

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	24
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b; D/A 1x5b, 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1718-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

1.0 DEVICE OVERVIEW

The PIC16(L)F1717/8/9 devices are described within this data sheet. They are available in the following package configurations:

- 28-pin SPDIP, SSOP, SOIC, QFN and UQFN
- 40-pin PDIP and UQFN
- 44-pin TQFP

Figure 1-1 and Figure 1-2 show block diagrams of the PIC16(L)F1717/8/9 devices. Table 1-2 shows the pinout descriptions.

Reference Table 1-1 for peripherals available per device.

TABLE 1-1: DEVICE PERIPHERAL SUMMARY

Peripheral		PIC16(L)F1717	PIC16(L)F1718	PIC16(L)F1719
Analog-to-Digital Conver	ter (ADC)	•	•	•
Fixed Voltage Reference	(FVR)	•	•	•
Zero-Cross Detection (Z	CD)	•	•	•
Temperature Indicator		٠	•	•
Complementary Output (Generator (C	OG)		
	COG	•	•	•
Numerically Controlled C	scillator (NC	O)		
	NCO	•	٠	•
Digital-to-Analog Conver	ter (DAC)			
	DAC1	•	٠	•
	DAC2	•	•	•
Capture/Compare/PWM	(CCP/ECCP)) Mod	ules	
	CCP1	٠	٠	٠
	CCP2	٠	•	•
Comparators				
	C1	٠	٠	•
	C2	٠	•	•
Configurable Logic Cell (CLC)			
	CLC1	٠	٠	•
	CLC2	•	•	•
	CLC3	•	•	•
	CLC4	•	•	•
Enhanced Universal Syn Receiver/Transmitter (EL	chronous/As JSART)	ynchr	onous	6
	EUSART	٠	٠	•
Master Synchronous Ser	ial Ports			
	MSSP	٠	٠	٠
Op Amp	•			
	Op Amp 1	•	•	•
	Op Amp 2	•	٠	•
Pulse-Width Modulator (F	PWM)			•
	PWM3	•	٠	•
	PWM4	•	٠	•
Timers			·	
	Timer0	•	•	•
	Timer1	•	٠	•
	Timer2	•	٠	•

2.0 ENHANCED MID-RANGE CPU

This family of devices contains an enhanced mid-range 8-bit CPU core. The CPU has 49 instructions. Interrupt capability includes automatic context saving. The hardware stack is 16 levels deep and has Overflow and Underflow Reset capability. Direct, Indirect and Relative addressing modes are available. Two File Select Registers (FSRs) provide the ability to read program and data memory.

- · Automatic Interrupt Context Saving
- · 16-level Stack with Overflow and Underflow
- · File Select Registers
- Instruction Set

