable	hit	II = Unimplei	mented bit, read	as '0'					
u = Bit is unchanged		x = Bit is unkr			at POR and BO		other Resets				
1' = Bit is set		'0' = Bit is clea									
1 - Dit 13 3											
bit 7	Unimpleme	nted: Read as '	0'								
bit 6-3	T2OUTPS<3:0>: Timer2 Output Postscaler Select bits										
	1111 = 1:16 Postscaler										
	1110 = 1:15										
	1101 = 1:14										
	1100 = 1:13										
	1011 = 1:12										
		1010 = 1:11 Postscaler 1001 = 1:10 Postscaler									
		000 = 1:9 Postscaler									
	0111 = 1 :8 F										
	0110 = 1.7 F										
	0101 = 1:6 F	Postscaler									
	0100 = 1:5 F	0100 = 1:5 Postscaler									
	0011 = 1 :4 F										
	0010 = 1:3 F										
	0001 = 1:2 F										
	0000 = 1:1 F										
bit 2	TMR2ON: T										
	1 = Timer2 i 0 = Timer2 i										
bit 1-0	T2CKPS<1:	0>: Timer2 Cloc	k Prescale Se	elect bits							
	11 = Presca	ler is 64									
	10 = Presca	ler is 16									
	01 = Presca	ler is 4									
	00 = Presca										

29.0 CAPTURE/COMPARE/PWM MODULES

The Capture/Compare/PWM module is a peripheral which allows the user to time and control different events, and to generate Pulse-Width Modulation (PWM) signals. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate Pulse-Width Modulated signals of varying frequency and duty cycle.

This family of devices contains two standard Capture/Compare/PWM modules (CCP1 and CCP2).

The Capture and Compare functions are identical for all CCP modules.

- Note 1: In devices with more than one CCP module, it is very important to pay close attention to the register names used. A number placed after the module acronym is used to distinguish between separate modules. For example, the CCP1CON and CCP2CON control the same operational aspects of two completely different CCP modules.
 - 2: Throughout this section, generic references to a CCP module in any of its operating modes may be interpreted as being equally applicable to CCPx module. Register names, module signals, I/O pins, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module, when required.

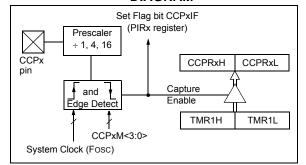
29.1 Capture Mode

The Capture mode function described in this section is available and identical for all CCP modules.

Capture mode makes use of the 16-bit Timer1 resource. When an event occurs on the CCPx pin, the 16-bit CCPRxH:CCPRxL register pair captures and stores the 16-bit value of the TMR1H:TMR1L register pair, respectively. An event is defined as one of the following and is configured by the CCPxM<3:0> bits of the CCPxCON register:

- · Every falling edge
- Every rising edge
- Every 4th rising edge
- Every 16th rising edge

When a capture is made, the Interrupt Request Flag bit CCPxIF of the PIRx register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH, CCPRxL register pair is read, the old captured value is overwritten by the new captured value.


Figure 29-1 shows a simplified diagram of the capture operation.

29.1.1 CCP PIN CONFIGURATION

In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit.

Note: If the CCPx pin is configured as an output, a write to the port can cause a capture condition.

FIGURE 29-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

29.3.9 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
CCP1CON	_	_	DC1B	<1:0>		CCP1N	∕l<3:0>		294	
CCPR1L	Capture/Co	mpare/PWM	Register 1	(LSB)					291*	
CCPTMRS	P4TSE	L<1:0>	P3TSE	L<1:0>	C2TSE	EL<1:0>	C1TSE	:L<1:0>	286	
INTCON	GIE	PEIE	TMR0IE	TMR0IE INTE IOCIE TMR0IF I		INTF	IOCIF	90		
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	91	
PIE2	OSFIE	C2IE	C1IE	_	BCL1IE	TMR6IE	TMR4IE	CCP2IE	92	
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	94	
PIR2	OSFIF	C2IF	C1IF	_	BCL1IF	TMR6IF	TMR4IF	CCP2IF	95	
PR2	Timer2 Per	iod Registe	٢						282*	
ANSELB	—	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	131	
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2		_	136	
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	130	
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	135	
RxyPPS	_				153					
CCP1PPS	_		_		152					
CCP2PPS	—	—	—		CCP2PPS<4:0>					
T2CON			T2OUT	PS<3:0>		TMR2ON	T2CKP	S<1:0>	284	
TMR2	Timer2 Mo	dule Registe	er						282	

TABLE 29-3: SUMMARY OF REGISTERS ASSOCIATED WITH CCP

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the CCP.

