

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 28x10b; D/A 1x5b, 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-UFQFN Exposed Pad
Supplier Device Package	40-UQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1717-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

The PIC16(L)F1717/8/9 devices are described within this data sheet. They are available in the following package configurations:

- 28-pin SPDIP, SSOP, SOIC, QFN and UQFN
- 40-pin PDIP and UQFN
- 44-pin TQFP

Figure 1-1 and Figure 1-2 show block diagrams of the PIC16(L)F1717/8/9 devices. Table 1-2 shows the pinout descriptions.

Reference Table 1-1 for peripherals available per device.

TABLE 1-1: DEVICE PERIPHERAL SUMMARY

Peripheral		PIC16(L)F1717	PIC16(L)F1718	PIC16(L)F1719
Analog-to-Digital Conver	ter (ADC)	•	•	•
Fixed Voltage Reference	(FVR)	•	•	•
Zero-Cross Detection (Z	CD)	•	•	•
Temperature Indicator		•	٠	•
Complementary Output (Generator (C	OG)		
	COG	•	•	•
Numerically Controlled C	scillator (NC	O)		
	NCO	•	٠	•
Digital-to-Analog Conver	ter (DAC)			
	DAC1	•	٠	•
	DAC2	•	•	•
Capture/Compare/PWM	(CCP/ECCP)) Mod	ules	
	CCP1	٠	٠	٠
	CCP2	٠	•	•
Comparators				
	C1	•	٠	•
	C2	٠	•	•
Configurable Logic Cell (CLC)			
	CLC1	٠	٠	•
	CLC2	•	•	•
	CLC3	•	•	•
	CLC4	•	•	•
Enhanced Universal Syn Receiver/Transmitter (EL	chronous/As JSART)	ynchr	onous	6
	EUSART	•	٠	•
Master Synchronous Ser	ial Ports			
	MSSP	٠	٠	٠
Op Amp	•			
	Op Amp 1	•	•	•
	Op Amp 2	•	٠	•
Pulse-Width Modulator (F	PWM)			•
	PWM3	•	٠	•
	PWM4	•	٠	•
Timers			·	
	Timer0	•	•	•
	Timer1	•	٠	•
	Timer2	•	٠	•

5.4 Low-Power Brown-out Reset (LPBOR)

The Low-Power Brown-out Reset (LPBOR) is an essential part of the Reset subsystem. Refer to Figure 5-1 to see how the BOR interacts with other modules.

The LPBOR is used to monitor the external VDD pin. When too low of a voltage is detected, the device is held in Reset. When this occurs, a register bit (\overline{BOR}) is changed to indicate that a BOR Reset has occurred. The same bit is set for both the BOR and the LPBOR. Refer to Register 5-2.

5.4.1 ENABLING LPBOR

The LPBOR is controlled by the LPBOR bit of Configuration Words. When the device is erased, the LPBOR module defaults to disabled.

5.4.1.1 LPBOR Module Output

The output of the LPBOR module is a signal indicating whether or not a Reset is to be asserted. This signal is OR'd together with the Reset signal of the BOR module to provide the generic BOR signal, which goes to the PCON register and to the power control block.

5.5 MCLR

The $\overline{\text{MCLR}}$ is an optional external input that can reset the device. The $\overline{\text{MCLR}}$ function is controlled by the MCLRE bit of Configuration Words and the LVP bit of Configuration Words (Table 5-2).

TABLE 5-2: MCLR CONFIGURATION

MCLRE	LVP	MCLR
0	0	Disabled
1	0	Enabled
x	1	Enabled

5.5.1 MCLR ENABLED

When MCLR is enabled and the pin is held low, the device is held in Reset. The MCLR pin is connected to VDD through an internal weak pull-up.

The device has a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

Note:	A Reset does not drive the MCLR pin low.
-------	--

5.5.2 MCLR DISABLED

When MCLR is disabled, the pin functions as a general purpose input and the internal weak pull-up is under software control. See **Section 11.1** "**PORTA Registers**" for more information.

5.6 Watchdog Timer (WDT) Reset

The Watchdog Timer generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The TO and PD bits in the STATUS register are changed to indicate the WDT Reset. See **Section 9.0** "**Watchdog Timer (WDT)**" for more information.