FIGURE 2-1: CORE BLOCK DIAGRAM

PIC16(L)F1717/8/9

TABLE 3-12: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank	30										
F0Ch											
 F0Eh	—	Unimplemen	ted							—	-
F0Fh	CLCDATA	_	_	_	_	MLC4OUT	MLC3OUT	MLC2OUT	MLC1OUT	0000	0000
F10h	CLC1CON	LC1EN	_	LC10UT	LC1INTP	LC1INTN		LC1MODE<2:	0>	0-x0 0000	0-00 0000
F11h	CLC1POL	LC1POL	_	_	_	LC1G4POL	LC1G3POL	LC1G2POL	LC1G1POL	x xxxx	0 uuuu
F12h	CLC1SEL0		_	_		I	LC1D1S<4:0	>		x xxxx	u uuuu
F13h	CLC1SEL1	_	_	_			LC1D2S<4:0	>		x xxxx	u uuuu
F14h	CLC1SEL2	_	_	_			LC1D3S<4:0	>		x xxxx	u uuuu
F15h	CLC1SEL3	_	_				LC1D4S<4:0	>		x xxxx	u uuuu
F16h	CLC1GLS0	LC1G1D4T	LC1G1D4N	LC1G1D3T	LC1G1D3N	LC1G1D2T	LC1G1D2N	LC1G1D1T	LC1G1D1N	XXXX XXXX	uuuu uuuu
F17h	CLC1GLS1	LC1G2D4T	LC1G2D4N	LC1G2D3T	LC1G2D3N	LC1G2D2T	LC1G2D2N	LC1G2D1T	LC1G2D1N	xxxx xxxx	uuuu uuuu
F18h	CLC1GLS2	LC1G3D4T	LC1G3D4N	LC1G3D3T	LC1G3D3N	LC1G3D2T	LC1G3D2N	LC1G3D1T	LC1G3D1N	XXXX XXXX	uuuu uuuu
F19h	CLC1GLS3	LC1G4D4T	LC1G4D4N	LC1G4D3T	LC1G4D3N	LC1G4D2T	LC1G4D2N	LC1G4D1T	LC1G4D1N	XXXX XXXX	uuuu uuuu
F1Ah	CLC2CON	LC2EN	—	LC2OUT	LC2INTP	LC2INTN		LC2MODE<2:	0>	0-x0 0000	0-00 0000
F1Bh	CLC2POL	LC2POL	_			LC2G4POL	LC2G3POL	LC2G2POL	LC2G1POL	x xxxx	0 uuuu
F1Ch	CLC2SEL0	—	_				LC2D1S<4:0	>		x xxxx	u uuuu
F1Dh	CLC2SEL1	—	_	_			LC2D2S<4:0	>		x xxxx	u uuuu
F1Eh	CLC2SEL2	—	_	_			LC2D3S<4:0	>		x xxxx	u uuuu
F1Fh	CLC2SEL3	—	_	_		-	LC2D4S<4:0	>		x xxxx	u uuuu
F20h	CLC2GLS0	LC2G1D4T	LC2G1D4N	LC2G1D3T	LC2G1D3N	LC2G1D2T	LC2G1D2N	LC2G1D1T	LC2G1D1N	XXXX XXXX	uuuu uuuu
F21h	CLC2GLS1	LC2G2D4T	LC2G2D4N	LC2G2D3T	LC2G2D3N	LC2G2D2T	LC2G2D2N	LC2G2D1T	LC2G2D1N	XXXX XXXX	uuuu uuuu
F22h	CLC2GLS2	LC2G3D4T	LC2G3D4N	LC2G3D3T	LC2G3D3N	LC2G3D2T	LC2G3D2N	LC2G3D1T	LC2G3D1N	XXXX XXXX	uuuu uuuu
F23h	CLC2GLS3	LC2G4D4T	LC2G4D4N	LC2G4D3T	LC2G4D3N	LC2G4D2T	LC2G4D2N	LC2G4D1T	LC2G4D1N	XXXX XXXX	uuuu uuuu
F24h	CLC3CON	LC3EN	_	LC3OUT	LC3INTP	LC3INTN		LC3MODE<2:	0>	0-x0 0000	0-00 0000
F25h	CLC3POL	LC3POL	_		_	LC3G4POL	LC3G3POL	LC3G2POL	LC3G1POL	x xxxx	0 uuuu
F26h	CLC3SEL0	_	_				LC3D1S<4:0	>		x xxxx	u uuuu
F27h	CLC3SEL1	_	_				LC3D2S<4:0	>		x xxxx	u uuuu
F28h	CLC3SEL2	_	—	_			LC3D3S<4:0	>		x xxxx	u uuuu
F29h	CLC3SEL3	_	—	—		1	LC3D4S<4:0	>		x xxxx	u uuuu
F2Ah	CLC3GLS0	LC3G1D4T	LC3G1D4N	LC3G1D3T	LC3G1D3N	LC3G1D2T	LC3G1D2N	LC3G1D1T	LC3G1D1N	XXXX XXXX	uuuu uuuu
F2Bh	CLC3GLS1	LC3G2D4T	LC3G2D4N	LC3G2D3T	LC3G2D3N	LC3G2D2T	LC3G2D2N	LC3G2D1T	LC3G2D1N	XXXX XXXX	uuuu uuuu
F2Ch	CLC3GLS2	LC3G3D4T	LC3G3D4N	LC3G3D3T	LC3G3D3N	LC3G3D2T	LC3G3D2N	LC3G3D1T	LC3G3D1N	XXXX XXXX	uuuu uuuu
F2Dh	CLC3GLS3	LC3G4D4T	LC3G4D4N	LC3G4D3T	LC3G4D3N	LC3G4D2T	LC3G4D2N	LC3G4D1T	LC3G4D1N	XXXX XXXX	uuuu uuuu
F2Eh	CLC4CON	LC4EN	_	LC4OUT	LC4INTP	LC4INTN		LC4MODE<2:	0>	0-x0 0000	0-00 0000
F2Fh	CLC4POL	LC4POL		_	_	LC4G4POL	LC4G3POL	LC4G2POL	LC4G1POL	x xxxx	0 uuuu
F30h	CLC4SEL0	_	_	_			LC4D1S<4:0	>		x xxxx	u uuuu
F31h	CLC4SEL1	_	_	_			LC4D2S<4:0	>		x xxxx	u uuuu
F32h	CLC4SEL2	_	_	_			LC4D3S<4:0	>		x xxxx	u uuuu
F33h	CLC4SEL3	—	—	—		r	LC4D4S<4:0	>		x xxxx	u uuuu
F34h	CLC4GLS0	LC4G1D4T	LC4G1D4N	LC4G1D3T	LC4G1D3N	LC4G1D2T	LC4G1D2N	LC4G1D1T	LC4G1D1N	XXXX XXXX	uuuu uuuu
F35h	CLC4GLS1	LC4G2D4T	LC4G2D4N	LC4G2D3T	LC4G2D3N	LC4G2D2T	LC4G2D2N	LC4G2D1T	LC4G2D1N	XXXX XXXX	uuuu uuuu
F36h	CLC4GLS2	LC4G3D4T	LC4G3D4N	LC4G3D3T	LC4G3D3N	LC4G3D2T	LC4G3D2N	LC4G3D1T	LC4G3D1N	XXXX XXXX	uuuu uuuu
F37h	CLC4GLS3	LC4G4D4T	LC4G4D4N	LC4G4D3T	LC4G4D3N	LC4G4D2T	LC4G4D2N	LC4G4D1T	LC4G4D1N	XXXX XXXX	uuuu uuuu
F38h	_	Unimplemen	ted							_	_
F6Fh											

