

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	24
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b; D/A 1x5b, 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1718-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

configuration memory will be erased.

REGISTER 4-1: **CONFIG1: CONFIGURATION WORD 1 (CONTINUED)** bit 7 **CP:** Code Protection bit⁽¹⁾ 1 = Program memory code protection is disabled 0 = Program memory code protection is enabled MCLRE: MCLR/VPP Pin Function Select bit bit 6 If LVP bit = 1: This bit is ignored. If LVP bit = 0: 1 = MCLR/VPP pin function is MCLR; Weak pull-up enabled. 0 = MCLR/VPP pin function is digital input; MCLR internally disabled; Weak pull-up under control of WPUE3 bit. bit 5 **PWRTE:** Power-up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled bit 4-3 WDTE<1:0>: Watchdog Timer Enable bit 11 = WDT enabled 10 = WDT enabled while running and disabled in Sleep 01 = WDT controlled by the SWDTEN bit in the WDTCON register 00 = WDT disabled bit 2-0 FOSC<2:0>: Oscillator Selection bits 111 = ECH: External Clock, High-Power mode (4-20 MHz): device clock supplied to CLKIN pin 110 = ECM: External Clock, Medium Power mode (0.5-4 MHz): device clock supplied to CLKIN pin 101 = ECL: External Clock, Low-Power mode (0-0.5 MHz): device clock supplied to CLKIN pin 100 = INTOSC oscillator: I/O function on CLKIN pin 011 = EXTRC oscillator: External RC circuit connected to CLKIN pin 010 = HS oscillator: High-speed crystal/resonator connected between OSC1 and OSC2 pins 001 = XT oscillator: Crystal/resonator connected between OSC1 and OSC2 pins 000 = LP oscillator: Low-power crystal connected between OSC1 and OSC2 pins Note 1: The entire Flash program memory will be erased when the code protection is turned off during an erase. When a Bulk Erase Program Memory command is executed, the entire program Flash memory and

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	90
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS<2:0>			270
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	91
PIE2	OSFIE	C2IE	C1IE	_	BCL1IE	TMR6IE	TMR4IE	CCP2IE	92
PIE3	_	NCOIE	COGIE	ZCDIE	CLC4IE	CLC3IE	CLC2IE	CLC1IE	93
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	94
PIR2	OSFIF	C2IF	C1IF	—	BCL1IF	TMR6IF	TMR4IF	CCP2IF	95
PIR3	_	NCOIF	COGIF	ZCDIF	CLC4IF	CLC3IF	CLC2IF	CLC1IF	96

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupts.

12.8 Register Definitions: PPS Input Selection

REGISTER 12-1: xxxPPS: PERIPHERAL xxx INPUT SELECTION

U-0	U-0	U-0	R/W-q/u	R/W-q/u	R/W-q/u	R/W-q/u	R/W-q/u		
	—	—	xxxPPS<4:0>						
bit 7							bit 0		
Legend:									
R = Readabl	e bit	W = Writable b	bit	U = Unimplem	nented bit, read	as '0'			
u = Bit is und	changed	x = Bit is unkn	own	-n/n = Value a	t POR and BOF	R/Value at all ot	her Resets		
'1' = Bit is se	t	'0' = Bit is clea	red	q = value depends on peripheral					
bit 7-5	Unimplement	ted: Read as '0	9						
bit 4-3	xxxPPS<4:3>	·: Peripheral xxx	Input PORT	x Selection bits					
	See Table 12-	1 for the list of a	available ports	s for each peripl	heral.				
	11 = Peripher	al input is from	PORTD (PIC' PORTC	16(L)F1717/9 oi	nly)				
	01 = Peripher	al input is from	PORTB						
	00 = Peripher	al input is from	PORTA						
bit 2-0	xxxPPS<2:0>	·: Peripheral xxx	Input PORT	x Bit Selection b	oits				
	111 = Periphe	eral input is from	n PORTx Bit 7	′ (Rx7)					
	110 = Periphe	eral input is from	PORTx Bit 6	6 (Rx6)					
	101 = Periphe	eral input is from	PORTX Bit 5	(Rx5)					
	100 = Periphe	eral input is from		+ (RX4)					
	011 = Periphe	ral input is from		$P(\mathbf{R}_{\mathbf{X}})$					
	0.01 = Periphe	ral input is from	PORTy Bit 1	$(\mathbf{R}\mathbf{x}1)$					

