

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	24
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b; D/A 1x5b, 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1718-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1: 28-PIN ALLOCATION TABLE (PIC16(L)F1718) (CONTINUED)

								(- · ()		-					'																	
I/O ⁽²⁾	SPDIP,SOIC, SSOP	QFN, UQFN	ADC	Reference		Comparator	Op Amp	DAC	Zero Cross		Timers		auu	5	NCO	MM			900			MSSP			EUSAKI		ر د			Interrupt	Pull-up	Basic
RC4	15	12	AN16																				DI ⁽¹⁾ DA ⁽¹⁾							IOC	Υ	
RC5	16	13	AN17																											IOC	Υ	
RC6	17	14	AN18																					С	K ⁽³⁾					IOC	Υ	
RC7	18	15	AN19																					R	X ⁽³⁾					- IQC -	Υ	
RE3	1	26																												юс	Y	MCLR V _{PP}
V _{DD}	20	17																														V _{DD}
V _{SS}	8	5																														V_{SS}
V SS	19	16																														
OUT ⁽⁴⁾					CIOUT	C2OUT							CCP1	CCP2	NCO10UT	PWM3OUT	PWM40UT	COG1A	COG1B	COG1C	C0G1D SDA ⁽³⁾	SCK/SCI ⁽³⁾	SDO	TX/CK	DT ⁽³⁾	CLC40UT	CLC3OUT	CLC2OUT	CLC10UT			
IN ⁽⁵⁾										T1G	T1CKI	TOCKI	CCP1	CCP2					COG1IN			SCK/SCI ⁽³⁾	SS	RX ⁽³⁾	сĶ	CLCINO	CLCIN1	CLCIN2	CLCIN3	INT		

Note 1: Default peripheral input. Alternate pins can be selected as the peripheral input with the PPS input selection registers.

2: All pin digital outputs default to PORT latch data. Alternate outputs can be selected as the peripheral digital output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

4: Alternate outputs are excluded from solid shaded areas.

5: Alternate inputs are excluded from dot shaded areas.

Name	Function	Input Type	Output Type	Description
RB1/AN10/C1IN3-/C2IN3-/	RB1	TTL/ST	CMOS	General purpose I/O.
OPA2OUT	AN10	AN	_	ADC Channel 10 input.
	C1IN3-	AN	—	Comparator C1 negative input.
	C2IN3-	AN	—	Comparator C2 negative input.
	OPA2OUT		AN	Operational Amplifier 2 output.
RB2/AN8/OPA2IN-	RB2	TTL/ST	CMOS	General purpose I/O.
	AN8	AN	_	ADC Channel 8 input.
	OPA2IN-	AN	—	Operational Amplifier 2 inverting input.
RB3/AN9/C1IN2-/C2IN2-/	RB3	TTL/ST	CMOS	General purpose I/O.
OPA2IN+	AN9	AN	_	ADC Channel 9 input.
	C1IN2-	AN	_	Comparator C1 negative input.
	C2IN2-	AN	_	Comparator C2 negative input.
	OPA2IN+	AN	_	Operational Amplifier 2 non-inverting input.
RB4/AN11	RB4	TTL/ST	CMOS	General purpose I/O.
	AN11	AN	_	ADC Channel 11 input.
RB5/AN13/T1G ⁽¹⁾	RB5	TTL/ST	CMOS	General purpose I/O.
	AN13	AN		ADC Channel 13 input.
	T1G	TTL/ST		Timer1 gate input.
RB6/CLCIN2 ⁽¹⁾ /ICSPCLK	RB6	TTL/ST	CMOS	General purpose I/O.
	CLCIN2	TTL/ST		Configurable Logic Cell source input.
	ICSPCLK	ST		Serial Programming Clock.
RB7/DAC1OUT2/DAC2OUT2/	RB7	TTL/ST	CMOS	General purpose I/O.
CLCIN3 ⁽¹⁾ /ICSPDAT	DAC1OUT2	_	AN	Digital-to-Analog Converter output.
	DAC2OUT2	_	AN	Digital-to-Analog Converter output.
	CLCIN3	TTL/ST		Configurable Logic Cell source input.
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.
RC0/T1CKI ⁽¹⁾ /SOSCO	RC0	TTL/ST	CMOS	General purpose I/O.
	T1CKI	ST		Timer1 clock input.
	SOSCO	XTAL	XTAL	Secondary Oscillator Connection.
RC1/SOSCI/CCP2 ⁽¹⁾	RC1	TTL/ST	CMOS	General purpose I/O.
	SOSCI	XTAL	XTAL	Secondary Oscillator Connection.
	CCP2	TTL/ST		Capture input.
RC2/AN14/CCP1 ⁽¹⁾	RC2	TTL/ST	CMOS	General purpose I/O.
	AN14	AN	_	ADC Channel 14 input.
	CCP1	TTL/ST	_	Capture input.
RC3/AN15/SCK ⁽¹⁾ /SCL ⁽¹⁾	RC3	TTL/ST	CMOS	General purpose I/O.
	AN15	AN	—	ADC Channel 15 input.
	SCK	TTL/ST	—	SPI clock input.
	0.01	120		

