

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	24
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b; D/A 1x5b, 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1718-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

28-PIN ALLOCATION TABLE (PIC16(L)F1718) TABLE 1:

I/O ⁽²⁾	SPDIP,SOIC, SSOP	QFN, UQFN	ADC	Reference	Comparator	Op Amp	DAC	Zero Cross	Timers		CCL	NCO	PWM	900		MSSP	EUSART	CLC	Interrupt	Pull-up	Basic
RA0	2	27	AN0		C1IN0- C2IN0-													CLCIN0 ⁽¹⁾	IOC	Y	
RA1	3	28	AN1		C1IN1- C2IN1-	OPA1OUT												CLCIN1 ⁽¹⁾	юс	Y	
RA2	4	1	AN2	V _{REF} -	C1IN0+ C2IN0+		DAC1OUT1												юс	Y	
RA3	5	2	AN3	V _{REF} +	C1IN1+														IOC	Υ	
RA4	6	3				OPA1IN+			T0CKI ⁽¹⁾										IOC	Y	
RA5	7	4	AN4			OPA1IN-	DAC2OUT1									nSS ⁽¹⁾			IOC	Υ	
RA6	10	7																	юс	Y	OSC2 CLKOUT
RA7	9	6																	юс	Y	OSC1 CLKIN
RB0	21	18	AN12		C2IN1+			ZCD						COG1	IN ⁽¹⁾				INT ⁽¹⁾ IOC	Y	
RB1	22	19	AN10		C1IN3- C2IN3-	OPA2OUT													IOC	Y	
RB2	23	20	AN8			OPA2IN-													IOC	Υ	
RB3	24	21	AN9		C1IN2- C2IN2-	OPA2IN+													юс	Y	
RB4	25	22	AN11																IOC	Y	
RB5	26	23	AN13						T1G ⁽¹⁾										IOC	Υ	
RB6	27	24																CLCIN2 ⁽¹⁾	IOC	Υ	ICSPCLK
RB7	28	25					DAC1OUT2 DAC2OUT2											CLCIN3 ⁽¹⁾	юс	Y	ICSPDAT
RC0	11	8							T1CKI ⁽¹⁾ SOSCO										IOC	Y	
RC1	12	9							sosci	СС	P2 ⁽¹⁾								.IOC	Υ	
RC2	13	10	AN14							СС	P1 ⁽¹⁾								- IOC	Υ	
RC3	14	11	AN15						· · · ·							SCL/SCK ⁽¹⁾			IOC .	Υ	

DS40001740B-page 4

Note 1: Default peripheral input. Alternate pins can be selected as the peripheral input with the PPS input selection registers.

2: All pin digital outputs default to PORT latch data. Alternate outputs can be selected as the peripheral digital output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

4: Alternate outputs are excluded from solid shaded areas.

5: Alternate inputs are excluded from dot shaded areas.

Name	Function	Input Type	Output Type	Description
RC4/AN16/SDI ⁽¹⁾ /SDA ⁽¹⁾	RC4	TTL/ST	CMOS	General purpose I/O.
	AN16	AN		ADC Channel 16 input.
	SDI	TTL/ST	_	SPI Data input.
	SDA	l ² C	_	I ² C Data input.
RC5/AN17	RC5	TTL/ST	CMOS	General purpose I/O.
	AN17	AN	_	ADC Channel 17 input.
RC6/AN18/CK ⁽¹⁾	RC6	TTL/ST	CMOS	General purpose I/O.
	AN18	AN	—	ADC Channel 18 input.
	СК	TTL/ST		EUSART synchronous clock.
RC7/AN19/RX ⁽¹⁾	RC7	TTL/ST	CMOS	General purpose I/O.
	AN19	AN	_	ADC Channel 19 input.
	RX	TTL/ST	_	EUSART receive.
RE3/MCLR/VPP	RE3	TTL/ST		General purpose input.
	MCLR	ST	_	Master clear input.
	VPP	HV		Programming enable.
Vdd	Vdd	Power		Positive supply.
Vss	Vss	Power		Ground reference.
OUT ⁽²⁾	C10UT		CMOS	Comparator 1 output.
	C2OUT		CMOS	Comparator 2 output.
	CCP1		CMOS	Compare/PWM1 output.
	CCP2		CMOS	Compare/PWM2 output.
	NCO10UT		CMOS	Numerically controlled oscillator output.
	PWM3OUT		CMOS	PWM3 output.
	PWM4OUT		CMOS	PWM4 output.
	COG1A		CMOS	Complementary output generator output A.
	COG1B		CMOS	Complementary output generator output B.
	COG1C		CMOS	Complementary output generator output C.
	COG1D		CMOS	Complementary output generator output D.
	SDA ⁽³⁾		OD	I ² C Data output.
	SCK		CMOS	SPI clock output.
	SCL ⁽³⁾		OD	l ² C clock output.
	SDO			•
	TX/CK		CMOS	EUSART asynchronous TX data/synchronous clock out.
	DT ⁽³⁾		CMOS	EUSART synchronous data output.
	CLC1OUT		CMOS	Configurable Logic Cell 1 output.
	CLC2OUT		CMOS	Configurable Logic Cell 2 output.
	CLC3OUT		CMOS	Configurable Logic Cell 3 output.
	CLC4OUT		CMOS	Configurable Logic Cell 4 output.