000 = Peripheral input is from PORTx Bit 0 (Rx0)

Devinherel	Desister	PIC16(L)	F1717/8/9	PIC16(L)F1718	PIC16(L)F1717/9
Peripheral	Register	PORTA	PORTB	PORTC	PORTC	PORTD
PIN interrupt	INTPPS	•	•			
Timer0 clock	TOCKIPPS	•	•			
Timer1 clock	T1CKIPPS	•		•	•	
Timer1 gate	T1GPPS		•	•	٠	
CCP1	CCP1PPS		•	•	•	
CCP2	CCP2PPS		•	•	•	
COG	COGINPPS		•	•		•
MSSP	SSPCLKPPS		•	•	•	
MSSP	SSPDATPPS		•	•	•	
MSSP	SSPSSPPS	٠		•		•
EUSART	RXPPS		•	•	•	
EUSART	CKPPS		•	•	•	
All CLCs	CLCIN0PPS	•		•	•	
All CLCs	CLCIN1PPS	•		•	•	
All CLCs	CLCIN2PPS		•	•		•
All CLCs	CLCIN3PPS		•	•		•
Example: CCP1P	PS = 0x0B selects	s RB3 as the inp	ut to CCP1.			•

TABLE 12-1: AVAILABLE PORTS FOR INPUT BY PERIPHERAL

Note: Inputs are not available on all ports. A check in a port column of a peripheral row indicates that the port selection is valid for that peripheral. Unsupported ports will input a '0'.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all othe		ther Resets	
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 13-7: IOCCP: INTERRUPT-ON-CHANGE PORTC POSITIVE EDGE REGISTER

bit 7-0

bit 7-0

IOCCP<7:0>: Interrupt-on-Change PORTC Positive Edge Enable bits

1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCCFx bit and IOCIF flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 13-8: IOCCN: INTERRUPT-ON-CHANGE PORTC NEGATIVE EDGE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCCN7 | IOCCN6 | IOCCN5 | IOCCN4 | IOCCN3 | IOCCN2 | IOCCN1 | IOCCN0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

IOCCN<7:0>: Interrupt-on-Change PORTC Negative Edge Enable bits

1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCCFx bit and IOCIF flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 13-9: IOCCF: INTERRUPT-ON-CHANGE PORTC FLAG REGISTER

| R/W/HS-0/0 |
|------------|------------|------------|------------|------------|------------|------------|------------|
| IOCCF7 | IOCCF6 | IOCCF5 | IOCCF4 | IOCCF3 | IOCCF2 | IOCCF1 | IOCCF0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-0

IOCCF<7:0>: Interrupt-on-Change PORTC Flag bits

- 1 = An enabled change was detected on the associated pin.
 - Set when IOCCPx = 1 and a rising edge was detected on RCx, or when IOCCNx = 1 and a falling edge was detected on RCx.
- 0 = No change was detected, or the user cleared the detected change.

17.2 Register Definitions: PWM Control

REGIOTERT							
R/W-0/0	U-0	R-0/0	R/W-0/0	U-0	U-0	U-0	U-0
PWMxEN	—	PWMxOUT	PWMxPOL	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is unch	anged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other R			other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	PWMxEN: P\	VM Module En	able bit				
	1 = PWM mc	dule is enable	b				
	0 = PWM mc	dule is disable	d				
bit 6	Unimplemen	ted: Read as '	0'				
bit 5	PWMxOUT: F	PWM module o	utput level whe	en bit is read.			
bit 4	PWMxPOL:	PWMx Output F	Polarity Select	bit			
	1 = PWM out	tput is active lo	w.				
	0 = PWM out	tput is active hi	gh.				
bit 3-0	Unimplemen	ted: Read as '	0'				

REGISTER 17-1: PWMxCON: PWM CONTROL REGISTER

REGISTER 17-2: PWMxDCH: PWM DUTY CYCLE HIGH BITS

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | PWMxD | CH<7:0> | | | |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PWMxDCH<7:0>:** PWM Duty Cycle Most Significant bits These bits are the MSbs of the PWM duty cycle. The two LSbs are found in PWMxDCL Register.