Legend:

nd: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.

Shaded locations are unimplemented, read as '0'.

Note 1: Unimplemented on PIC16(L)F1718.

2: Unimplemented on PIC16LF1717/8/9

PIC16(L)F1717/8/9

TABLE 3-12: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank	Bank 31										
F8Ch —	_	Unimplemen	ted							_	_
FE3h											
FE4h	STATUS_SHAD	—		—	_	_	Z_SHAD	DC_SHAD	C_SHAD	xxx	uuu
FE5h	WREG_SHAD				WREG	G_SHAD				XXXX XXXX	uuuu uuuu
FE6h	BSR_SHAD	—		—			BSR_SHAD)		x xxxx	u uuuu
FE7h	PCLATH_SHAD	—				PCLATH_SH	٩D			-xxx xxxx	-uuu uuuu
FE8h	FSR0L_SHAD				FSR0	L_SHAD				XXXX XXXX	uuuu uuuu
FE9h	FSR0H_SHAD				FSR0	H_SHAD				XXXX XXXX	uuuu uuuu
FEAh	FSR1L_SHAD				FSR1	L_SHAD				XXXX XXXX	uuuu uuuu
FEBh	FSR1H_SHAD				FSR1	H_SHAD				XXXX XXXX	uuuu uuuu
FECh	_	Unimplemen	ted							_	
FEDh	STKPTR	_	_	_			STKPTR			1 1111	1 1111
FEEh	TOSL				T	OSL				xxxx xxxx	uuuu uuuu
FEFh	TOSH	_				TOSH				-xxx xxxx	-uuu uuuu

 ${\bf x}$ = unknown, ${\bf u}$ = unchanged, ${\bf q}$ = value depends on condition, - = unimplemented, read as '0', ${\bf r}$ = reserved. Shaded locations are unimplemented, read as '0'. Legend:

Unimplemented on PIC16(L)F1718. Note 1:

Unimplemented on PIC16LF1717/8/9 2:

6.4 Two-Speed Clock Start-up Mode

Two-Speed Start-up mode provides additional power savings by minimizing the latency between external oscillator start-up and code execution. In applications that make heavy use of the Sleep mode, Two-Speed Start-up will remove the external oscillator start-up time from the time spent awake and can reduce the overall power consumption of the device. This mode allows the application to wake-up from Sleep, perform a few instructions using the INTOSC internal oscillator block as the clock source and go back to Sleep without waiting for the external oscillator to become stable.

Two-Speed Start-up provides benefits when the oscillator module is configured for LP, XT or HS modes. The Oscillator Start-up Timer (OST) is enabled for these modes and must count 1024 oscillations before the oscillator can be used as the system clock source.

If the oscillator module is configured for any mode other than LP, XT or HS mode, then Two-Speed Start-up is disabled. This is because the external clock oscillator does not require any stabilization time after POR or an exit from Sleep.