TABLE 1-2: PIC16(L)F1718 PINOUT DESCRIPTION (CONTINUED)

 Legend: AN = Analog input or output
 CMOS = CMOS compatible input or output
 OD = Open-Drain

 TTL = TTL compatible input
 ST = Schmitt Trigger input with CMOS levels
 I²C = Schmitt Trigger input with I²C

 HV = High Voltage
 XTAL = Crystal levels
 I²C = Schmitt Trigger input with I²C

Note 1: Default peripheral input. Alternate pins can be selected as the peripheral input with the PPS input selection registers.
 All pin digital outputs default to PORT latch data. Alternate outputs can be selected as the peripheral digital output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

TABLE 1-3: PIC16(L)F1717/9 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description
RA0/AN0/C1IN0-/C2IN0-/	RA0	TTL/ST	CMOS	General purpose I/O.
CLCIN0 ⁽¹⁾	AN0	AN	_	ADC Channel 0 input.
	C1IN0-	AN	_	Comparator C2 negative input.
	C2IN0-	AN	—	Comparator C3 negative input.
	CLCIN0	TTL/ST	—	Configurable Logic Cell source input.
RA1/AN1/C1IN1-/C2IN1-/	RA1	TTL/ST	CMOS	General purpose I/O.
OPA1OUT/CLCIN1 ⁽¹⁾	AN1	AN	_	ADC Channel 1 input.
	C1IN1-	AN	_	Comparator C1 negative input.
	C2IN1-	AN	—	Comparator C2 negative input.
	OPA10UT	_	AN	Operational Amplifier 1 output.
	CLCIN1	TTL/ST	—	Configurable Logic Cell source input.
RA2/AN2/VREF-/C1IN0+/C2IN0+/	RA2	TTL/ST	CMOS	General purpose I/O.
DAC1OUT1	AN2	AN	—	ADC Channel 2 input.
	VREF-	AN	—	ADC Negative Voltage Reference input.
	C1IN0+	AN	—	Comparator C2 positive input.
	C2IN0+	AN	—	Comparator C3 positive input.
	DAC1OUT1	_	AN	Digital-to-Analog Converter output.
RA3/AN3/VREF+/C1IN1+	RA3	TTL/ST	CMOS	General purpose I/O.
	AN3	AN	—	ADC Channel 3 input.
	VREF+	AN	—	ADC Voltage Reference input.
	C1IN1+	AN	_	Comparator C1 positive input.
RA4/OPA1IN+/T0CKI ⁽¹⁾	RA4	TTL/ST	CMOS	General purpose I/O.
	OPA1IN+	AN	_	Operational Amplifier 1 non-inverting input.
	TOCKI	TTL/ST	—	Timer0 gate input.
RA5/AN4/OPA1IN-/DAC2OUT1/	RA5	TTL/ST	CMOS	General purpose I/O.
<u>SS</u> (1)	AN4	AN	—	ADC Channel 4 input.
	OPA1IN-	AN	—	Operational Amplifier 1 inverting input.
	DAC2OUT1	_	AN	Digital-to-Analog Converter output.
	SS	—	—	Slave Select enable input.
RA6/OSC2/CLKOUT	RA6	TTL/ST	CMOS	General purpose I/O.
	OSC2	_	XTAL	Crystal/Resonator (LP, XT, HS modes).
	CLKOUT	_	CMOS	Fosc/4 output.
RA7/OSC1/CLKIN	RA7	TTL/ST	CMOS	General purpose I/O.
	OSC1	_	XTAL	Crystal/Resonator (LP, XT, HS modes).
	CLKIN	ST	—	External clock input (EC mode).
RB0/AN12/C2IN1+/ZCD/	RB0	TTL/ST	CMOS	General purpose I/O.
COGIN ⁽¹⁾	AN12	AN	—	ADC Channel 12 input.
	C2IN1+	AN	—	Comparator C2 positive input.
	ZCD	AN	_	Zero-Cross Detection Current Source/Sink.
	COGIN	TTL/ST		Complementary Output Generator input.

.egend:AN = Analog input or outputCMOS = CMOS compatible input or outputOD = Open-DrainTTL = TTL compatible inputST = Schmitt Trigger input with CMOS levelsI²C = Schmitt Trigger input with I²CHV = High VoltageXTAL = Crystal levels

Note 1: Default peripheral input. Alternate pins can be selected as the peripheral input with the PPS input selection registers.

2: All pin digital outputs default to PORT latch data. Alternate outputs can be selected as the peripheral digital output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

3.0 MEMORY ORGANIZATION

These devices contain the following types of memory:

- Program Memory
 - Configuration Words
 - Device ID
 - User ID
 - Flash Program Memory
- Data Memory
 - Core Registers
 - Special Function Registers
 - General Purpose RAM
 - Common RAM

Note 1: The method to access Flash memory through the PMCON registers is described in Section 10.0 "Flash Program Memory Control".

The following features are associated with access and control of program memory and data memory:

- PCL and PCLATH
- Stack
- Indirect Addressing

TABLE 3-1: DEVICE SIZES AND ADDRESSES

3.1 Program Memory Organization

The enhanced mid-range core has a 15-bit program counter capable of addressing a 32K x 14 program memory space. Table 3-1 shows the memory sizes implemented for the PIC16(L)F1717/8/9 family. Accessing a location above these boundaries will cause a wrap-around within the implemented memory space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 3-1).