5.7 RESET Instruction

A RESET instruction will cause a device Reset. The \overline{RI} bit in the PCON register will be set to '0'. See Table 5-4 for default conditions after a RESET instruction has occurred.

5.8 Stack Overflow/Underflow Reset

The device can reset when the Stack Overflows or Underflows. The STKOVF or STKUNF bits of the PCON register indicate the Reset condition. These Resets are enabled by setting the STVREN bit in Configuration Words. See **Section 3.6.2** "**Overflow/Underflow Reset**" for more information.

5.9 Programming Mode Exit

Upon exit of Programming mode, the device will behave as if a POR had just occurred.

5.10 Power-up Timer

The Power-up Timer optionally delays device execution after a BOR or POR event. This timer is typically used to allow VDD to stabilize before allowing the device to start running.

The Power-up Timer is controlled by the **PWRTE** bit of Configuration Words.

5.11 Start-up Sequence

Upon the release of a POR or BOR, the following must occur before the device will begin executing:

- 1. Power-up Timer runs to completion (if enabled).
- 2. Oscillator start-up timer runs to completion (if required for oscillator source).
- 3. MCLR must be released (if enabled).

The total time-out will vary based on oscillator configuration and Power-up Timer configuration. See Section 6.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for more information.

The Power-up Timer and oscillator start-up timer run independently of MCLR Reset. If MCLR is kept low long enough, the Power-up Timer and oscillator start-up timer will expire. Upon bringing MCLR high, the device will begin execution after 10 Fosc cycles (see Figure 5-3). This is useful for testing purposes or to synchronize more than one device operating in parallel.

9.3 Time-out Period

The WDTPS bits of the WDTCON register set the time-out period from 1 ms to 256 seconds (nominal). After a Reset, the default time-out period is two seconds.

9.4 Clearing the WDT

The WDT is cleared when any of the following conditions occur:

- Any Reset
- CLRWDT instruction is executed
- Device enters Sleep
- Device wakes up from Sleep
- Oscillator fail
- WDT is disabled
- Oscillator Start-up Timer (OST) is running

See Table 9-2 for more information.

9.5 Operation During Sleep

When the device enters Sleep, the WDT is cleared. If the WDT is enabled during Sleep, the WDT resumes counting.

When the device exits Sleep, the WDT is cleared again. The WDT remains clear until the OST, if enabled, completes. See **Section 6.0 "Oscillator Module (with Fail-Safe Clock Monitor)**" for more information on the OST.

When a WDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The TO and PD bits in the STATUS register are changed to indicate the event. See STATUS Register (Register 3-1) for more information.

TABLE 9-2: WDT CLEARING CONDITIONS

Conditions	WDT
WDTE<1:0> = 00	
WDTE<1:0> = 01 and SWDTEN = 0	
WDTE<1:0> = 10 and enter Sleep	- Cleared
CLRWDT Command	
Oscillator Fail Detected	
Exit Sleep + System Clock = T1OSC, EXTRC, INTOSC, EXTCLK	
Exit Sleep + System Clock = XT, HS, LP	Cleared until the end of OST
Change INTOSC divider (IRCF bits)	Unaffected

12.8 Register Definitions: PPS Input Selection

REGISTER 12-1: xxxPPS: PERIPHERAL xxx INPUT SELECTION

U-0	U-0	U-0	R/W-q/u	R/W-q/u	R/W-q/u	R/W-q/u	R/W-q/u	
	—	—			xxxPPS<4:0>			
bit 7							bit 0	
Legend:								
R = Readabl	e bit	W = Writable b	bit	U = Unimplem	nented bit, read	as '0'		
u = Bit is und	changed	x = Bit is unkn	own	-n/n = Value a	t POR and BOF	R/Value at all ot	her Resets	
'1' = Bit is se	t	'0' = Bit is clea	red	q = value dep	ends on periphe	eral		
bit 7-5	Unimplement	ted: Read as '0	9					
bit 4-3	xxxPPS<4:3>	·: Peripheral xxx	Input PORT	x Selection bits				
	See Table 12-	1 for the list of a	available ports	s for each peripl	heral.			
	11 = Peripher	al input is from	PORTD (PIC' PORTC	16(L)F1717/9 oi	nly)			
	01 = Peripher	al input is from	PORTB					
	00 = Peripher	al input is from	PORTA					
bit 2-0	xxxPPS<2:0>	·: Peripheral xxx	Input PORT	x Bit Selection b	oits			
	111 = Periphe	eral input is from	n PORTx Bit 7	′ (Rx7)				
	110 = Peripheral input is from PORTx Bit 6 (Rx6)							
	101 = Periphe	101 = Peripheral input is from PORTx Bit 5 (Rx5)						
	100 = Peripheral input is from PORTx Bit 4 (Rx4)							
	011 = Periphe	ral input is from		$P(\mathbf{R}_{\mathbf{X}})$				
	0.01 = Periphe	ral input is from	PORTy Bit 1	$(\mathbf{R}\mathbf{x}1)$				