REGISTER 17-3: PWMxDCL: PWM DUTY CYCLE LOW BITS

R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0	U-0	U-0
PWMxD0	CL<7:6>	—	—	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	PWMxDCL<7:6>: PWM Duty Cycle Least Significant bits
	These bits are the LSbs of the PWM duty cycle. The MSbs are found in PWMxDCH Register.
bit 5-0	Unimplemented: Read as '0'

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG1D4T	LCxG1D4N	LCxG1D3T	LCxG1D3N	LCxG1D2T	LCxG1D2N	LCxG1D1T	LCxG1D1N
bit 7	bit 7						bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, reac	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	LCxG1D4T: 0	Gate 1 Data 4 1	rue (non-inve	rted) bit			
	1 = LCxD4T	is gated into LC	CxG1				
	0 = LCxD41	is not gated int	o LCxG1				
bit 6	LCxG1D4N:	Gate 1 Data 4 I	Negated (invei	rted) bit			
	$\perp = LCxD4N$ 0 = LCxD4N	is not gated into L0	DXG1 rolCxG1				
bit 5	I CxG1D3T: (Sate 1 Data 3 T	rue (non-inve	rted) bit			
Sit O	1 = LCxD3T	is gated into L0	CxG1				
	0 = LCxD3T	is not gated int	o LCxG1				
bit 4	LCxG1D3N:	Gate 1 Data 3 I	Negated (inver	rted) bit			
	1 = LCxD3N	is gated into Lo	CxG1				
	0 = LCxD3N	is not gated int	o LCxG1				
bit 3	LCxG1D2T: (Gate 1 Data 2 T	rue (non-inve	rted) bit			
	1 = LCxD2T	is gated into LC	CxG1				
hit 2		Gato 1 Data 2 I	Vogatod (invo	rtod) bit			
DIL Z	1 = 1 C v D 2 N	is gated into I (vegateu (invei °vG1	neu) bli			
	0 = LCxD2N	is not gated into E	o LCxG1				
bit 1	LCxG1D1T: Gate 1 Data 1 True (non-inverted) bit						
1 = LCxD1T is gated into LCxG1							
	0 = LCxD1T is not gated into LCxG1						
bit 0	LCxG1D1N:	Gate 1 Data 1 I	Negated (inver	rted) bit			
	1 = LCxD1N	is gated into Lo	CxG1				
	0 = LCxD1N	is not gated int	o LCxG1				

REGISTER 19-7: CLCxGLS0: GATE 1 LOGIC SELECT REGISTER

20.2 Fixed Duty Cycle (FDC) Mode

In Fixed Duty Cycle (FDC) mode, every time the accumulator overflows (NCO_overflow), the output is toggled. This provides a 50% duty cycle, provided that the increment value remains constant. For more information, see Figure 20-2.

The FDC mode is selected by clearing the NxPFM bit in the NCOxCON register.

20.3 Pulse Frequency (PF) Mode

In Pulse Frequency (PF) mode, every time the accumulator overflows (NCO_overflow), the output becomes active for one or more clock periods. Once the clock period expires, the output returns to an inactive state. This provides a pulsed output.

The output becomes active on the rising clock edge immediately following the overflow event. For more information, see Figure 20-2.

The value of the active and inactive states depends on the polarity bit, NxPOL in the NCOxCON register.

The PF mode is selected by setting the NxPFM bit in the NCOxCON register.

20.3.1 OUTPUT PULSE WIDTH CONTROL

When operating in PF mode, the active state of the output can vary in width by multiple clock periods. Various pulse widths are selected with the NxPWS<2:0> bits in the NCOxCLK register.