3.2 High-Endurance Flash

This device has a 128-byte section of high-endurance program Flash memory (PFM) in lieu of data EEPROM. This area is especially well suited for nonvolatile data storage that is expected to be updated frequently over the life of the end product. See Section 10.2 "Flash **Program Memory Overview**" for more information on writing data to PFM. See Section 3.2.1.2 "Indirect **Read with FSR**" for more information about using the FSR registers to read byte data stored in PFM.

Device	Program Memory Space (Words)	Last Program Memory Address	High-Endurance Flash Memory Address Range ⁽¹⁾		
PIC16(L)F1717	8,192	1FFFh	1F80h-1FFFh		
PIC16(L)F1718/9	16,384	3FFFh	3F80h-3FFFh		

Note 1: High-endurance Flash applies to the low byte of each address in the range.

PIC16(L)F1717/8/9

Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank	4										
20Ch	WPUA	WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	1111 1111	1111 1111
20Dh	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	1111 1111	1111 1111
20Eh	WPUC	WPUC7	WPUC6	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	1111 1111	1111 1111
20Fh	WPUD ⁽¹⁾	WPUD7	WPUD6	WPUD5	WPUD4	WPUD3	WPUD2	WPUD1	WPUD0	1111 1111	1111 1111
210h	WPUE	—	—	_		WPUE3	WPUE2 ⁽¹⁾	WPUE1 ⁽¹⁾	WPUE0 ⁽¹⁾	1111	1111
211h	SSP1BUF	Synchronous	s Serial Port R	eceive Buffer/	Transmit Regi	ster				XXXX XXXX	uuuu uuuu
212h	SSP1ADD				ADI)<7:0>				XXXX XXXX	0000 0000
213h	SSP1MSK				MSI	< <7:0>				XXXX XXXX	1111 1111
214h	SSP1STAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	0000 0000	0000 0000
215h	SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSP	M<3:0>		0000 0000	0000 0000
216h	SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
217h	SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000 0000	0000 0000
218h			1.1								
21Fh	_	Unimplemen	implemented							_	_
Bank	5										•
28Ch	ODCONA	ODA7	ODA6	ODA5	ODA4	ODA3	ODA2	ODA1	ODA0	0000 0000	0000 0000
28Dh	ODCONB	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	0000 0000	0000 0000
28Eh	ODCONC	ODC7	ODC6	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0	0000 0000	0000 0000
28Fh	ODCOND ⁽¹⁾	ODD7	ODD6	ODD5	ODD4	ODD3	ODD2	ODD1	ODD0	0000 0000	0000 0000
290h	ODCONE ⁽¹⁾	—	_	—		_	ODE2	ODE1	ODE0	000	000
291h	CCPR1L	Capture/Con	npare/PWM R	egister 1 (LSB)					XXXX XXXX	uuuu uuuu
292h	CCPR1H	Capture/Con	npare/PWM R	egister 1 (MSE	3)					XXXX XXXX	uuuu uuuu
293h	CCP1CON	—	—	DC1B	<1:0>		CCP	1M<3:0>		00 0000	00 0000
294h	_	Unimplemen	ited							_	_
297h	0000001	Oanture (Oan		:	\ \						
298h	CCPR2L		npare/PWM R							XXXX XXXX	uuuu uuuu
299h	CCPR2H	Capture/Con	npare/PWM R	. .	,		000	201-0-0-		XXXX XXXX	uuuu uuuu
29Ah	CCP2CON	-	—	DC2B	<1:0>		CCP2	2M<3:0>		00 0000	00 0000
29Bh 29Dh	_	Unimplemen	ited							—	—
29Eh	CCPTMRS	P4TSE	L<1:0>	P3TSE	L<1:0>	C2TSE	L<1:0>	C1TS	EL<1:0>	0000 0000	0000 0000
29Fh	_	Unimplemen	ited							_	_
Bank	6									•	
30Ch	SLRCONA	SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0	1111 1111	0000 0000
30Dh	SLRCONB	SLRB7	SLRB6	SLRB5	SLRB4	SLRB3	SLRB2	SLRB1	SLRB0	1111 1111	0000 0000
30Eh	SLRCONC	SLRC7	SLRC6	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	1111 1111	0000 0000
30Fh	SLRCOND ⁽¹⁾	SLRD7	SLRD6	SLRD5	SLRD4	SLRD3	SLRD2	SLRD1	SLRD0	1111 1111	0000 0000
310h	SLRCONE ⁽¹⁾	—	—	—	—	—	SLRE2	SLRE1	SLRE0	111	000
310h SLRCONE(") — — — — SLRE2 SLRE1 SLRE0 311h							-	_	_		

TABLE 3-12: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

gend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: Unimplemented on PIC16(L)F1718. 2: Unimplemented on PIC16LF1717/8/9