If the OST count reaches 1024 before the device enters Sleep mode, the OSTS bit of the OSCSTAT register is set and program execution switches to the external oscillator. However, the system may never operate from the external oscillator if the time spent awake is very short.

Note:	Executing a SLEEP instruction will abort
	the oscillator start-up time and will cause
	the OSTS bit of the OSCSTAT register to
	remain clear.

6.4.1 TWO-SPEED START-UP MODE CONFIGURATION

Two-Speed Start-up mode is configured by the following settings:

- IESO (of the Configuration Words) = 1; Internal/External Switchover bit (Two-Speed Start-up mode enabled).
- SCS (of the OSCCON register) = 00.
- FOSC<2:0> bits in the Configuration Words configured for LP, XT or HS mode.

Two-Speed Start-up mode is entered after:

- Power-on Reset (POR) and, if enabled, after Power-up Timer (PWRT) has expired, or
- · Wake-up from Sleep.

Switch From	Switch To	Frequency	Oscillator Delay
Sleep	LFINTOSC ⁽¹⁾ MFINTOSC ⁽¹⁾ HFINTOSC ⁽¹⁾	31 kHz 31.25 kHz-500 kHz 31.25 kHz-16 MHz	Oscillator Warm-up Delay (Twarm) ⁽²⁾
Sleep/POR	EC, RC ⁽¹⁾	DC – 32 MHz	2 cycles
LFINTOSC	EC, RC ⁽¹⁾	DC – 32 MHz	1 cycle of each
Sleep/POR	Secondary Oscillator LP, XT, HS ⁽¹⁾	32 kHz-20 MHz	1024 Clock Cycles (OST)
Any clock source	MFINTOSC ⁽¹⁾ HFINTOSC ⁽¹⁾	31.25 kHz-500 kHz 31.25 kHz-16 MHz	2 μs (approx.)
Any clock source	LFINTOSC ⁽¹⁾	31 kHz	1 cycle of each
Any clock source	Secondary Oscillator	32 kHz	1024 Clock Cycles (OST)
PLL inactive	PLL active	16-32 MHz	2 ms (approx.)

TABLE 6-1: OSCILLATOR SWITCHING DELAYS

Note 1: PLL inactive.

2: See Section 34.0 "Electrical Specifications".

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	TMR1GIE: Ti	mer1 Gate Inte	errupt Enable b	bit			
	1 = Enables t 0 = Disables t	he Timer1 gate the Timer1 gate	e acquisition ir e acquisition i	nterrupt nterrupt			
bit 6	ADIE: Analog	-to-Digital Con	verter (ADC)	Interrupt Enab	le bit		
	1 = Enables t 0 = Disables t	he ADC interru	ipt upt				
bit 5	RCIE: USAR	T Receive Inter	rupt Enable b	it			
	1 = Enables t	he USART rec	eive interrupt				
	0 = Disables	the USART rec	eive interrupt				
bit 4	TXIE: USART	Transmit Inte	rrupt Enable b	it			
	1 = Enables t 0 = Disables t	the USART tran	nsmit interrupt	t			
bit 3	SSP1IE: Syne	chronous Seria	I Port (MSSP)) Interrupt Ena	ble bit		
	1 = Enables t	he MSSP inter	rupt				
	0 = Disables	the MSSP inter	rrupt				
bit 2	CCP1IE: CCF	P1 Interrupt En	able bit				
	1 = Enables t	he CCP1 interi	rupt				
hit 1		R2 to PR2 Mat	ch Interrunt Fi	nahle hit			
bit i	1 = Enables t	he Timer2 to P	R2 match inte	errupt			
	0 = Disables	the Timer2 to F	PR2 match inte	errupt			
bit 0	TMR1IE: Time	er1 Overflow Ir	nterrupt Enabl	e bit			
	1 = Enables t	he Timer1 over	rflow interrupt				
	0 = Disables	the Timer1 ove	erflow interrupt				
Note: Bit	PEIE of the IN	TCON register	must be				
set	to enable any p	peripheral inter	rupt.				