When the selected pulse width is greater than the accumulator overflow time frame, the output of the NCOx operation is indeterminate.

20.4 Output Polarity Control

The last stage in the NCOx module is the output polarity. The NxPOL bit in the NCOxCON register selects the output polarity. Changing the polarity while the interrupts are enabled will cause an interrupt for the resulting output transition.

The NCOx output can be used internally by source code or other peripherals. Accomplish this by reading the NxOUT (read-only) bit of the NCOxCON register.

The NCOx output signal is available to the following peripherals:

- CLC
- CWG

20.5 Interrupts

When the accumulator overflows (NCO_overflow), the NCOx Interrupt Flag bit, NCOxIF, of the PIRx register is set. To enable the interrupt event (NCO_interrupt), the following bits must be set:

- NxEN bit of the NCOxCON register
- · NCOxIE bit of the PIEx register
- PEIE bit of the INTCON register
- · GIE bit of the INTCON register

The interrupt must be cleared by software by clearing the NCOxIF bit in the Interrupt Service Routine.

20.6 Effects of a Reset

All of the NCOx registers are cleared to zero as the result of a Reset.

20.7 Operation in Sleep

The NCO module operates independently from the system clock and will continue to run during Sleep, provided that the clock source selected remains active.

The HFINTOSC remains active during Sleep when the NCO module is enabled and the HFINTOSC is selected as the clock source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and the NCO clock source, when the NCO is enabled, the CPU will go idle during Sleep, but the NCO will continue to operate and the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current.

30.2.1 SPI MODE REGISTERS

The MSSP module has five registers for SPI mode operation. These are:

- MSSP STATUS register (SSP1STAT)
- MSSP Control register 1 (SSP1CON1)
- MSSP Control register 3 (SSP1CON3)
- MSSP Data Buffer register (SSP1BUF)
- MSSP Address register (SSP1ADD)
- MSSP Shift register (SSP1SR)
- (Not directly accessible)

SSP1CON1 and SSP1STAT are the control and STA-TUS registers in SPI mode operation. The SSP1CON1 register is readable and writable. The lower six bits of the SSP1STAT are read-only. The upper two bits of the SSP1STAT are read/write.

In one SPI master mode, SSP1ADD can be loaded with a value used in the Baud Rate Generator. More information on the Baud Rate Generator is available in **Section 30.7 "Baud Rate Generator"**.

SSP1SR is the shift register used for shifting data in and out. SSP1BUF provides indirect access to the SSP1SR register. SSP1BUF is the buffer register to which data bytes are written, and from which data bytes are read.

In receive operations, SSP1SR and SSP1BUF together create a buffered receiver. When SSP1SR receives a complete byte, it is transferred to SSP1BUF and the SSP1IF interrupt is set.

During transmission, the SSP1BUF is not buffered. A write to SSP1BUF will write to both SSP1BUF and SSP1SR.

30.2.2 SPI MODE OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSP1CON1<5:0> and SSP1STAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- · Slave Select mode (Slave mode only)

To enable the serial port, SSP Enable bit, SSPEN of the SSP1CON1 register, must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, re-initialize the SSP1CONx registers and then set the <u>SSPEN</u> bit. This configures the SDI, SDO, SCK and <u>SS</u> pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed as follows:

- · SDI must have corresponding TRIS bit set
- SDO must have corresponding TRIS bit cleared
 SCK (Master mode) must have corresponding
- TRIS bit cleared
- SCK (Slave mode) must have corresponding <u>TRIS</u> bit set
- SS must have corresponding TRIS bit set

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value.

30.5.2 SLAVE RECEPTION

When the R/\overline{W} bit of a matching received address byte is clear, the R/\overline{W} bit of the SSP1STAT register is cleared. The received address is loaded into the SSP1BUF register and acknowledged.

When the overflow condition exists for a received address, then not Acknowledge is given. An overflow condition is defined as either bit BF of the SSP1STAT register is set, or bit SSPOV of the SSP1CON1 register is set. The BOEN bit of the SSP1CON3 register modifies this operation. For more information see Register 30-4.