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	REGISTER 3	R/W-0/0	R/W-0/0
_	NCOIE	COGIE	ZCDIE	CLC4IE	CLC3IE	CLC2IE	CLC1IE
bit 7							bit (
Legend:							
R = Readable bit W = Writable bit				U = Unimpler	nented bit, read	l as '0'	
u = Bit is unchanged		x = Bit is unki		•	at POR and BO		ther Resets
'1' = Bit is :	•	'0' = Bit is cle					
bit 7	Unimplemer	nted: Read as '	o'				
bit 6		D Interrupt Enat	ole bit				
		errupt enabled errupt disabled					
bit 5	COGIE: COG Auto-Shutdown Interrupt Enable bit						
1 = COG interrupt enabled							
	0 = COG int	errupt disabled					
bit 4		-Cross Detectio	n Interrupt Er	able bit			
		errupt enabled					
L:1 0		errupt disabled	- - - :4				
bit 3		C4 Interrupt Ena	adie dit				
		terrupt enabled terrupt disabled					
bit 2		C3 Interrupt Ena					
		terrupt enabled					
	0 = CLC3 in	terrupt disabled					
bit 1	CLC2IE: CLC	C2 Interrupt Ena	able bit				
		terrupt enabled					
		terrupt disabled					
bit 0		C1 Interrupt Ena	able bit				
		terrupt enabled terrupt disabled					
		ion upi disabled					
Note:	Bit PEIE of the IN	ITCON register	must be				
	set to enable any	peripheral inter	rupt.				

REGISTER 7-4: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

10.0 FLASH PROGRAM MEMORY CONTROL

The Flash program memory is readable and writable during normal operation over the full VDD range. Program memory is indirectly addressed using Special Function Registers (SFRs). The SFRs used to access program memory are:

- PMCON1
- PMCON2
- PMDATL
- PMDATH
- PMADRL
- PMADRH

When accessing the program memory, the PMDATH:PMDATL register pair forms a 2-byte word that holds the 14-bit data for read/write, and the PMADRH:PMADRL register pair forms a 2-byte word that holds the 15-bit address of the program memory location being read.

The write time is controlled by an on-chip timer. The write/erase voltages are generated by an on-chip charge pump rated to operate over the operating voltage range of the device.

The Flash program memory can be protected in two ways; by code protection (CP bit in Configuration Words) and write protection (WRT<1:0> bits in Configuration Words).

Code protection $(\overline{CP} = 0)^{(1)}$, disables access, reading and writing, to the Flash program memory via external device programmers. Code protection does not affect the self-write and erase functionality. Code protection can only be reset by a device programmer performing a Bulk Erase to the device, clearing all Flash program memory, Configuration bits and User IDs.

Write protection prohibits self-write and erase to a portion or all of the Flash program memory as defined by the bits WRT<1:0>. Write protection does not affect a device programmers ability to read, write or erase the device.

Note 1: Code protection of the entire Flash program memory array is enabled by clearing the CP bit of Configuration Words.

10.1 PMADRL and PMADRH Registers

The PMADRH:PMADRL register pair can address up to a maximum of 32K words of program memory. When selecting a program address value, the MSB of the address is written to the PMADRH register and the LSB is written to the PMADRL register.

10.1.1 PMCON1 AND PMCON2 REGISTERS

PMCON1 is the control register for Flash program memory accesses.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared by hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation to occur. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit and execute the appropriate error handling routine.

The PMCON2 register is a write-only register. Attempting to read the PMCON2 register will return all '0's.

To enable writes to the program memory, a specific pattern (the unlock sequence), must be written to the PMCON2 register. The required unlock sequence prevents inadvertent writes to the program memory write latches and Flash program memory.

10.2 Flash Program Memory Overview

It is important to understand the Flash program memory structure for erase and programming operations. Flash program memory is arranged in rows. A row consists of a fixed number of 14-bit program memory words. A row is the minimum size that can be erased by user software.

After a row has been erased, the user can reprogram all or a portion of this row. Data to be written into the program memory row is written to 14-bit wide data write latches. These write latches are not directly accessible to the user, but may be loaded via sequential writes to the PMDATH:PMDATL register pair.

Note: If the user wants to modify only a portion of a previously programmed row, then the contents of the entire row must be read and saved in RAM prior to the erase. Then, new data and retained data can be written into the write latches to reprogram the row of Flash program memory. However, any unprogrammed locations can be written without first erasing the row. In this case, it is not necessary to save and rewrite the other previously programmed locations.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	
bit 7	bit 7 bit 0							
Legend:								
Legena:								
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'		

REGISTER 11-14: ODCONB: PORTB OPEN-DRAIN CONTROL REGISTER

bit 7-0 **ODB<7:0>:** PORTB Open-Drain Enable bits For RB<7:0> pins, respectively 1 = Port pin operates as open-drain drive (sink current only)

'0' = Bit is cleared

0 = Port pin operates as standard push-pull drive (source and sink current)

REGISTER 11-15: SLRCONB: PORTB SLEW RATE CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| SLRB7 | SLRB6 | SLRB5 | SLRB4 | SLRB3 | SLRB2 | SLRB1 | SLRB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SLRB<7:0>: PORTB Slew Rate Enable bits

For RB<7:0> pins, respectively

1 = Port pin slew rate is limited

0 = Port pin slews at maximum rate

REGISTER 11-16: INLVLB: PORTB INPUT LEVEL CONTROL REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLB7 | INLVLB6 | INLVLB5 | INLVLB4 | INLVLB3 | INLVLB2 | INLVLB1 | INLVLB0 |
| bit 7 | | | | • | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

'1' = Bit is set

.