000 = Peripheral input is from PORTx Bit 0 (Rx0)

Devinherel	Desister	PIC16(L)F1717/8/9		PIC16(L)F1718	PIC16(L)F1717/9
Peripheral	Register	PORTA	PORTB	PORTC	PORTC	PORTD
PIN interrupt	INTPPS	•	•			
Timer0 clock	TOCKIPPS	•	•			
Timer1 clock	T1CKIPPS	•		•	•	
Timer1 gate	T1GPPS		•	•	٠	
CCP1	CCP1PPS		•	•	•	
CCP2	CCP2PPS		•	•	•	
COG	COGINPPS		•	•		•
MSSP	SSPCLKPPS		•	•	•	
MSSP	SSPDATPPS		•	•	•	
MSSP	SSPSSPPS	٠		•		•
EUSART	RXPPS		•	•	•	
EUSART	CKPPS		•	•	•	
All CLCs	CLCIN0PPS	•		•	•	
All CLCs	CLCIN1PPS	•		•	•	
All CLCs	CLCIN2PPS		•	•		•
All CLCs	CLCIN3PPS		•	•		•
Example: CCP1P	PS = 0x0B selects	s RB3 as the inp	ut to CCP1.			•

TABLE 12-1: AVAILABLE PORTS FOR INPUT BY PERIPHERAL

Note: Inputs are not available on all ports. A check in a port column of a peripheral row indicates that the port selection is valid for that peripheral. Unsupported ports will input a '0'.

13.0 INTERRUPT-ON-CHANGE

All pins on all ports can be configured to operate as Interrupt-on-Change (IOC) pins. An interrupt can be generated by detecting a signal that has either a rising edge or a falling edge. Any individual pin, or combination of pins, can be configured to generate an interrupt. The interrupt-on-change module has the following features:

- Interrupt-on-Change enable (Master Switch)
- Individual pin configuration
- Rising and falling edge detection
- Individual pin interrupt flags

Figure 13-1 is a block diagram of the IOC module.

13.1 Enabling the Module

To allow individual pins to generate an interrupt, the IOCIE bit of the INTCON register must be set. If the IOCIE bit is disabled, the edge detection on the pin will still occur, but an interrupt will not be generated.

13.2 Individual Pin Configuration

For each pin, a rising edge detector and a falling edge detector are present. To enable a pin to detect a rising edge, the associated bit of the IOCxP register is set. To enable a pin to detect a falling edge, the associated bit of the IOCxN register is set.

A pin can be configured to detect rising and falling edges simultaneously by setting the associated bits in both of the IOCxP and IOCxN registers.

13.3 Interrupt Flags

The bits located in the IOCxF registers are status flags that correspond to the interrupt-on-change pins of each port. If an expected edge is detected on an appropriately enabled pin, then the status flag for that pin will be set, and an interrupt will be generated if the IOCIE bit is set. The IOCIF bit of the INTCON register reflects the status of all IOCxF bits.

13.4 Clearing Interrupt Flags

The individual status flags, (IOCxF register bits), can be cleared by resetting them to zero. If another edge is detected during this clearing operation, the associated status flag will be set at the end of the sequence, regardless of the value actually being written.

In order to ensure that no detected edge is lost while clearing flags, only AND operations masking out known changed bits should be performed. The following sequence is an example of what should be performed.