REGISTER 7-2: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	NCOIE	COGIE	ZCDIE	CLC4IE	CLC3IE	CLC2IE	CLC1IE
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
u = Bit is ı	unchanged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is	set	'0' = Bit is cle	ared				
			- 1				
DIT /	Unimplemen	ted: Read as	 J.				
bit 6		Interrupt Enac	ble bit				
	1 = NCO Interior 0 = NCO interior	errupt disabled					
bit 5	COGIE: COC	G Auto-Shutdow	n Interrupt Er	nable bit			
	1 = COG inte	errupt enabled					
	0 = COG inte	errupt disabled					
bit 4	ZCDIE: Zero	-Cross Detectio	n Interrupt Er	able bit			
	1 = ZCD inte	errupt enabled					
h :+ 0			abla bit				
DIL 3		54 Interrupt Ena					
	0 = CLC4 int	terrupt disabled					
bit 2	CLC3IE: CLO	C3 Interrupt Ena	able bit				
	1 = CLC3 int	terrupt enabled					
	0 = CLC3 int	terrupt disabled					
bit 1	CLC2IE: CLC	C2 Interrupt Ena	able bit				
	1 = CLC2 int	terrupt enabled					
bit 0		C1 Interrunt En	able bit				
SILU	1 = CLC1 int	terrupt enabled					
	0 = CLC1 int	terrupt disabled					
Note:	Bit PEIE of the IN	TCON register	must be				
	set to enable any	peripheral inter	rupt.				

REGISTER 7-4: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

See Table 10-1 for Erase Row size and the number of write latches for Flash program memory.

TABLE 10-1:	FLASH MEMORY
	ORGANIZATION BY DEVICE

Device	Row Erase (words)	Write Latches (words)	
PIC16(L)F1717			
PIC16(L)F1718	32	32	
PIC16(L)F1719			

10.2.1 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must:

- 1. Write the desired address to the PMADRH:PMADRL register pair.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Then, set control bit RD of the PMCON1 register.

Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF PMCON1, RD" instruction to be ignored. The data is available in the very next cycle, in the PMDATH:PMDATL register pair; therefore, it can be read as two bytes in the following instructions.

PMDATH:PMDATL register pair will hold this value until another read or until it is written to by the user.

Note:	The two instructions following a program
	memory read are required to be NOPS.
	This prevents the user from executing a
	2-cycle instruction on the next instruction
	after the RD bit is set.

FLASH PROGRAM MEMORY READ FLOWCHART

10.6 Register Definitions: Flash Program Memory Control

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
	PMDAT<7:0>									
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit			it	U = Unimpler	mented bit, read	l as '0'				
u = Bit is uncha	anged	x = Bit is unkno	wn	n -n/n = Value at POR and BOR/Value at all other F			other Resets			
'1' = Bit is set		'0' = Bit is clear	ed							

REGISTER 10-1: PMDATL: PROGRAM MEMORY DATA LOW BYTE REGISTER

bit 7-0 PMDAT<7:0>: Read/write value for Least Significant bits of program memory

REGISTER 10-2: PMDATH: PROGRAM MEMORY DATA HIGH BYTE REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
—	—		PMDAT<13:8>					
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **PMDAT<13:8>**: Read/write value for Most Significant bits of program memory

REGISTER 10-3: PMADRL: PROGRAM MEMORY ADDRESS LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
PMADR<7:0>								
bit 7 bit								

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PMADR<7:0>**: Specifies the Least Significant bits for program memory address

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	
SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0	
bit 7							bit 0	
Legend:								
R = Readable	R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown		nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set '0' = Bit is cleared			ared					

REGISTER 11-7: SLRCONA: PORTA SLEW RATE CONTROL REGISTER

bit 7-0 SLRA<7:0>: PORTA Slew Rate Enable bits For RA<7:0> pins, respectively 1 = Port pin slew rate is limited 0 = Port pin slews at maximum rate

REGISTER 11-8: INLVLA: PORTA INPUT LEVEL CONTROL REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLA7 | INLVLA6 | INLVLA5 | INLVLA4 | INLVLA3 | INLVLA2 | INLVLA1 | INLVLA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 INLVLA<7:0>: PORTA Input Level Select bits

For RA<7:0> pins, respectively

1 = Port pin digital input operates with ST thresholds

0 = Port pin digital input operates with TTL thresholds

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELD	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	141
INLVLD	INLVLD7	INLVLD6	INLVLD5	INLVLD4	INLVLD3	INLVLD2	INLVLD1	INLVLD0	142
LATD	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	140
ODCOND	ODD7	ODD6	ODD5	ODD4	ODD3	ODD2	ODD1	ODD0	142
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	140
SLRCOND	SLRD7	SLRD6	SLRD5	SLRD4	SLRD3	SLRD2	SLRD1	SLRD0	142
TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	140
WPUD	WPUD7	WPUD6	WPUD5	WPUD4	WPUD3	WPUD2	WPUD1	WPUD0	141

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTD.