INLVLB<7:0>: PORTB Input Level Select bits

For RB<7:0> pins, respectively

1 = Port pin digital input operates with ST thresholds

0 = Port pin digital input operates with TTL thresholds

16.6 Comparator Positive Input Selection

Configuring the CxPCH<2:0> bits of the CMxCON1 register directs an internal voltage reference or an analog pin to the non-inverting input of the comparator:

- CxIN+ analog pin
- DAC output
- FVR (Fixed Voltage Reference)
- Vss (Ground)

See **Section 14.0** "Fixed Voltage Reference (FVR)" for more information on the Fixed Voltage Reference module.

See Section 23.0 "8-Bit Digital-to-Analog Converter (DAC1) Module" for more information on the DAC input signal.

Any time the comparator is disabled (CxON = 0), all comparator inputs are disabled.

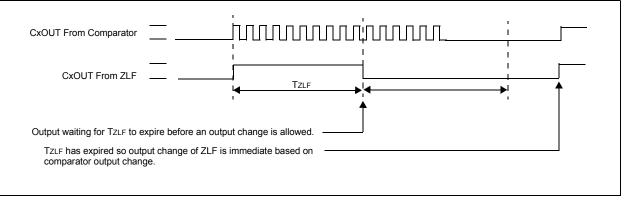
16.7 Comparator Negative Input Selection

The CxNCH<2:0> bits of the CMxCON1 register direct an analog input pin and internal reference voltage or analog ground to the inverting input of the comparator:

- CxIN- pin
- FVR (Fixed Voltage Reference)
- Analog Ground

Some inverting input selections share a pin with the operational amplifier output function. Enabling both functions at the same time will direct the operational amplifier output to the comparator inverting input.

Note: To use CxINy+ and CxINy- pins as analog input, the appropriate bits must be set in the ANSEL register and the corresponding TRIS bits must also be set to disable the output drivers.


16.8 Comparator Response Time

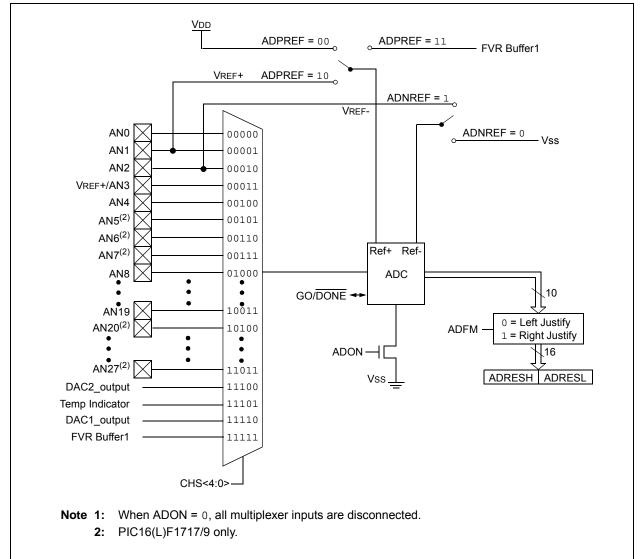
The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in Table 34-18: Comparator Specifications for more details.

16.9 Zero Latency Filter

In high-speed operation, and under proper circuit conditions, it is possible for the comparator output to oscillate. This oscillation can have adverse effects on the hardware and software relying on this signal. Therefore, a digital filter has been added to the comparator output to suppress the comparator output oscillation. Once the comparator output changes, the output is prevented from reversing the change for a nominal time of 20 ns. This allows the comparator output to stabilize without affecting other dependent devices. Refer to Figure 16-3.

FIGURE 16-3: COMPARATOR ZERO LATENCY FILTER OPERATION

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG4D4T	LCxG4D4N	LCxG4D3T	LCxG4D3N	LCxG4D2T	LCxG4D2N	LCxG4D1T	LCxG4D1N
bit 7		•		· · · · · · · · · · · · · · · · · · ·		•	bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7		Gate 4 Data 4 1		rted) bit			
		is gated into L0 is not gated int					
bit 6		Gate 4 Data 4		ted) bit			
bit o		is gated into L	•	ted) bit			
		is not gated int					
bit 5	LCxG4D3T: (Gate 4 Data 3 1	True (non-inve	rted) bit			
	1 = LCxD3T	is gated into L0	CxG4				
	0 = LCxD3T	is not gated int	o LCxG4				
bit 4		Gate 4 Data 3	•	rted) bit			
		is gated into L					
h # 0		is not gated inf		ate al \ h it			
bit 3		Gate 4 Data 2 1 is gated into L0	•	nted) bit			
		is not gated into L					
bit 2		Gate 4 Data 2		rted) bit			
		is gated into L	•	,			
	0 = LCxD2N	is not gated int	to LCxG4				
bit 1	LCxG4D1T: (Gate 4 Data 1 1	True (non-inve	rted) bit			
		is gated into LO					
		is not gated int					
bit 0		Gate 4 Data 1	•	rted) bit			
		is gated into Lo is not gated inf					
		ie not gated in					


REGISTER 19-10: CLCxGLS3: GATE 4 LOGIC SELECT REGISTER

21.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE

The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESH:ADRESL register pair). Figure 21-1 shows the block diagram of the ADC.

The ADC voltage reference is software selectable to be either internally generated or externally supplied.

The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep.