An MSSP interrupt is generated for each transferred data byte. Flag bit, SSP1IF, must be cleared by software.

When the SEN bit of the SSP1CON2 register is set, SCL will be held low (clock stretch) following each received byte. The clock must be released by setting the CKP bit of the SSP1CON1 register, except sometimes in 10-bit mode. See **Section 30.5.6.2 "10-Bit Addressing Mode"** for more detail.

30.5.2.1 7-Bit Addressing Reception

This section describes a standard sequence of events for the MSSP module configured as an I^2C slave in 7-bit Addressing mode. Figure 30-14 and Figure 30-15 is used as a visual reference for this description.

This is a step by step process of what typically must be done to accomplish $\mathsf{I}^2\mathsf{C}$ communication.

- 1. Start bit detected.
- 2. S bit of SSP1STAT is set; SSP1IF is set if interrupt on Start detect is enabled.
- 3. Matching address with R/W bit clear is received.
- 4. The slave pulls SDA low sending an ACK to the master, and sets SSP1IF bit.
- 5. Software clears the SSP1IF bit.
- 6. Software reads received address from SSP1BUF clearing the BF flag.
- 7. If SEN = 1; Slave software sets CKP bit to release the SCL line.
- 8. The master clocks out a data byte.
- 9. Slave drives SDA low sending an ACK to the master, and sets SSP1IF bit.
- 10. Software clears SSP1IF.
- 11. Software reads the received byte from SSP1BUF clearing BF.
- 12. Steps 8-12 are repeated for all received bytes from the master.
- 13. Master sends Stop condition, setting P bit of SSP1STAT, and the bus goes idle.

30.5.2.2 7-Bit Reception with AHEN and DHEN

Slave device reception with AHEN and DHEN set operate the same as without these options with extra interrupts and clock stretching added after the eighth falling edge of SCL. These additional interrupts allow the slave software to decide whether it wants to ACK the receive address or data byte, rather than the hardware. This functionality adds support for PMBus™ that was not present on previous versions of this module.

This list describes the steps that need to be taken by slave software to use these options for I^2C communication. Figure 30-16 displays a module using both address and data holding. Figure 30-17 includes the operation with the SEN bit of the SSP1CON2 register set.

- 1. S bit of SSP1STAT is set; SSP1IF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit clear is clocked in. SSP1IF is set and CKP cleared after the eighth falling edge of SCL.
- 3. Slave clears the SSP1IF.
- Slave can look at the ACKTIM bit of the SSP1CON3 register to determine if the SSP1IF was after or before the ACK.
- 5. Slave reads the address value from SSP1BUF, clearing the BF flag.
- 6. Slave sets ACK value clocked out to the master by setting ACKDT.
- 7. Slave releases the clock by setting CKP.
- 8. SSP1IF is set after an ACK, not after a NACK.
- 9. If SEN = 1 the slave hardware will stretch the clock after the ACK.
- 10. Slave clears SSP1IF.

Note: SSP1IF is still set after the 9th falling edge of SCL even if there is no clock stretching and BF has been cleared. Only if NACK is sent to master is SSP1IF not set

- 11. SSP1IF set and CKP cleared after eighth falling edge of SCL for a received data byte.
- 12. Slave looks at ACKTIM bit of SSP1CON3 to determine the source of the interrupt.
- 13. Slave reads the received data from SSP1BUF clearing BF.
- 14. Steps 7-14 are the same for each received data byte.
- 15. Communication is ended by either the slave sending an ACK = 1, or the master sending a Stop condition. If a Stop is sent and Interrupt on Stop Detect is disabled, the slave will only know by polling the P bit of the SSTSTAT register.

30.6.13.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level (Case 1).
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1' (Case 2).