OD **Legend:** AN = Analog input or output CMOS = CMOS compatible input or output OD = Open-Drain = Schmitt Trigger input with CMOS levels I^2C = Schmitt Trigger input with I^2C TTL = TTL compatible input ST

l²C

SCL

HV = High Voltage XTAL = Crystal levels

Note 1: Default peripheral input. Alternate pins can be selected as the peripheral input with the PPS input selection registers. 2: All pin digital outputs default to PORT latch data. Alternate outputs can be selected as the peripheral digital output with the PPS output selection registers.

I²C clock.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

PIC16(L)F1717/8/9

	.E 3-12: S	1					CONTINU			1	i
Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 2	9	•								•	
E8Ch											
 E8Fh	_	Unimplemen	ited							_	—
E90h	RA0PPS	_	_	_			RA0PPS<4:0	>		0 0000	u uuuu
E91h	RA1PPS	—	_	—			RA1PPS<4:0	>		0 0000	u uuuu
E92h	RA2PPS	_	_	_			RA2PPS<4:0	>		0 0000	u uuuu
E93h	RA3PPS	_	_	—			RA3PPS4:0	>		0 0000	u uuuu
E94h	RA4PPS	_	—	—			RA4PPS<4:0	>		0 0000	u uuuu
E95h	RA5PPS	—	_	—			RA5PPS<4:0	>		0 0000	u uuuu
E96h	RA6PPS	—	—	—			RA6PPS<4:0	>		0 0000	u uuuu
E97h	RA7PPS	—	—	—			RA7PPS<4:0	>		0 0000	u uuuu
E98h	RB0PPS	—	—	—			RB0PPS<4:0	>		0 0000	u uuuu
E99h	RB1PPS	—	—	—			RB1PPS<4:0			0 0000	u uuuu
E9Ah	RB2PPS	—	—	—			RB2PPS<4:0			0 0000	u uuuu
E9Bh	RB3PPS	-	-	_			RB3PPS<4:0			0 0000	u uuuu
E9Ch	RB4PPS	—	_	_			RB4PPS<4:0			0 0000	u uuuu
E9Dh	RB5PPS	_	_	_			RB5PPS<4:0			0 0000	u uuuu
E9Eh	RB6PPS	—	_	_			RB6PPS<4:0			0 0000	u uuuu
E9Fh	RB7PPS	—	_	_			RB7PPS<4:0			0 0000	u uuuu
EA0h	RC0PPS	_	—	—			RC0PPS<4:0			0 0000	u uuuu
EA1h	RC1PPS	_	—	—			RC1PPS<4:0			0 0000	u uuuu
EA2h	RC2PPS	_	—	—			RC2PPS<4:0			0 0000	u uuuu
EA3h	RC3PPS	_	—	—			RC3PPS<4:0			0 0000	u uuuu
EA4h	RC4PPS	_	—	—			RC4PPS<4:0			0 0000	u uuuu
EA5h	RC5PPS	—	—	—			RC5PPS<4:0			0 0000	u uuuu
EA6h	RC6PPS	_	—	—			RC6PPS<4:0			0 0000	u uuuu
EA7h	RC7PPS	-	_	—			RC7PPS<4:0)>		0 0000	u uuuu
EA8h	RD0PPS ⁽¹⁾	—	—	—			RD0PPS<4:0)>		0 0000	u uuuu
EA9h	RD1PPS ⁽¹⁾	—	—	_			RD1PPS<4:0)>		0 0000	u uuuu
EAAh	RD2PPS ⁽¹⁾	—	—	—			RD2PPS<4:0)>		0 0000	u uuuu
EABh	RD3PPS ⁽¹⁾	-	_	—			RD3PPS<4:0)>		0 0000	u uuuu
EACh	RD4PPS ⁽¹⁾	_	_	_			RD4PPS<4:0)>		0 0000	u uuuu
EADh	RD5PPS ⁽¹⁾	_	_	_			RD5PPS<4:0)>		0 0000	u uuuu
EAEh	RD6PPS ⁽¹⁾	_		_			RD6PPS<4:0			0 0000	u uuuu
EAFh			_				RD7PPS<4:0			0 0000	u uuuu
	RD7PPS ⁽¹⁾	—									
EB0h	RE0PPS ⁽¹⁾	—	_	_			RE0PPS<4:0			0 0000	u uuuu
EB1h	RE1PPS ⁽¹⁾	-	—	—			RE1PPS<4:0			0 0000	u uuuu
EB2h	RE2PPS ⁽¹⁾	—	—	—			RE2PPS<4:0	>		0 0000	u uuuu
EB3h	_	Unimplemen	ited								
 EEFh	_	onimpierrier	iteu								_