* Page provides register information.

FIGURE 30-9:	SPI N	IODE W	/AVEFO	RM (SL	AVE MC	DE WIT	HCKE	= 0)			
	· ·										
	- - - - - - - -		- 	· · · · · · · · · · · · · · · · · · · ·			- 			•	: : :
80% (CKF = 1 (CKF = 0)	· · · ·				, , ,				· · ·		3
WERE 10 SEP (BUF VER11 SEC					; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;					: : : : : : : : : : : : : : : : :	· · ·
			 ; ; ;	,	,	,	/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, / ~,		, , , , , , , , , , , , , , , , , , ,	
lapat Secupio		1941 7 	* * * * *	: : : : : :	: : : 40: : 40:		; ; ; ; ;			20 2 2	
			s s s s	<	2 2 2 2 2	; ; , ,	s c s s	2 2 2 2	2 2 2 2 2 	: : : :	
9.891982 85 86919609	· · · · · · · · · · · · · · · · · · ·		- 2 2 2	, 5 7 7	• \$ \$ •		- 2 2 2	, 5 7 7	• • : • : • · · · ·	, /p. ,	
Virite Catistan detection active					********						

FIGURE 30-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

SS SCK (CKP = 0 CKE = 1) SCK (CKP = 1 CKE = 1) Write to SSP1BUF XxXXX										
SDO ——		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
SDI ——	1 <u>1</u> 1	bit 7	\sim		\sim		\rightarrow		bit 0	
Input Sample		<u>†</u>	1	1	1	1	1	<u> </u>	<u> </u>	
SSP1IF Interrupt Flag	- - - - - - -		 	1 1	1 1 1 1 1	1 1 1 1 1 1		1 1 1 1 1 1	1 1 1 1 1	
SSP1SR to SSP1BUF		1 1 1	1 1 1	I	1 1 1	I I I	1 1 1	1 1 1 T	1 1 1 1	<u>.</u>
Vote Collegion Anterior polive										·

30.4.5 START CONDITION

The I^2C specification defines a Start condition as a transition of SDA from a high to a low state while SCL line is high. A Start condition is always generated by the master and signifies the transition of the bus from an Idle to an Active state. Figure 30-12 shows wave forms for Start and Stop conditions.

A bus collision can occur on a Start condition if the module samples the SDA line low before asserting it low. This does not conform to the I^2C Specification that states no bus collision can occur on a Start.

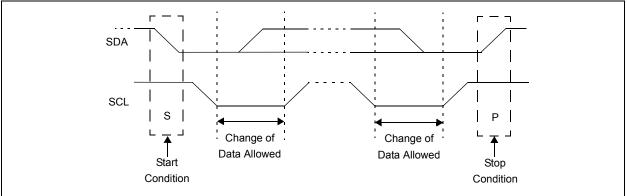
30.4.6 STOP CONDITION

A Stop condition is a transition of the SDA line from low-to-high state while the SCL line is high.

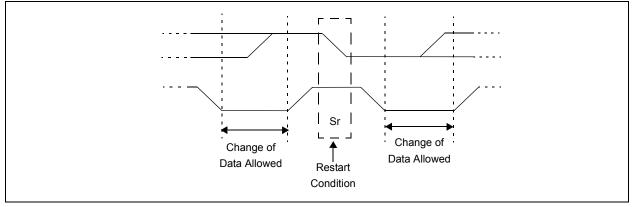
Note: At least one SCL low time must appear before a Stop is valid, therefore, if the SDA line goes low then high again while the SCL line stays high, only the Start condition is detected.

30.4.7 RESTART CONDITION

A Restart is valid any time that a Stop would be valid. A master can issue a Restart if it wishes to hold the bus after terminating the current transfer. A Restart has the same effect on the slave that a Start would, resetting all slave logic and preparing it to clock in an address. The master may want to address the same or another slave. Figure 30-13 shows the wave form for a Restart condition.


In 10-bit Addressing Slave mode a Restart is required for the master to clock data out of the addressed slave. Once a slave has been fully addressed, matching both high and low address bytes, the master can issue a Restart and the high address byte with the R/W bit set. The slave logic will then hold the clock and prepare to clock out data.