17.0 PULSE WIDTH MODULATION (PWM)

The PWM module generates a Pulse-Width Modulated signal determined by the duty cycle, period, and resolution that are configured by the following registers:

- PR2
- T2CON
- PWMxDCH
- PWMxDCL
- PWMxCON

Figure 17-1 shows a simplified block diagram of PWM operation.

Figure 17-2 shows a typical waveform of the PWM signal.

For a step-by-step procedure on how to set up this module for PWM operation, refer to Section 17.1.9 "Setup for PWM Operation Using PWMx Pins".

FIGURE 18-1: EXAMPLE OF FULL-BRIDGE APPLICATION

© 2014-2015 Microchip Technology Inc.

PIC16(L)F1717/8/9

REGISTER 18-2:	COGxCON1: COG CONTROL REGISTER 1
----------------	----------------------------------

R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
GxRDBS	GxFDBS	—	—	GxPOLD	GxPOLC	GxPOLB	GxPOLA
bit 7							bit 0

Legend:								
R = Readable	bit	W = Writable bit	U = Unimplemented bit, read as '0'					
u = Bit is unch	anged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is cleared	q = Value depends on condition					
bit 7	GxRDBS: CO	OGx Rising Event Dead-band	d Timing Source Select bit					
	1 = Delay ch	hain and COGxDBR are use	d for dead-band timing generation					
	$0 = COGx_0$	clock and COGxDBR are use	ed for dead-band timing generation					
bit 6	GxFDBS: CC	OGx Falling Event Dead-band	d Timing Source select bit					
	1 = Delay cł	hain and COGxDF are used	in and COGxDF are used for dead-band timing generation					
	$0 = COGx_0$	clock and COGxDBF are use	ed for dead-band timing generation					
bit 5-4	Unimplemen	nted: Read as '0'.						
bit 3	GxPOLD: CO	DGxD Output Polarity Contro	l bit					
	1 = Active le	evel of COGxD output is low						
	0 = Active le	evel of COGxD output is high						
bit 2	GxPOLC: CO	DGxC Output Polarity Contro	l bit					
	1 = Active le	evel of COGxC output is low						
	0 = Active le	evel of COGxC output is high						
bit 1	GxPOLB: CO	DGxB Output Polarity Contro	l bit					
	1 = Active le	evel of COGxB output is low						
0 = Active level of COGxB output is high								
bit 0	l bit							
	1 = Active le	evel of COGxA output is low						
	0 = Active le	evel of COGxA output is high						

21.3 Register Definitions: ADC Control

REGISTER 21-1: ADCON0: ADC CONTROL REGISTER 0

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
			CHS<4:0>			GO/DONE	ADON			
bit 7	·					•	bit 0			
Legend:										
R = Read	able bit	W = Writable b	oit	LI = Unimplemented bit_read as '0'						
u = Bit is	unchanged	x = Bit is unkno	าพท	n/n = Value at POR and BOR/Value at all other Resets						
u = Bit is unchanged		(0) = Bit is cleared								
T - Dit 13	361		ieu							
h:t 7		ted. Deed as (o)								
	Unimplemen									
bit 6-2	CHS<4:0>: A	CHS<4:0>: Analog Channel Select bits								
	11111 - FV	C1 output(1)	Relefence) Bu							
	11110 - DA 11101 - Ter	nperature Indicat	_{Or} (3)							
	11100 = DA	C2 output ⁽⁵⁾	•							
	11011 = AN	27 ⁽⁴⁾								
	11010 = AN	26 ⁽⁴⁾								
	11001 = AN	25 ⁽⁴⁾								
	11000 = AN	24 ⁽⁴⁾								
	10111 = AN	23(4)								
	10110 = AN	22 ⁽⁴⁾								
	10101 = AN	20(4)								
	10100 = AN 10011 = AN	19								
	10010 = AN	18								
	10001 = AN	17								
	10000 = AN	16								
	01111 = AN	15								
	01110 = AN	14								
	01101 = AN	13								
	01100 = AN	12								
	01011 = AN	11								
	01010 - AN									
	01000 = AN	8								
	00111 = AN	7(4)								
	00110 = AN	6 ⁽⁴⁾								
	00101 = AN	5(4)								
	00100 = AN	4								
	00011 = AN	3								
	00010 = AN	2								
	00001 = AN	1								
L:1 4	00000 = AN									
DIC		ADC Conversion a	Status Dit	a this hit starts a		ion ovelo				
	⊥ – ADC COII This hit is	ension cycle in p	ared by bardw	Y INS DIL STALLS A	C conversion h	ion cycle.				
	0 = ADC con	version complete	d/not in progre			ias completed.				
hit O		Enchlo bit	and in progre							
	$1 = \Delta DC$ is e	nabled								
	0 = ADC is di	isabled and consi	umes no opera	tina current						
				5 - 21 - 21 - 2						
Note 1:	lote 1: See Section 23.0 "8-Bit Digital-to-Analog Converter (DAC1) Module" for more information.									
2:	: See Section 14.0 "Fixed Voltage Reference (FVR)" for more information.									
3:	See Section 15.0	" Iemperature Ir	ndicator Modu	ie" for more info	rmation.					
4:	FIC 10(L)F1/1/19	oniy.								