TABLE 3-12: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend:

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: Unimplemented on PIC16(L)F1718.

2: Unimplemented on PIC16LF1717/8/9

4.3 Code Protection

Code protection allows the device to be protected from unauthorized access. Program memory protection is controlled independently. Internal access to the program memory is unaffected by any code protection setting.

4.3.1 PROGRAM MEMORY PROTECTION

The entire program memory space is protected from external reads and writes by the \overline{CP} bit in Configuration Words. When $\overline{CP} = 0$, external reads and writes of program memory are inhibited and a read will return all '0's. The CPU can continue to read program memory, regardless of the protection bit settings. Writing the program memory is dependent upon the write protection setting. See **Section 4.4** "Write **Protection**" for more information.

4.4 Write Protection

Write protection allows the device to be protected from unintended self-writes. Applications, such as boot loader software, can be protected while allowing other regions of the program memory to be modified.

The WRT<1:0> bits in Configuration Words define the size of the program memory block that is protected.

4.5 User ID

Four memory locations (8000h-8003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are readable and writable during normal execution. See **Section 10.4 "User ID, Device ID and Configuration Word Access"** for more information on accessing these memory locations. For more information on checksum calculation, see the *"PIC16(L)F170X Memory Programming Specification"* (DS41683).

4.6 Device ID and Revision ID

The 14-bit device ID word is located at 8006h and the 14-bit revision ID is located at 8005h. These locations are read-only and cannot be erased or modified. See **Section 10.4 "User ID, Device ID and Configuration Word Access**" for more information on accessing these memory locations.

Development tools, such as device programmers and debuggers, may be used to read the Device ID and Revision ID.

10.4 User ID, Device ID and Configuration Word Access

Instead of accessing program memory, the User ID's, Device ID/Revision ID and Configuration Words can be accessed when CFGS = 1 in the PMCON1 register. This is the region that would be pointed to by PC<15> = 1, but not all addresses are accessible. Different access may exist for reads and writes. Refer to Table 10-2.

When read access is initiated on an address outside the parameters listed in Table 10-2, the PMDATH:PMDATL register pair is cleared, reading back '0's.