EXAMPLE 13-1: CLEARING INTERRUPT FLAGS (PORTA EXAMPLE)

MOVLW 0xff XORWF IOCAF, W ANDWF IOCAF, F

13.5 Operation in Sleep

The interrupt-on-change interrupt sequence will wake the device from Sleep mode, if the IOCIE bit is set.

If an edge is detected while in Sleep mode, the affected IOCxF register will be updated prior to the first instruction executed out of Sleep.

U-0	U-0	U-0	U-0	R/W/HS-0/0	U-0	U-0	U-0
—	—	—	—	IOCEF3	—	—	—
bit 7 b							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimpler	mented bit, read	as '0'		

REGISTER 13-12: IOCEF: INTERRUPT-ON-CHANGE PORTE FLAG REGISTER

x = Bit is unknown

'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware
bit 7-4	Unimplemented: Read as '0'	
bit 3	IOCEF3: Interrupt-on-Change PORTE	Flag bits
	1 = An enabled change was detected	on the associated pin.
	Set when IOCEPx = 1 and a rising	edge was detected on REx, or when IOCENx = 1 and a fal

ing edge was detected on REx.

-n/n = Value at POR and BOR/Value at all other Resets

0 = No change was detected, or the user cleared the detected change.

Unimplemented: Read as '0' bit 2-0

u = Bit is unchanged

TABLE 13-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANGE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA			ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	125
ANSELB	—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	131
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	_	_	136
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	90
IOCAF	IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	158
IOCAN	IOCAN7	IOCAN6	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	158
IOCAP	IOCAP7	IOCAP6	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	158
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	159
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	159
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	159
IOCCF	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	160
IOCCN	IOCCN7	IOCCN6	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	160
IOCCP	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	160
IOCEF	—	—	—	—	IOCEF3	—	_	—	162
IOCEN	—	—	—	—	IOCEN3	—	_	—	161
IOCEP	_	—	—	—	IOCEP3	—	_	—	161
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	124
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	130
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	135

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupt-on-change.

18.1.3 HALF-BRIDGE MODE

In half-bridge mode, the COG generates a two output complementary PWM waveform from rising and falling event sources. In the simplest configuration, the rising and falling event sources are the same signal, which is a PWM signal with the desired period and duty cycle. The COG converts this single PWM input into a dual complementary PWM output. The frequency and duty cycle of the dual PWM output match those of the single input PWM signal. The off-to-on transition of each output can be delayed from the on-to-off transition of the other output, thereby, creating a time immediately after the PWM transition where neither output is driven. This is referred to as dead time and is covered in **Section 18.5 "Dead-Band Control"**.

A typical operating waveform, with dead band, generated from a single CCP1 input is shown in Figure 18-9.

The primary output can be steered to either or both COGxA and COGxC. The complementary output can be steered to either or both COGxB and COGxD.

Half-Bridge mode is selected by setting the GxMD bits of the COGxCON0 register to '100'.

18.1.4 PUSH-PULL MODE

In Push-Pull mode, the COG generates a single PWM output that alternates, every PWM period, between the two pairs of the COG outputs. COGxA has the same signal as COGxC. COGxB has the same signal as COGxD. The output drive activates with the rising input event and terminates with the falling event input. Each rising event starts a new period and causes the output to switch to the COG pair not used in the previous period.

The push-pull configuration is shown in Figure 18-6. A typical push-pull waveform generated from a single CCP1 input is shown in Figure 18-11.

Push-Pull mode is selected by setting the GxMD bits of the COGxCON0 register to '101'.

18.1.5 EVENT DRIVEN PWM (ALL MODES)

Besides generating PWM and complementary outputs from a single PWM input, the COG can also generate PWM waveforms from a periodic rising event and a separate falling event. In this case, the falling event is usually derived from analog feedback within the external PWM driver circuit. In this configuration, high power switching transients may trigger a false falling event that needs to be blanked out. The COG can be configured to blank falling (and rising) event inputs for a period of time immediately following the rising (and falling) event drive output. This is referred to as input blanking and is covered in **Section 18.6 "Blanking Control"**. It may be necessary to guard against the possibility of circuit faults. In this case, the active drive must be terminated before the Fault condition causes damage. This is referred to as auto-shutdown and is covered in **Section 18.8 "Auto-shutdown Control"**.