After a full match with R/\overline{W} clear in 10-bit mode, a prior match flag is set and maintained until a Stop condition, a high address with R/\overline{W} clear, or high address match fails.


30.4.8 START/STOP CONDITION INTERRUPT MASKING

The SCIE and PCIE bits of the SSP1CON3 register can enable the generation of an interrupt in Slave modes that do not typically support this function. Slave modes where interrupt on Start and Stop detect are already enabled, these bits will have no effect.

FIGURE 30-12: I²C START AND STOP CONDITIONS

FIGURE 30-13: I²C RESTART CONDITION

30.5.4 SLAVE MODE 10-BIT ADDRESS RECEPTION

This section describes a standard sequence of events for the MSSP module configured as an I^2C slave in 10-bit Addressing mode.

Figure 30-20 is used as a visual reference for this description.

This is a step by step process of what must be done by slave software to accomplish I^2C communication.

- 1. Bus starts Idle.
- Master sends Start condition; S bit of SSP1STAT is set; SSP1IF is set if interrupt on Start detect is enabled.
- Master sends matching high address with R/W bit clear; UA bit of the SSP1STAT register is set.
- 4. Slave sends ACK and SSP1IF is set.
- 5. Software clears the SSP1IF bit.
- 6. Software reads received address from SSP1BUF clearing the BF flag.
- 7. Slave loads low address into SSP1ADD, releasing SCL.
- 8. Master sends matching low address byte to the slave; UA bit is set.

Note: Updates to the SSP1ADD register are not allowed until after the ACK sequence.

- 9. Slave sends ACK and SSP1IF is set.
- **Note:** If the low address does not match, SSP1IF and UA are still set so that the slave software can set SSP1ADD back to the high address. BF is not set because there is no match. CKP is unaffected.
- 10. Slave clears SSP1IF.
- 11. Slave reads the received matching address from SSP1BUF clearing BF.
- 12. Slave loads high address into SSP1ADD.
- Master clocks a data byte to the slave and clocks out the slaves ACK on the 9th SCL pulse; SSP1IF is set.
- 14. If SEN bit of SSP1CON2 is set, CKP is cleared by hardware and the clock is stretched.
- 15. Slave clears SSP1IF.
- 16. Slave reads the received byte from SSP1BUF clearing BF.
- 17. If SEN is set the slave sets CKP to release the SCL.
- 18. Steps 13-17 repeat for each received byte.
- 19. Master sends Stop to end the transmission.

30.5.5 10-BIT ADDRESSING WITH ADDRESS OR DATA HOLD

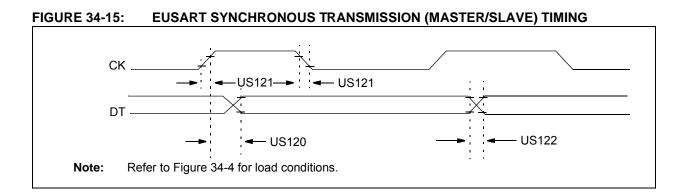
Reception using 10-bit addressing with AHEN or DHEN set is the same as with 7-bit modes. The only difference is the need to update the SSP1ADD register using the UA bit. All functionality, specifically when the CKP bit is cleared and SCL line is held low are the same. Figure 30-21 can be used as a reference of a slave in 10-bit addressing with AHEN set.

Figure 30-22 shows a standard waveform for a slave transmitter in 10-bit Addressing mode.

RETFIE	Return from Interrupt
Syntax:	[<i>label</i>] RETFIE k
Operands:	None
Operation:	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$
Status Affected:	None
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a 2-cycle instruction.
Words:	1
Cycles:	2
Example:	RETFIE
	After Interrupt PC = TOS GIE = 1

RETURN	Return from Subroutine					
Syntax:	[label] RETURN					
Operands:	None					
Operation:	$TOS\toPC$					
Status Affected:	None					
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a 2-cycle instruction.					