TABLE 10-2:USER ID, DEVICE ID AND CONFIGURATION WORD ACCESS (CFGS = 1)

Address	Function	Read Access	Write Access
8000h-8003h	User IDs	Yes	Yes
8005h-8006h	Device ID/Revision ID	Yes	No
8007h-8008h	Configuration Words 1 and 2	Yes	No

EXAMPLE 10-4: CONFIGURATION WORD AND DEVICE ID ACCESS

* PROG_ADD		1 word of program memory at the memory address: Dh-08h) data will be returned in the variables; LO
BANKSEL MOVLW MOVWF CLRF	PMADRL PROG_ADDR_LO PMADRL PMADRH	; Select correct Bank ; ; Store LSB of address ; Clear MSB of address
BSF BCF BSF NOP NOP BSF	INTCON, GIE	<pre>; Select Configuration Space ; Disable interrupts ; Initiate read ; Executed (See Figure 10-2) ; Ignored (See Figure 10-2) ; Restore interrupts</pre>
MOVF MOVWF MOVF MOVWF	PROG_DATA_LO	; Get MSB of word

U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0
bit 7		•					bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 11-12: ANSELB: PORTB ANALOG SELECT REGISTER

 bit 7-6
 Unimplemented: Read as '0'

 bit 5-0
 ANSB<5:0>: Analog Select between Analog or Digital Function on Pins RB<5:0>, respectively

 0 = Digital I/O. Pin is assigned to port or digital special function.
 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

REGISTER 11-13: WPUB: WEAK PULL-UP PORTB REGISTER^(1,2)

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| WPUB7 | WPUB6 | WPUB5 | WPUB4 | WPUB3 | WPUB2 | WPUB1 | WPUB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 WPUB<7:0>: Weak Pull-up Register bits

- 1 = Pull-up enabled
- 0 = Pull-up disabled
- **Note 1:** Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.
 - **2:** The weak pull-up device is automatically disabled if the pin is configured as an output.

13.0 INTERRUPT-ON-CHANGE

All pins on all ports can be configured to operate as Interrupt-on-Change (IOC) pins. An interrupt can be generated by detecting a signal that has either a rising edge or a falling edge. Any individual pin, or combination of pins, can be configured to generate an interrupt. The interrupt-on-change module has the following features:

- Interrupt-on-Change enable (Master Switch)
- Individual pin configuration
- Rising and falling edge detection
- Individual pin interrupt flags

Figure 13-1 is a block diagram of the IOC module.

13.1 Enabling the Module

To allow individual pins to generate an interrupt, the IOCIE bit of the INTCON register must be set. If the IOCIE bit is disabled, the edge detection on the pin will still occur, but an interrupt will not be generated.

13.2 Individual Pin Configuration

For each pin, a rising edge detector and a falling edge detector are present. To enable a pin to detect a rising edge, the associated bit of the IOCxP register is set. To enable a pin to detect a falling edge, the associated bit of the IOCxN register is set.

A pin can be configured to detect rising and falling edges simultaneously by setting the associated bits in both of the IOCxP and IOCxN registers.