When the user releases SDA and the pin is allowed to float high, the BRG is loaded with SSP1ADD and counts down to zero. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled. If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 30-36). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 30-37.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 30-36: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
ANSELB	—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	131
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	—	—	136
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	90
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	91
PIE2	OSFIE	C2IE	C1IE	_	BCL1IE	TMR6IE	TMR4IE	CCP2IE	92
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	94
PIR2	OSFIF	C2IF	C1IF	_	BCL1IF	TMR6IF	TMR4IF	CCP2IF	95
RxyPPS	_	_	RxyPPS<4:0>					153	
SSPCLKPPS	—	—	-	- SSPCLKPPS<4:0>					152
SSPDATPPS	— — — SSPDATPPS<4:0>					152			
SSP1ADD	ADD<7:0>						350		
SSP1BUF	Synchronous Serial Port Receive Buffer/Transmit Register					299*			
SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSPN	/<3:0>		346
SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	348
SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	349
SSP1MSK	MSK<7:0>					350			
SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	345
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	130
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	135

TABLE 30-3:	SUMMARY OF REGISTERS ASSOCIATED WITH I ² C OPERATION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the MSSP module in I²C mode. * Page provides register information.

31.6 EUSART Operation During Sleep

The EUSART will remain active during Sleep only in the Synchronous Slave mode. All other modes require the system clock and therefore cannot generate the necessary signals to run the Transmit or Receive Shift registers during Sleep.

Synchronous Slave mode uses an externally generated clock to run the Transmit and Receive Shift registers.

31.6.1 SYNCHRONOUS RECEIVE DURING SLEEP

To receive during Sleep, all the following conditions must be met before entering Sleep mode:

- RC1STA and TX1STA Control registers must be configured for Synchronous Slave Reception (see Section 31.5.2.4 "Synchronous Slave Reception Setup").
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- The RCIF interrupt flag must be cleared by reading RC1REG to unload any pending characters in the receive buffer.

Upon entering Sleep mode, the device will be ready to accept data and clocks on the RX/DT and TX/CK pins, respectively. When the data word has been completely clocked in by the external device, the RCIF interrupt flag bit of the PIR1 register will be set. Thereby, waking the processor from Sleep.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the Global Interrupt Enable (GIE) bit of the INTCON register is also set, then the Interrupt Service Routine at address 004h will be called.

31.6.2 SYNCHRONOUS TRANSMIT DURING SLEEP

To transmit during Sleep, all the following conditions must be met before entering Sleep mode:

- The RC1STA and TX1STA Control registers must be configured for synchronous slave transmission (see Section 31.5.2.2 "Synchronous Slave Transmission Setup").
- The TXIF interrupt flag must be cleared by writing the output data to the TX1REG, thereby filling the TSR and transmit buffer.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the PEIE bit of the INTCON register.

Upon entering Sleep mode, the device will be ready to accept clocks on TX/CK pin and transmit data on the RX/DT pin. When the data word in the TSR has been completely clocked out by the external device, the pending byte in the TX1REG will transfer to the TSR and the TXIF flag will be set. Thereby, waking the processor from Sleep. At this point, the TX1REG is available to accept another character for transmission, which will clear the TXIF flag.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the Global Interrupt Enable (GIE) bit is also set then the Interrupt Service Routine at address 0004h will be called.

BCF	Bit Clear f
Syntax:	[label]BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label]BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

Bit Test f, Skip if Set

If bit 'b' in register 'f' is '0', the next

 $0 \le f \le 127$ $0 \le b < 7$ skip if (f) = 1

None

BRA	Relative Branch	BTFSS
Syntax:	[label] BRA label	Syntax:
	[<i>label</i>]BRA \$+k	Operands:
Operands:	-256 \leq label - PC + 1 \leq 255	
	$-256 \le k \le 255$	Operation:
Operation:	$(PC) + 1 + k \rightarrow PC$	Status Affected:
Status Affected:	None	Description:
Description:	Add the signed 9-bit literal 'k' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + k. This instruction is a 2-cycle instruction. This branch has a	·
	limited range.	

BRW	Relative Branch with W		
Syntax:			
Operands:	None		
Operation:	$(PC) + (W) \rightarrow PC$		
Status Affected:	None		
Description:	Add the contents of W (unsigned) to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be		

2-cycle instruction.