The COG can be configured to operate in phase delayed conjunction with another PWM. The active drive cycle is delayed from the rising event by a phase delay timer. Phase delay is covered in more detail in **Section 18.7 "Phase Delay"**.

A typical operating waveform, with phase delay and dead band, generated from a single CCP1 input is shown in Figure 18-10.

REGISTER 19-11: CLCDATA: CLC DATA OUTPUT

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	—	MCL4OUT	MLC3OUT	MLC2OUT	MLC1OUT
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	Unimplemented: Read as '0'
bit 3	MCL4OUT: Mirror copy of LC4OUT bit
bit 2	MLC3OUT: Mirror copy of LC3OUT bit
bit 1	MLC2OUT: Mirror copy of LC2OUT bit

bit 0 MLC1OUT: Mirror copy of LC1OUT bit

TABLE 19-3: SUMMARY OF REGISTERS ASSOCIATED WITH CLCx

Name	Bit7	Bit6	Bit5	Bit4	Blt3	Bit2	Bit1	Bit0	Register on Page
ANSELA	—		ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	125
ANSELB	—	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	131
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	—	—	136
ANSELD ⁽¹⁾	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	141
CLC1CON	LC1EN		LC10UT	LC1INTP	LC1INTN	L	C1MODE<2:0)>	224
CLC2CON	LC2EN		LC2OUT	LC2INTP	LC2INTN	L	C2MODE<2:0)>	224
CLC3CON	LC3EN		LC3OUT	LC3INTP	LC3INTN	L	C3MODE<2:0)>	224
CLCDATA	—				MCL4OUT	MLC3OUT	MLC2OUT	MLC1OUT	231
CLC1GLS0	LC1G1D4T	LC1G1D4N	LC1G1D3T	LC1G1D3N	LC1G1D2T	LC1G1D2N	LC1G1D1T	LC1G1D1N	227
CLC1GLS1	LC1G2D4T	LC1G2D4N	LC1G2D3T	LC1G2D3N	LC1G2D2T	LC1G2D2N	LC1G2D1T	LC1G2D1N	228
CLC1GLS2	LC1G3D4T	LC1G3D4N	LC1G3D3T	LC1G3D3N	LC1G3D2T	LC1G3D2N	LC1G3D1T	LC1G3D1N	229
CLC1GLS3	LC1G4D4T	LC1G4D4N	LC1G4D3T	LC1G4D3N	LC1G4D2T	LC1G4D2N	LC1G4D1T	LC1G4D1N	230
CLC1POL	LC1POL				LC1G4POL	LC1G3POL	LC1G2POL	LC1G1POL	225
CLC1SEL0	—		_			LC1D1S<4:0>	•		225
CLC1SEL1	—	_	—			LC1D2S<4:0>	•		226
CLC1SEL2	—					LC1D3S<4:0>	•		226
CLC1SEL3	—		_			LC1D4S<4:0>	•		226
CLC2GLS0	LC2G1D4T	LC2G1D4N	LC2G1D3T	LC2G1D3N	LC2G1D2T	LC2G1D2N	LC2G1D1T	LC2G1D1N	227
CLC2GLS1	LC2G2D4T	LC2G2D4N	LC2G2D3T	LC2G2D3N	LC2G2D2T	LC2G2D2N	LC2G2D1T	LC2G2D1N	228
CLC2GLS2	LC2G3D4T	LC2G3D4N	LC2G3D3T	LC2G3D3N	LC2G3D2T	LC2G3D2N	LC2G3D1T	LC2G3D1N	229
CLC2GLS3	LC2G4D4T	LC2G4D4N	LC2G4D3T	LC2G4D3N	LC2G4D2T	LC2G4D2N	LC2G4D1T	LC2G4D1N	230
CLC2POL	LC2POL	_	—	_	LC2G4POL	LC2G3POL	LC2G2POL	LC2G1POL	225
CLC2SEL0	—	_	_			LC2D1S<4:0>	•		225
CLC2SEL1	—	_	—			LC2D2S<4:0>	•		226
CLC2SEL2	_		—			LC2D3S<4:0>	,		226

Legend: — = unimplemented read as '0'. Shaded cells are not used for CLC module.

Note 1: PIC16(L)F1717/9 only.