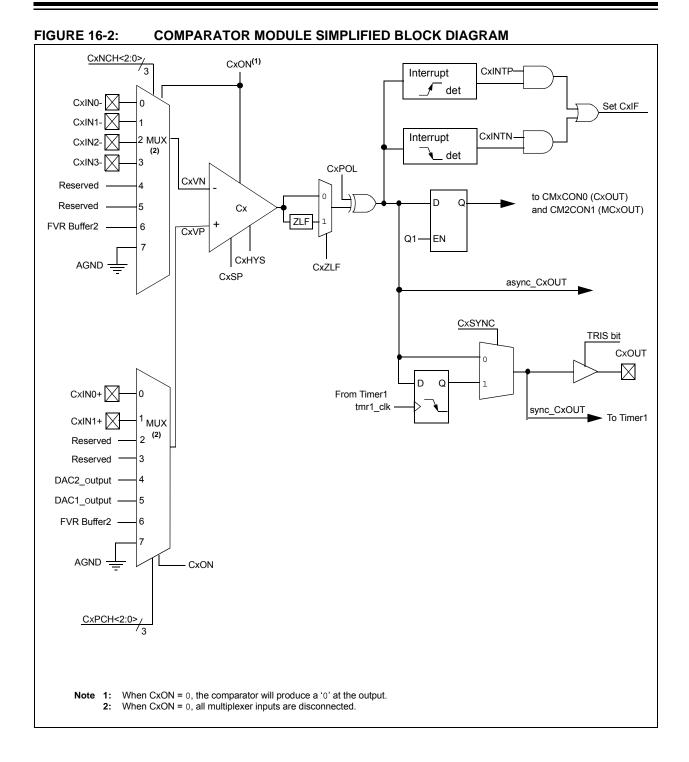
13.3 Interrupt Flags

The bits located in the IOCxF registers are status flags that correspond to the interrupt-on-change pins of each port. If an expected edge is detected on an appropriately enabled pin, then the status flag for that pin will be set, and an interrupt will be generated if the IOCIE bit is set. The IOCIF bit of the INTCON register reflects the status of all IOCxF bits.

13.4 Clearing Interrupt Flags

The individual status flags, (IOCxF register bits), can be cleared by resetting them to zero. If another edge is detected during this clearing operation, the associated status flag will be set at the end of the sequence, regardless of the value actually being written.

In order to ensure that no detected edge is lost while clearing flags, only AND operations masking out known changed bits should be performed. The following sequence is an example of what should be performed.


EXAMPLE 13-1: CLEARING INTERRUPT FLAGS (PORTA EXAMPLE)

MOVLW 0xff XORWF IOCAF, W ANDWF IOCAF, F

13.5 Operation in Sleep

The interrupt-on-change interrupt sequence will wake the device from Sleep mode, if the IOCIE bit is set.

If an edge is detected while in Sleep mode, the affected IOCxF register will be updated prior to the first instruction executed out of Sleep.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
GxFSIM7	GxFSIM6	GxFSIM5	GxFSIM4	GxFSIM3	GxFSIM2	GxFSIM1	GxFSIM0
bit 7						•	bit (
Legend:							
R = Readable I	pit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value a	t POR and BOP	R/Value at all ot	her Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	ends on conditi	on	
bit 7	<u>GxFIS7 = 1:</u> 1 = NCO1_or		ansition will ca		vent after falling vent	event phase de	elay
	<u>GxFIS7 = 0:</u>						
	_	s no effect on f	-				
bit 6		Gx Falling Eve	ent Input Sourc	e 6 Mode bit			
	0 = PWM3 ou GxFIS6 = 0:		vill cause an ir	nmediate falling	g event after fall g event	ing event phase	e delay
oit 5		Gx Falling Eve					
	0 = CCP2 ou GxFIS5 = 0:		rill cause an im	cause a falling mediate falling	event after fallin event	ng event phase	delay
bit 4	GxFSIM4: CC	Gx Falling Eve	ent Input Sourc	e 4 Mode bit			
	0 = CCP1 low GxFIS4 = 0:	gh-to-low transi v level will caus effect on falling	e an immediat		after falling ever	nt phase delay	
bit 3)Gx Falling Eve		e 3 Mode bit			
	$\frac{GxFIS3 = 1}{1 = CLC1 \text{ out}}$ $0 = CLC1 \text{ out}$ $\frac{GxFIS3 = 0}{2}$	tput high-to-low	transition will ill cause an im		event after fallir event	ng event phase	delay
bit 2)Gx Falling Eve	ent Input Sourc	e 2 Mode bit			
	0 = Compara GxFIS2 = 0:		will cause an ir	nmediate falling	g event after fall g event	ing event phase	e delay
bit 1	GxFSIM1: CC <u>GxFIS1 = 1:</u> 1 = Compara	OGx Falling Eve tor 1 high-to-lo tor 1 low level v	nt Input Source w transition wil will cause an ir	e 1 Mode bit I cause a falling nmediate falling	g event after fall g event	ing event phase	e delay