RETLW	Return with literal in W	RLF	Rotate Left f through Carry				
Syntax:	[<i>label</i>] RETLW k	Syntax:	[<i>label</i>] RLF f,d				
Operands:	$0 \le k \le 255$	Operands:	$0 \leq f \leq 127$				
Operation:	$k \rightarrow (W);$		d ∈ [0,1]				
	$TOS \rightarrow PC$	Operation:	See description below				
Status Affected:	None	Status Affected:	C				
Description:	The W register is loaded with the 8-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a 2-cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.				
Words:	1		C Register f				
Cycles:	2						
Example:	CALL TABLE;W contains table	Words:	1				
	;offset value	Cycles:	1				
	 ;W now has table value 	Example:	RLF REG1,0				
TABLE	•		Before Instruction				
	ADDWF PC $;W = offset$		REG1 = 1110 0110				
	RETLW k1 ;Begin table		C = 0 After Instruction				
	RETLW k2 ;		REG1 = 1110 0110				
	•		$W = 1100 \ 1100$				
	•		C = 1				
	RETLW kn ; End of table						
	Before Instruction W = 0x07 After Instruction W = value of k8						


	TABLE 34-9:	PLL CLOCK TIMING SPECIFICATIONS
--	-------------	---------------------------------

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Sym.	Characteristic	Min.	Typ.†	Max.	Units	Conditions	
F10	Fosc	Oscillator Frequency Range	4	_	8	MHz		
F11	Fsys	On-Chip VCO System Frequency	16	_	32	MHz		
F12	TRC	PLL Start-up Time (Lock Time)	—	—	2	ms		
F13*	ΔCLK	CLKOUT Stability (Jitter)	-0.25%	_	+0.25%	%		

These parameters are characterized but not tested.

*

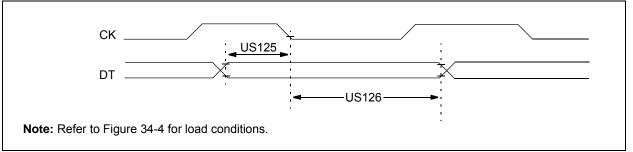

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 34-22: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)						
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
US120	TCKH2DTV	SYNC XMIT (Master and Slave)		80	ns	$3.0V \le VDD \le 5.5V$
		Clock high to data-out valid		100	ns	$1.8V \leq V\text{DD} \leq 5.5V$
US121	TCKRF	Clock out rise time and fall time	_	45	ns	$3.0V \leq V\text{DD} \leq 5.5V$
		(Master mode)	_	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$
US122	TDTRF	Data-out rise time and fall time	_	45	ns	$3.0V \le V\text{DD} \le 5.5V$
			_	50	ions $1.8V \le VDD \le 3$	$1.8V \le V\text{DD} \le 5.5V$

FIGURE 34-16: EUSART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 34-23: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)							
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions	
US125	TDTV2CKL	SYNC RCV (Master and Slave)					
		Data-setup before CK \downarrow (DT hold time)	10	—	ns		
US126	TCKL2DTL	Data-hold after CK \downarrow (DT hold time)	15	_	ns		

TABLE 34-24: SPI MODE REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)							
Param. No.	Symbol	Characteristic	Min.	Тур.†	Max.	Units	Conditions
SP70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	2.25 TCY	_		ns	
SP71*	TscH	SCK input high time (Slave mode)	Tcy + 20			ns	
SP72*	TscL	SCK input low time (Slave mode)	Tcy + 20	—	—	ns	
SP73*	TDIV2scH, TDIV2scL	Setup time of SDI data input to SCK edge	100	—	—	ns	
SP74*	TscH2DIL, TscL2DIL	Hold time of SDI data input to SCK edge	100	—	—	ns	
SP75*	TDOR	SDO data output rise time	_	10	25	ns	$3.0V \leq V\text{DD} \leq 5.5V$
				25	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$
SP76*	TDOF	SDO data output fall time	—	10	25	ns	
SP77*	TssH2doZ	SS [↑] to SDO output high-impedance	10	—	50	ns	
SP78*	TscR	SCK output rise time (Master mode)	—	10	25	ns	$3.0V \leq V\text{DD} \leq 5.5V$
			—	25	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$
SP79*	TscF	SCK output fall time (Master mode)	—	10	25	ns	
SP80*	TscH2doV, TscL2doV		—	—	50	ns	$3.0V \leq V\text{DD} \leq 5.5V$
			—	—	145	ns	$1.8V \leq V\text{DD} \leq 5.5V$
SP81*	TDOV2scH, TDOV2scL	SDO data output setup to SCK edge	1 Tcy	—	—	ns	
SP82*	TssL2DoV	SDO data output valid after $\overline{SS}\downarrow$ edge	—	—	50	ns	
SP83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge	1.5 Tcy + 40	—	—	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

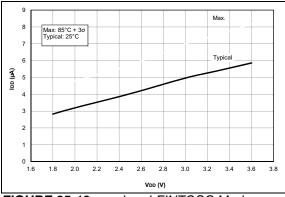


FIGURE 35-19: IDD, LFINTOSC Mode, Fosc = 31 kHz, PIC16LF1717/8/9 Only.