PC + 1 + (W). This instruction is a

BSF	Bit Set f
Syntax:	[label] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

 instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle
Instruction.

TABLE 34-4: I/O PORTS (CONTINUED)

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions		
	IPUR	Neak Pull-up Current							
D070*			25	100	200	μA	VDD = 3.3V, VPIN = Vss		
			25	140	300	μA	VDD = 5.0V, VPIN = Vss		
	Vol	Output Low Voltage ⁽⁴⁾							
D080		I/O ports	_	—	0.6	V	IOL = 8mA, VDD = 5V IOL = 6mA, VDD = 3.3V IOL = 1.8mA, VDD = 1.8V		
	Voh	Output High Voltage ⁽⁴⁾							
D090		I/O ports	Vdd - 0.7	—	_	V	IOH = 3.5mA, VDD = 5V IOH = 3mA, VDD = 3.3V IOH = 1mA, VDD = 1.8V		
		Capacitive Loading Specs on Output Pins							
D101*	COSC2	OSC2 pin	_		15	pF	In XT, HS and LP modes when external clock is used to drive OSC1		
D101A*	Сю	All I/O pins	_	—	50	pF	_		

Standard Operating Conditions (unless otherwise stated)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in EXTRC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

FIGURE 34-7: CLKOUT AND I/O TIMING

TABLE 34-10:	CLKOUT	AND I/O	TIMING	PARAMETERS
--------------	--------	---------	--------	------------

Standard Operating Conditions (unless otherwise stated)							
Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions
OS11	TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾	—		70	ns	$3.3V \le V\text{DD} \le 5.0V$
OS12	TosH2ckH	Fosc↑ to CLKOUT↑ ⁽¹⁾	—		72	ns	$3.3V \le V\text{DD} \le 5.0V$
OS13	TckL2IoV	CLKOUT↓ to Port out valid ⁽¹⁾	—		20	ns	
OS14	ТюV2скН	Port input valid before CLKOUT ⁽¹⁾	Tosc + 200 ns		—	ns	
OS15	TosH2IoV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70*	ns	$3.3V \le V\text{DD} \le 5.0V$
OS16	TosH2ıol	Fosc↑ (Q2 cycle) to Port input invalid (I/O in hold time)	50			ns	$3.3V \leq V\text{DD} \leq 5.0V$
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20			ns	
OS18*	TIOR	Port output rise time ⁽²⁾		40 15	72 32	ns	$\begin{array}{l} VDD \mbox{=} \mbox{1.8V} \\ 3.3V \le VDD \le 5.0V \end{array}$
OS19*	TIOF	Port output fall time ⁽²⁾		28 15	55 30	ns	$\begin{array}{l} VDD = 1.8V \\ 3.3V \leq VDD \leq 5.0V \end{array}$
OS20*	TINP	INT pin input high or low time	25	_	—	ns	
OS21*	TIOC	Interrupt-on-Change new input level time	25	_		ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated.

Note 1: Measurements are taken in EXTRC mode where CLKOUT output is 4 x Tosc.

2: Slew rate limited.

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 35-26: IDD Maximum, HFINTOSC Mode, PIC16F1717/8/9 Only.

FIGURE 35-27: IDD Typical, HS Oscillator, 25°C, PIC16LF1717/8/9 Only.

FIGURE 35-28: IDD Maximum, HS Oscillator, PIC16LF1717/8/9 Only.

FIGURE 35-29: IDD Typical, HS Oscillator, 25°C, PIC16F1717/8/9 Only.

FIGURE 35-30: IDD Maximum, HS Oscillator, PIC16F1717/8/9 Only.

Package Marking Information (Continued)

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	In the even be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E	0.65 BSC			
Optional Center Pad Width	W2			4.70	
Optional Center Pad Length	T2			4.70	
Contact Pad Spacing	C1		6.00		
Contact Pad Spacing	C2		6.00		
Contact Pad Width (X28)	X1			0.40	
Contact Pad Length (X28)	Y1			0.85	
Distance Between Pads		0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A