23.6 Register Definitions: DAC Control

REGISTER 23-1: DAC1CON0: DAC1 CONTROL REGISTER 0

R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	
DAC1EN	_	DAC10E1	DAC10E2	DAC1P	SS<1:0>	—	DAC1NSS	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'		
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets	
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7	bit 7 DAC1EN: DAC1 Enable bit 1 = DAC is enabled 0 = DAC is disabled							
bit 6	Unimplemen	ted: Read as ')'					
bit 5	DAC10E1: D 1 = DAC volt 0 = DAC volt	AC1 Voltage O age level is als age level is dis	output 1 Enable o an output or connected fro	e bit 1 the DAC1OU ⁻ m the DAC1OU	Г1 pin JT1 pin			
bit 4	DAC10E2: D 1 = DAC volt 0 = DAC volt	AC1 Voltage O age level is als age level is dis	output 2 Enable o an output or connected fro	e bit 1 the DAC1OU ⁻ m the DAC1OU	Γ2 pin JT2 pin			
bit 3-2 DAC1PSS<1:0>: DAC1 Positive Source Select bits 11 = Reserved, do not use 10 = FVR Buffer2 output 01 = VREF+ pin 00 = VDD								
bit 1	Unimplemen	ted: Read as '	כ'					
bit 0	DAC1NSS: D 1 = VREF- pin 0 = VSS	AC1 Negative	Source Select	bits				

REGISTER 23-2: DAC1CON1: DAC1 CONTROL REGISTER 1

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | DAC1 | R<7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 DAC1R<7:0>: DAC1 Voltage Output Select bits

TABLE 23-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE DAC1 MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
DAC1CON0	DAC1EN	_	DAC10E1	DAC10E2	DAC1PS	SS<1:0>	_	DAC1NSS	260
DAC1CON1		DAC1R<7:0>							260

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used with the DAC module.

29.3 PWM Overview

Pulse-Width Modulation (PWM) is a scheme that provides power to a load by switching quickly between fully on and fully off states. The PWM signal resembles a square wave where the high portion of the signal is considered the on state and the low portion of the signal is considered the off state. The high portion, also known as the pulse width, can vary in time and is defined in steps. A larger number of steps applied, which lengthens the pulse width, also supplies more power to the load. Lowering the number of steps applied, which shortens the pulse width, supplies less power. The PWM period is defined as the duration of one complete cycle or the total amount of on and off time combined.

PWM resolution defines the maximum number of steps that can be present in a single PWM period. A higher resolution allows for more precise control of the pulse width time and in turn the power that is applied to the load.

The term duty cycle describes the proportion of the on time to the off time and is expressed in percentages, where 0% is fully off and 100% is fully on. A lower duty cycle corresponds to less power applied and a higher duty cycle corresponds to more power applied.

Figure 29-3 shows a typical waveform of the PWM signal.

29.3.1 STANDARD PWM OPERATION

The standard PWM function described in this section is available and identical for all CCP modules.

The standard PWM mode generates a Pulse-Width Modulation (PWM) signal on the CCPx pin with up to ten bits of resolution. The period, duty cycle, and resolution are controlled by the following registers:

- · PR2 registers
- T2CON registers
- CCPRxL registers
- CCPxCON registers

Figure 29-4 shows a simplified block diagram of PWM operation.

FIGURE 29-3: CCP PWM OUTPUT SIGNAL

FIGURE 29-4: SIMPLIFIED PWM BLOCK DIAGRAM

REGISTER 30-5: SSP1MSK: SSP MASK REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
			MSK	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unc	hanged	x = Bit is unki	nown	-n/n = Value at POR and BOR/V			other Resets
'1' = Bit is set	t	'0' = Bit is cle	ared				
bit 7-1	MSK<7:1>: 1 = The rec 0 = The rec	Mask bits eived address b eived address b	it n is compar it n is not use	ed to SSP1AD d to detect I ² C	D <n> to detect address match</n>	I ² C address m	atch
bit 0 MSK<0>: Mask bit for l^2C Slave mode, 10-bit Address l^2C Slave mode, 10-bit address (SSPM<3:0> = 0111 or 1111): 1 = The received address bit 0 is compared to SSP1ADD<0> to detect l^2C address match							