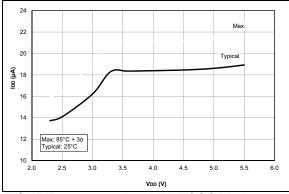


FIGURE 35-20: IDD, LFINTOSC Mode, Fosc = 31 kHz, PIC16F1717/8/9 Only.

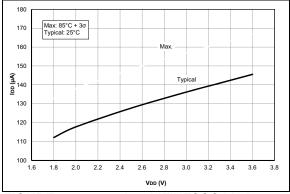


FIGURE 35-21: IDD, MFINTOSC Mode, Fosc = 500 kHz, PIC16LF1717/8/9 Only.

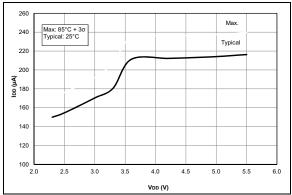


FIGURE 35-22: IDD, MFINTOSC Mode, Fosc = 500 kHz, PIC16F1717/8/9 Only.

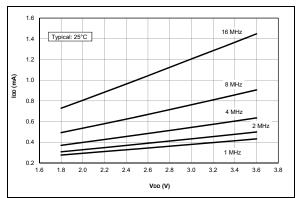


FIGURE 35-23: IDD Typical, HFINTOSC Mode, PIC16LF1717/8/9 Only.

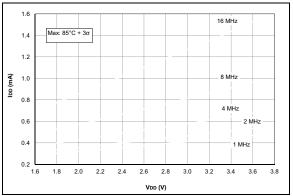
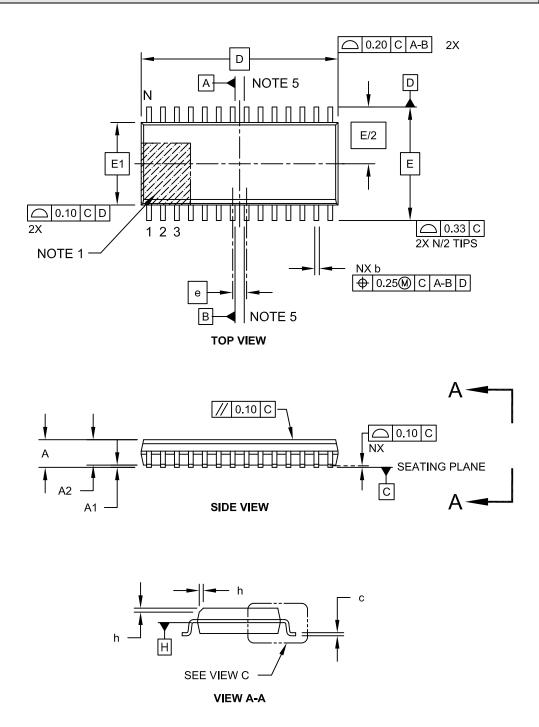
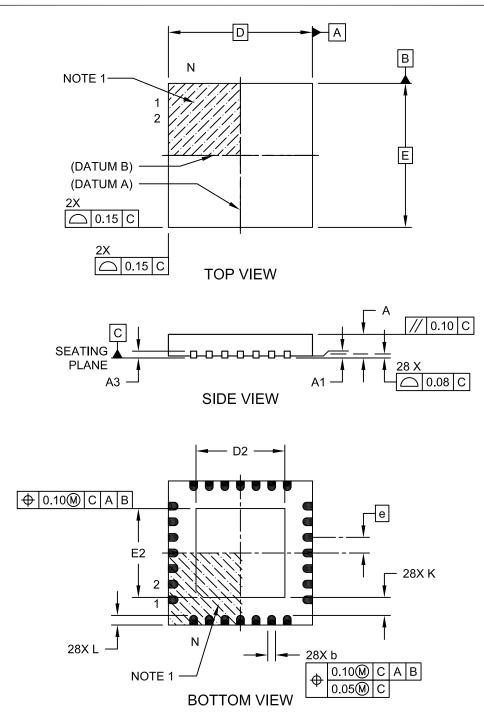



FIGURE 35-24: IDD Maximum, HFINTOSC Mode, PIC16LF1717/8/9 Only.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-124C Sheet 1 of 2