FIGURE 21-1: ADC BLOCK DIAGRAM

R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0
DAC2EN	_	DAC2OE1	DAC2OE2	DAC	2PSS<1:0>	_	DAC2NSS
bit 7		·					bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpl	emented bit, rea	ıd as '0'	
u = Bit is unch	nanged	x = Bit is unkr	iown	-n/n = Value	e at POR and B	OR/Value at all	other Resets
'1' = Bit is set	•	'0' = Bit is clea	ared				
bit 6 bit 5 bit 4	DAC2OE1 1 = DAC 0 = DAC DAC2OE2	s disabled ented: Read as '0 : DAC2 Voltage Ou voltage level is also voltage level is disc : DAC2 Voltage Ou voltage level is also	utput Enable bit o an output on t connected from utput Enable bit	the DAC2OU the DAC2OU t	JT1 pin		
bit 3-2	DAC2PSS				JT2 pin		
bit 1 bit 0	•	ented: Read as '0 : DAC2 Negative S		pits			

24.6 Register Definitions: DAC Control REGISTER 24-1: DAC2CON0: VOLTAGE REFERENCE CONTROL REGIST

REGISTER 24-2: DAC2CON1: VOLTAGE REFERENCE CONTROL REGISTER 1

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	_	—			DAC2R<4:	0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 DAC2R<4:0>: DAC Voltage Output Select bits

TABLE 24-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE DAC2 MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
DAC2CON0	DAC2EN	_	DAC2OE1	DAC2OE2	DAC2PSS<1:0>		_	DAC2NSS	263
DAC2CON1	_	_		DAC2R<4:0>					263

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used with the DAC module.

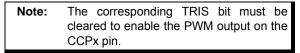
29.3 PWM Overview

Pulse-Width Modulation (PWM) is a scheme that provides power to a load by switching quickly between fully on and fully off states. The PWM signal resembles a square wave where the high portion of the signal is considered the on state and the low portion of the signal is considered the off state. The high portion, also known as the pulse width, can vary in time and is defined in steps. A larger number of steps applied, which lengthens the pulse width, also supplies more power to the load. Lowering the number of steps applied, which shortens the pulse width, supplies less power. The PWM period is defined as the duration of one complete cycle or the total amount of on and off time combined.

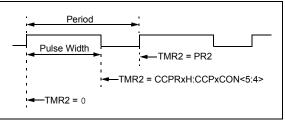
PWM resolution defines the maximum number of steps that can be present in a single PWM period. A higher resolution allows for more precise control of the pulse width time and in turn the power that is applied to the load.

The term duty cycle describes the proportion of the on time to the off time and is expressed in percentages, where 0% is fully off and 100% is fully on. A lower duty cycle corresponds to less power applied and a higher duty cycle corresponds to more power applied.

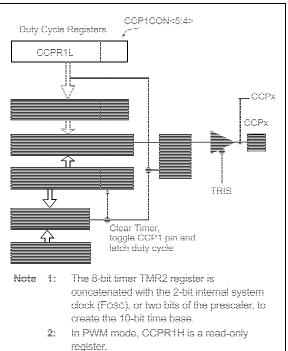
Figure 29-3 shows a typical waveform of the PWM signal.


29.3.1 STANDARD PWM OPERATION

The standard PWM function described in this section is available and identical for all CCP modules.


The standard PWM mode generates a Pulse-Width Modulation (PWM) signal on the CCPx pin with up to ten bits of resolution. The period, duty cycle, and resolution are controlled by the following registers:

- · PR2 registers
- T2CON registers
- CCPRxL registers
- CCPxCON registers


Figure 29-4 shows a simplified block diagram of PWM operation.

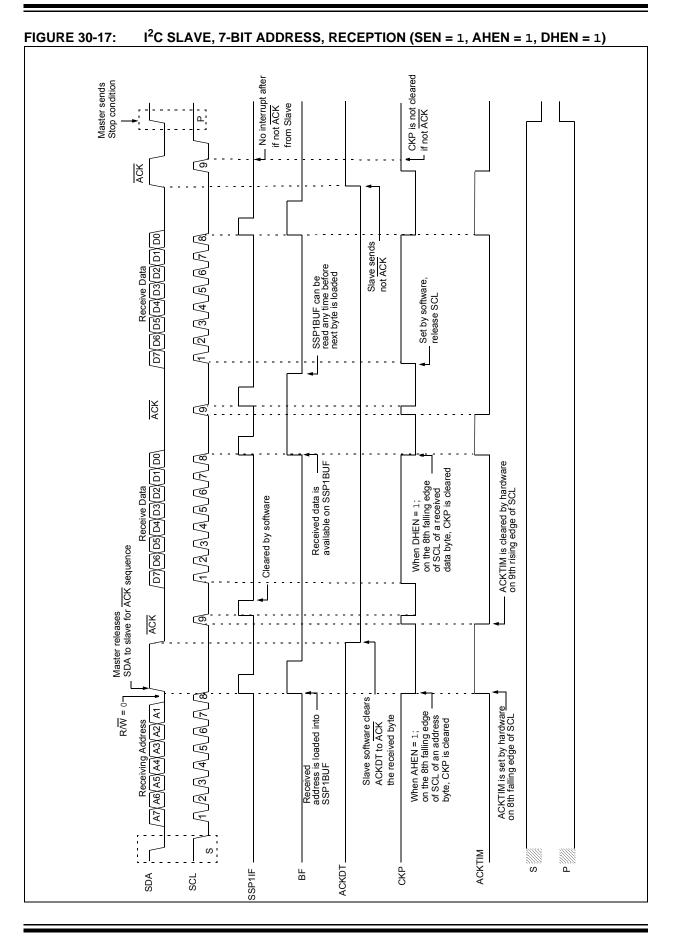

FIGURE 29-3: CCP PWM OUTPUT SIGNAL

FIGURE 29-4: SIMPLIFIED PWM BLOCK DIAGRAM

PIC16(L)F1717/8/9

30.5.4 SLAVE MODE 10-BIT ADDRESS RECEPTION

This section describes a standard sequence of events for the MSSP module configured as an I^2C slave in 10-bit Addressing mode.