30.2.1 SPI MODE REGISTERS

The MSSP module has five registers for SPI mode operation. These are:

- MSSP STATUS register (SSP1STAT)
- MSSP Control register 1 (SSP1CON1)
- MSSP Control register 3 (SSP1CON3)
- MSSP Data Buffer register (SSP1BUF)
- MSSP Address register (SSP1ADD)
- MSSP Shift register (SSP1SR)
- (Not directly accessible)

SSP1CON1 and SSP1STAT are the control and STA-TUS registers in SPI mode operation. The SSP1CON1 register is readable and writable. The lower six bits of the SSP1STAT are read-only. The upper two bits of the SSP1STAT are read/write.

In one SPI master mode, SSP1ADD can be loaded with a value used in the Baud Rate Generator. More information on the Baud Rate Generator is available in **Section 30.7 "Baud Rate Generator"**.

SSP1SR is the shift register used for shifting data in and out. SSP1BUF provides indirect access to the SSP1SR register. SSP1BUF is the buffer register to which data bytes are written, and from which data bytes are read.

In receive operations, SSP1SR and SSP1BUF together create a buffered receiver. When SSP1SR receives a complete byte, it is transferred to SSP1BUF and the SSP1IF interrupt is set.

During transmission, the SSP1BUF is not buffered. A write to SSP1BUF will write to both SSP1BUF and SSP1SR.

30.2.2 SPI MODE OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSP1CON1<5:0> and SSP1STAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- · Slave Select mode (Slave mode only)

To enable the serial port, SSP Enable bit, SSPEN of the SSP1CON1 register, must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, re-initialize the SSP1CONx registers and then set the <u>SSPEN</u> bit. This configures the SDI, SDO, SCK and <u>SS</u> pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed as follows:

- · SDI must have corresponding TRIS bit set
- SDO must have corresponding TRIS bit cleared
 SCK (Master mode) must have corresponding
- TRIS bit cleared
- SCK (Slave mode) must have corresponding <u>TRIS</u> bit set
- SS must have corresponding TRIS bit set

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value.

30.6.5 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition (Figure 30-27) occurs when the RSEN bit of the SSP1CON2 register is programmed high and the master state machine is no longer active. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. SCL is asserted low. Following this, the RSEN bit of the SSP1CON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL

pins, the S bit of the SSP1STAT register will be set. The SSP1IF bit will not be set until the Baud Rate Generator has timed out.

Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
2: A bus collision during the Repeated Start condition occurs if:

- SDA is sampled low when SCL goes from low-to-high.
- SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.

FIGURE 30-27: REPEATED START CONDITION WAVEFORM

31.1.1.5 TSR Status

The TRMT bit of the TX1STA register indicates the status of the TSR register. This is a read-only bit. The TRMT bit is set when the TSR register is empty and is cleared when a character is transferred to the TSR register from the TX1REG. The TRMT bit remains clear until all bits have been shifted out of the TSR register. No interrupt logic is tied to this bit, so the user has to poll this bit to determine the TSR status.

Note:	The TSR register is not mapped in data						
	memory, so it is not available to the user.						

31.1.1.6 Transmitting 9-Bit Characters

The EUSART supports 9-bit character transmissions. When the TX9 bit of the TX1STA register is set, the EUSART will shift nine bits out for each character transmitted. The TX9D bit of the TX1STA register is the ninth, and Most Significant data bit. When transmitting 9-bit data, the TX9D data bit must be written before writing the eight Least Significant bits into the TX1REG. All nine bits of data will be transferred to the TSR shift register immediately after the TX1REG is written.