0 = The received address bit 0 is not used to detect I^2C address match

I²C Slave mode, 7-bit address, the bit is ignored

REGISTER 30-6: SSP1ADD: MSSP ADDRESS AND BAUD RATE REGISTER (I²C MODE)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			ADD	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

Master mode:

bit 7-0	ADD<7:0>: Baud Rate Clock Divider bits
	SCL pin clock period = ((ADD<7:0> + 1) *4)/Fosc

10-Bit Slave mode – Most Significant Address Byte:

- bit 7-3 **Not used:** Unused for Most Significant Address Byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by I²C specification and must be equal to '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 ADD<2:1>: Two Most Significant bits of 10-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

10-Bit Slave mode – Least Significant Address Byte:

bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

bit 7-1 ADD<7:1>: 7-bit	address
--------------------------------------	---------

bit 0 Not used: Unused in this mode. Bit state is a "don't care".

R-0/0	R-1/1	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0
ABDOVF	RCIDL		SCKP	BRG16		WUE	ABDEN
bit 7	1		1	I		<u> </u>	bit 0
L							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BOI	R/Value at all of	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit /	ABDOVF: Au	to-Baud Detec	t Overflow bit				
	1 = Auto-bau	<u>s mode</u> . d timer overflov	wed				
	0 = Auto-bau	d timer did not	overflow				
	Synchronous	mode:					
bit 6		iva Idla Elad bi	t				
	Asynchronous	s mode:	L				
	1 = Receiver	is Idle					
	0 = Start bit h	as been receiv	ed and the real	ceiver is receiv	/ing		
	Don't care	mode:					
bit 5	Unimplemen	ted: Read as '	0'				
bit 4	SCKP: Synch	Ironous Clock I	Polarity Select	bit			
	Asynchronous	<u>s mode</u> :					
	1 = Transmit i 0 = Transmit i	inverted data to non-inverted data	o the TX/CK p ata to the TX/0	in CK pin			
	Synchronous	mode:					
	1 = Data is clo 0 = Data is clo	ocked on rising ocked on falling	gedge of the c gedge of the c	lock clock			
bit 3	BRG16: 16-bi	it Baud Rate G	enerator bit				
	1 = 16-bit Bau 0 = 8-bit Bau	ud Rate Gener d Rate Genera	ator is used ator is used				
bit 2	Unimplemen	ted: Read as '	0'				
bit 1	WUE: Wake-u	up Enable bit					
	Asynchronous	<u>s mode</u> :					
	1 = Receiver	is waiting for a	a falling edge.	No character	will be received,	byte RCIF will	be set. WUE
	0 = Receiver	is operating no	ormally	÷l.			
	Synchronous	mode:	- ,				
	Don't care						
bit 0	ABDEN: Auto	-Baud Detect	Enable bit				
	Asynchronous	<u>s mode</u> :					
	1 = Auto-Bau	Id Detect mode	e is enabled (c	lears when au	ito-baud is comp	olete)	
	Synchronous	mode:					
	Don't care						

REGISTER 31-3: BAUD1CON: BAUD RATE CONTROL REGISTER

PIC16LF1717/8/9			Standard Operating Conditions (unless otherwise stated) Low-Power Sleep Mode						
PIC16F1717/8/9			Low-P	ower Sl	eep Mode	e, VREG	PM = 1		
Param.	Device	Min	Typ +	Max.	Max.	Unite		Conditions	
No.	Characteristics	WIIII.	тур.т	+85°C	+125°C	Units	Vdd	Note	
D029		—	0.05	2	9	μA	1.8	ADC Current (Note 3),	
		—	0.08	3	10	μA	3.0	no conversion in progress	
D029		—	0.3	4	12	μA	2.3	ADC Current (Note 3),	
		—	0.4	5	13	μA	3.0	no conversion in progress	
		—	0.5	7	16	μA	5.0		
D030		—	250		_	μA	1.8	ADC Current (Note 3),	
		—	250	—	—	μA	3.0	conversion in progress	
D030		—	280			μA	2.3	ADC Current (Note 3),	
		—	280			μA	3.0	conversion in progress	
		—	280			μA	5.0		
D031		—	250	650		μA	3.0	Op Amp (High power)	
D031		—	250	650	_	μA	3.0	Op Amp (High power)	
			350	650		μA	5.0		
D032		—	250	600		μA	1.8	Comparator,	
			300	650	_	μA	3.0	CxSP = 0	
D032		_	280	600		μA	2.3	Comparator,	
		—	300	650	_	μA	A 3.0 Cx	CxSP = 0	
		—	310	650	_	μA	5.0		

TABLE 34-3: POWER-DOWN CURRENTS (IPD)^(1,2) (CONTINUED)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to Vss.