Figure 30-20 is used as a visual reference for this description.

This is a step by step process of what must be done by slave software to accomplish I^2C communication.

- 1. Bus starts Idle.
- Master sends Start condition; S bit of SSP1STAT is set; SSP1IF is set if interrupt on Start detect is enabled.
- Master sends matching high address with R/W bit clear; UA bit of the SSP1STAT register is set.
- 4. Slave sends ACK and SSP1IF is set.
- 5. Software clears the SSP1IF bit.
- 6. Software reads received address from SSP1BUF clearing the BF flag.
- 7. Slave loads low address into SSP1ADD, releasing SCL.
- 8. Master sends matching low address byte to the slave; UA bit is set.

Note: Updates to the SSP1ADD register are not allowed until after the ACK sequence.

- 9. Slave sends ACK and SSP1IF is set.
- **Note:** If the low address does not match, SSP1IF and UA are still set so that the slave software can set SSP1ADD back to the high address. BF is not set because there is no match. CKP is unaffected.
- 10. Slave clears SSP1IF.
- 11. Slave reads the received matching address from SSP1BUF clearing BF.
- 12. Slave loads high address into SSP1ADD.
- Master clocks a data byte to the slave and clocks out the slaves ACK on the 9th SCL pulse; SSP1IF is set.
- 14. If SEN bit of SSP1CON2 is set, CKP is cleared by hardware and the clock is stretched.
- 15. Slave clears SSP1IF.
- 16. Slave reads the received byte from SSP1BUF clearing BF.
- 17. If SEN is set the slave sets CKP to release the SCL.
- 18. Steps 13-17 repeat for each received byte.
- 19. Master sends Stop to end the transmission.

30.5.5 10-BIT ADDRESSING WITH ADDRESS OR DATA HOLD

Reception using 10-bit addressing with AHEN or DHEN set is the same as with 7-bit modes. The only difference is the need to update the SSP1ADD register using the UA bit. All functionality, specifically when the CKP bit is cleared and SCL line is held low are the same. Figure 30-21 can be used as a reference of a slave in 10-bit addressing with AHEN set.

Figure 30-22 shows a standard waveform for a slave transmitter in 10-bit Addressing mode.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-0/0
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
bit 7		·					bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unc	hanged	x = Bit is unki	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set	t	'0' = Bit is cle	ared				
bit 7		Port Enable bi	t				
	1 = Serial po	rt enabled rt disabled (he	ld in Reset)				
bit 6		eceive Enable l					
bit o		-bit reception					
		B-bit reception					
bit 5	SREN: Single	e Receive Enal	ole bit				
	Asynchronou	<u>s mode</u> :					
	Don't care						
	-	mode – Maste	<u>r</u> :				
		single receive					
		single receive ared after rece	ntion is compl	ete			
		mode – Slave					
	Don't care						
bit 4	CREN: Conti	nuous Receive	Enable bit				
	Asynchronou	<u>s mode</u> :					
	1 = Enables	receiver					
	0 = Disables						
	Synchronous						
		continuous rec		ble bit CREN is	s cleared (CREN	I overrides SRI	±N)
bit 3	ADDEN: Add	ress Detect Er	able bit				
	Asynchronou	s mode 9-bit (F	RX9 = 1):				
	1 = Enables	address detect	ion, enable in	terrupt and loa	d the receive bu	ffer when RSR	<8> is set
				are received a	nd ninth bit can	be used as pa	rity bit
	-	<u>s mode 8-bit (F</u>	<u> (X9 = 0)</u> :				
	Don't care						
bit 2	FERR: Frami	-					
	1 = Framing 0 = No frami		pdated by rea	ading RC1REG	register and rec	ceive next valio	i byte)
bit 1	OERR: Over	•					
		error (can be c	leared by clea	aring bit CREN)		
	0 = No overr		,	-	-		
bit 0	RX9D: Ninth	bit of Received	Data				
					calculated by us		