A special 9-bit Address mode is available for use with multiple receivers. See **Section 31.1.2.7** "Address **Detection**" for more information on the Address mode.

- 31.1.1.7 Asynchronous Transmission Setup
- Initialize the SP1BRGH, SP1BRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 31.4 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If 9-bit transmission is desired, set the TX9 control bit. A set ninth data bit will indicate that the eight Least Significant data bits are an address when the receiver is set for address detection.
- 4. Set SCKP bit if inverted transmit is desired.
- 5. Enable the transmission by setting the TXEN control bit. This will cause the TXIF interrupt bit to be set.
- If interrupts are desired, set the TXIE interrupt enable bit of the PIE1 register. An interrupt will occur immediately provided that the GIE and PEIE bits of the INTCON register are also set.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded into the TX9D data bit.
- 8. Load 8-bit data into the TX1REG register. This will start the transmission.

FIGURE 31-3: ASYNCHRONOUS TRANSMISSION

Mnemonic, Operands		Description	Cycles	14-Bit Opcode				Status	Natas	
		Description		MSb			LSb	Affected	Notes	
BYTE-ORIENTED FILE REGISTER OPERATIONS										
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	2	
ADDWFC	f, d	Add with Carry W and f	1	11	1101	dfff	ffff	C, DC, Z	2	
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	2	
ASRF	f, d	Arithmetic Right Shift	1	11	0111	dfff	ffff	C, Z	2	
LSLF	f, d	Logical Left Shift	1	11	0101	dfff	ffff	C, Z	2	
LSRF	f, d	Logical Right Shift	1	11	0110	dfff	ffff	C, Z	2	
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2	
CLRW	-	Clear W	1	00	0001	0000	00xx	Z		
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	2	
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	2	2	
INCF	f, d	Increment f	1	00	1010	dfff	ffff	2	2	
IORWE	f, d	Inclusive OR W with f	1	00	0100	diii	tttt	2	2	
MOVE	f, a		1	00	1000	diii	tttt	Z	2	
	T f al	Move w to f	1	00	0000	liii	1111	~	2	
	1, 0 f d	Rotate Left I through Carry	1	00	1101	dIII	LILL		2	
	i, u f	Rotate Right I through Carry	1	00	1100	airi	LILL		2	
SUBWE	i, u f d	Subtract with Porrow W from f	1	11	1011	dIII	LIII		2	
SUBWFB	i, u f d	Subiraci with Borrow W Ironn I	1	11	1011	dIII	LIII	C, DC, Z	2	
	i, u f d	Exclusive OP W with f	1	00	0110	dIII dfff	LLLL FFFF	7	2	
XOINWI	i, u				0110	uIII	LIII	2	2	
050507	fd	Decrement f Skin if 0	1(2)		1011	dff	ffff		1 2	
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1, 2	
		BIT-ORIENTED FILE REGIST			IS					
	fh	Bit Clear f	1	0.1	0.0bb	bfff	fff		2	
BCF	I, D f b	Bit Set f	1	01	0000	DIII	LILL		2	
BSF	1, D		1	01	ddru	DIII			2	
		BIT-ORIENTED SKIP O	PERATIO	NS				1	1	
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		1, 2	
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		1, 2	
LITERAL OPERATIONS										
ADDLW	k	Add literal and W	1	11	1110	kkkk	kkkk	C, DC, Z		
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z		
MOVLB	k	Move literal to BSR	1	00	0000	001k	kkkk			
MOVLP	k	Move literal to PCLATH	1	11	0001	1kkk	kkkk			
MOVLW	k	Move literal to W	1	11	0000	kkkk	kkkk			
SUBLW	k	Subtract W from literal	1	11	1100	kkkk	kkkk	C, DC, Z		
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z		
CONTROL OPERATIONS										
BRA	k	Relative Branch	2	11	001k	kkkk	kkkk			
BRW	-	Relative Branch with W	2	00	0000	0000	1011			
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk			
CALLW	-	Call Subroutine with W	2	00	0000	0000	1010			
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk			
REIFIE	ĸ	Return from interrupt	2	00	0000	0000	1001			
REILW	К	Return with literal in W	2	11	0100	kkkk	kkkk			
REIURN	-	Return from Subroutine	2	00	0000	0000	1000			

TABLE 33-3: PIC16(L)F1717/8/9 INSTRUCTION SET

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.