3: ADC clock source is FRC.

TABLE 34-11: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET PARAMETERS

Standard Operating Conditions (unless otherwise stated) ⁽²⁾							
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
30	ТмсL	MCLR Pulse Width (low)	2			μS	
31	TWDTLP	Low-Power Watchdog Timer Time-out Period	10	16	27	ms	VDD = 3.3V-5V 1:16 Prescaler used
32	Tost	Oscillator Start-up Timer Period ⁽¹⁾		1024	—	Tosc	
33*	TPWRT	Power-up Timer Period, $\overline{PWRTE} = 0$	40	65	140	ms	
34*	Tioz	I/O high-impedance from MCLR Low or Watchdog Timer Reset		_	2.0	μS	
35	VBOR	Brown-out Reset Voltage	2.55	2.70	2.85	V	BORV = 0
			2.30 1.80	2.45 1.90	2.60 2.10	V V	BORV = 1 (PIC16F1717/8/9) BORV = 1 (PIC16LF1717/8/9)
35A	VLPBOR	Low-Power Brown-out	1.8	2.1	2.5	V	LPBOR = 1
36*	VHYST	Brown-out Reset Hysteresis	0	25	75	mV	$-40^\circ C \le T A \le +85^\circ C$
37*	TBORDC	Brown-out Reset DC Response Time	1	3	35	μS	$V \text{DD} \leq V \text{BOR}$

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: By design, the Oscillator Start-up Timer (OST) counts the first 1024 cycles, independent of frequency.

2: To ensure these voltage tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 35-1: IDD, LP Oscillator Mode, Fosc = 32 kHz, PIC16LF1717/8/9 Only.

FIGURE 35-2: IDD, LP Oscillator Mode, Fosc = 32 kHz, PIC16F1717/8/9 Only.

FIGURE 35-3: IDD Typical, XT and EXTRC Oscillator, PIC16LF1717/8/9 Only.

FIGURE 35-4: IDD Maximum, XT and EXTRC Oscillator, PIC16LF1717/8/9 Only.

FIGURE 35-5: IDD Typical, XT and EXTRC Oscillator, PIC16F1717/8/9 Only.

FIGURE 35-6: IDD Maximum, XT and EXTRC Oscillator, PIC16F1717/8/9 Only.

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 35-19: IDD, LFINTOSC Mode, Fosc = 31 kHz, PIC16LF1717/8/9 Only.

FIGURE 35-20: IDD, LFINTOSC Mode, Fosc = 31 kHz, PIC16F1717/8/9 Only.

FIGURE 35-21: IDD, MFINTOSC Mode, Fosc = 500 kHz, PIC16LF1717/8/9 Only.

FIGURE 35-22: IDD, MFINTOSC Mode, Fosc = 500 kHz, PIC16F1717/8/9 Only.

FIGURE 35-23: IDD Typical, HFINTOSC Mode, PIC16LF1717/8/9 Only.

FIGURE 35-24: IDD Maximum, HFINTOSC Mode, PIC16LF1717/8/9 Only.

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 35-43: IPD, Timer1 Oscillator, Fosc = 32 kHz, PIC16LF1717/8/9 Only.

FIGURE 35-44: IPD, Timer1 Oscillator, Fosc = 32 kHz, PIC16F1717/8/9 Only.

FIGURE 35-45: IPD, Op Amp, High GBWP Mode (OPAxSP = 1), PIC16LF1717/8/9 Only.

FIGURE 35-46: IPD, Op Amp, High GBWP Mode (OPAxSP = 1), PIC16F1717/8/9 Only.

FIGURE 35-47: IPD, ADC Non-Converting, PIC16LF1717/8/9 Only.

FIGURE 35-48: IPD, ADC Non-Converting, PIC16F1717/8/9 Only.