REGISTER 31-2: RC1STA: RECEIVE STATUS AND CONTROL REGISTER

TABLE 34-2:	SUPPLY CURRENT ((IDD) ^(1,2)
-------------	------------------	------------------------

PIC16LF	-1717/8/9	Stand	ard Ope	rating C	ondition	s (unles	s otherwise stated)				
PIC16F1	717/8/9										
Param.	Device	Min.	Typ.†	Max.	Units		Conditions				
No.	Characteristics		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	maxi	enne	Vdd	Note				
D009	LDO Regulator	_	75		μA		High-Power mode, normal operation				
		—	15		μA	—	Sleep, VREGCON<1> = 0				
		_	0.3		μA	—	Sleep, VREGCON<1> = 1				
D010		_	8	—	μA	1.8	Fosc = 32 kHz,				
		—	12	-	μA	3.0	LP Oscillator mode (Note 4), -40°C ≤ TA ≤ +85°C				
D010		_	15		μA	2.3	Fosc = 32 kHz,				
		_	17		μA	3.0	LP Oscillator mode (Note 4, Note 5),				
			21		μA	5.0	-40°C ≤ TA ≤ +85°C				
D012		_	140	—	μA	1.8	Fosc = 4 MHz,				
		—	250		μA	3.0	XT Oscillator mode				
D012			210		μA	2.3	Fosc = 4 MHz,				
		_	280		μA	3.0	XT Oscillator mode (Note 5)				
			340		μΑ	5.0					
D014			115		μA	1.8	Fosc = 4 MHz,				
		—	210	—	μA	3.0	External Clock (ECM), Medium Power mode				
D014			180		μΑ	2.3	Fosc = 4 MHz,				
		_	240		μA	3.0	External Clock (ECM), Medium Power mode (Note 5)				
			300		μΑ	5.0					
D015			2.1	_	mA	3.0	Fosc = 32 MHz,				
			2.5	—	mA	3.6	External Clock (ECH), High-Power mode				
D015			2.1		mA	3.0	Fosc = 32 MHz,				
		-	2.2	—	mA	5.0	External Clock (ECH), High-Power mode (Note 5)				

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in $k\Omega$

4: FVR and BOR are disabled.

5: 0.1 μ F capacitor on VCAP.

6: 8 MHz clock with 4x PLL enabled.

TABLE 34-19: 8-BIT DIGITAL-TO-ANALOG CONVERTER (DAC) SPECIFICATIONS

VDD = 3.0V, TA = 25°C

See Section 35.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.

						•	
Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
DAC01*	Clsb	Step Size	—	VDD/256	_	V	
DAC02*	CACC	Absolute Accuracy		—	± 1.5	LSb	
DAC03*	CR	Unit Resistor Value (R)	_	600	_	Ω	
DAC04*	CST	Settling Time ⁽¹⁾	—	—	10	μS	

These parameters are characterized but not tested.

Note 1: Settling time measured while DACR<7:0> transitions from ' 0×00 ' to ' $0 \times FF$ '.

TABLE 34-20: 5-BIT DIGITAL-TO-ANALOG CONVERTER (DAC) SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated) $V_{DD} = 3.0V$, TA = 25°C

See Section 35.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.

Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
CLSB	Step Size	_	VDD/32	-	V	
CACC	Absolute Accuracy	—	—	± 0.5	LSb	
CR	Unit Resistor Value (R)	_	6000	_	Ω	
CST	Settling Time ⁽¹⁾	—	—	10	μS	
	CLSB CACC CR	CLSB Step Size CACC Absolute Accuracy CR Unit Resistor Value (R) CST Settling Time ⁽¹⁾	CLSB Step Size — CACC Absolute Accuracy — CR Unit Resistor Value (R) — CST Settling Time ⁽¹⁾ —	CLSB Step Size — VDD/32 CACC Absolute Accuracy — — CR Unit Resistor Value (R) — 6000 CST Settling Time ⁽¹⁾ — —	CLSB Step Size — VDD/32 — CACC Absolute Accuracy — — ± 0.5 CR Unit Resistor Value (R) — 6000 — CST Settling Time ⁽¹⁾ — — 10	CLSBStep Size—VDD/32—VCACCAbsolute Accuracy——± 0.5LSbCRUnit Resistor Value (R)—6000—ΩCSTSettling Time ⁽¹⁾ ——10µs

These parameters are characterized but not tested.

Note 1: Settling time measured while DACR<7:0> transitions from ' 0×00 ' to ' $0 \times FF$ '.

TABLE 34-21: ZERO-CROSS PIN SPECIFICATIONS

	Standard Operating Conditions (unless otherwise stated) VDD = 3.0V, TA = 25°C									
Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments			
ZC01	ZCPINV	Voltage on Zero-Cross Pin		0.75	_	V				
ZC02	ZCSRC	Source current	_	300	_	μA				
ZC03	ZCSNK	Sink current	_	300	_	μA				
ZC04	Zcisw	Response Time Rising Edge	_	1	_	μS				
		Response Time Falling Edge		1	_	μS				
ZC05	ZCOUT	Response Time Rising Edge	_	1	—	μS				
		Response Time Falling Edge	_	1	_	μS				

These parameters are characterized but not tested.

36.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

36.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

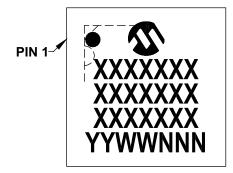
The emulator is field upgradeable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

36.8 MPLAB ICD 3 In-Circuit Debugger System

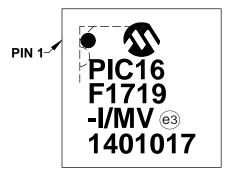
The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

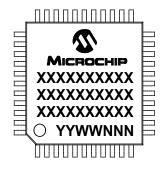
36.9 PICkit 3 In-Circuit Debugger/ Programmer


The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a full-speed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

36.10 MPLAB PM3 Device Programmer


The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

Package Marking Information (Continued)


40-Lead UQFN (5x5x0.5 mm)

Example

44-Lead TQFP (10x10x1 mm)

Example

Legend	: XXX Y YY WW NNN (©3) *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.	