REGISTER 18-6: COGxFSIM: COG FALLING EVENT SOURCE INPUT MODE REGISTER

19.6 Register Definitions: CLC Control

R/W-0/0		R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
		LCxOUT	LCxINTP	LCXINTN		LCxMODE<2:0>	
bit 7							bit
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
u = Bit is ur	nchanged	x = Bit is unki	nown	-n/n = Value a	at POR and BC	DR/Value at all c	ther Resets
'1' = Bit is s	et	'0' = Bit is cle	ared				
bit 7	LCxEN: Cont	figurable Logic	Cell Enable b	it			
		able logic cell i					
h # C	•	able logic cell i		a has logic zero	output		
bit 6	•	ted: Read as '					
bit 5		nfigurable Logi		•	from love out		
	-	gic cell output		•	—		
bit 4		onfigurable Log		0 0		e bit	
		will be set wher will not be set	r a rising edge	e occurs on icx	_oui		
bit 3	LCxINTN: Co	onfigurable Log	ic Cell Negativ	ve Edae Goina	Interrupt Enab	ole bit	
		will be set when	•	• •	•		
	0 = CLCxIF	will not be set			_		
bit 2-0	LCxMODE<2	2:0>: Configura	ble Logic Cell	Functional Mo	de bits		
		1-input transpa		h S and R			
		J-K flip-flop wi					
		2-input D flip-f		ID			
	011 = Cell is	•					
	010 = Cell is						
	001 = Cell is	•					
	000 = Cell is	AND-OR					

REGISTER 19-1: CLCxCON: CONFIGURABLE LOGIC CELL CONTROL REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG4D4T	LCxG4D4N	LCxG4D3T	LCxG4D3N	LCxG4D2T	LCxG4D2N	LCxG4D1T	LCxG4D1N
bit 7		•		· · · · · · · · · · · · · · · · · · ·		•	bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7		Gate 4 Data 4 1		rted) bit			
		is gated into L0 is not gated int					
bit 6		Gate 4 Data 4		ted) bit			
bit o		is gated into L	•	ted) bit			
		is not gated int					
bit 5	LCxG4D3T: (Gate 4 Data 3 1	True (non-inve	rted) bit			
	1 = LCxD3T	is gated into L0	CxG4				
	0 = LCxD3T	is not gated int	o LCxG4				
bit 4		Gate 4 Data 3	•	rted) bit			
		is gated into L					
h # 0		is not gated inf		ate al \ h it			
bit 3		Gate 4 Data 2 1 is gated into L0	•	nted) bit			
		is not gated into L					
bit 2		Gate 4 Data 2		rted) bit			
		is gated into L	•	,			
	0 = LCxD2N	is not gated int	to LCxG4				
bit 1	LCxG4D1T: (Gate 4 Data 1 1	True (non-inve	rted) bit			
		is gated into LO					
		is not gated int					
bit 0		Gate 4 Data 1	•	rted) bit			
		is gated into Lo is not gated inf					
		ie not gated in					

REGISTER 19-10: CLCxGLS3: GATE 4 LOGIC SELECT REGISTER

REGISTER 19-11: CLCDATA: CLC DATA OUTPUT

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	_	MCL4OUT	MLC3OUT	MLC2OUT	MLC1OUT
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	Unimplemented: Read as '0'
bit 3	MCL4OUT: Mirror copy of LC4OUT bit
bit 2	MLC3OUT: Mirror copy of LC3OUT bit
bit 1	MLC2OUT: Mirror copy of LC2OUT bit

bit 0 MLC1OUT: Mirror copy of LC1OUT bit

TABLE 19-3: SUMMARY OF REGISTERS ASSOCIATED WITH CLCx

Name	Bit7	Bit6	Bit5	Bit4	Blt3	Bit2	Bit1	Bit0	Register on Page
ANSELA	_	-	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	125
ANSELB	_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	131
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	—	—	136
ANSELD ⁽¹⁾	ANSD7	ANSD6	ANSD5	ANSD4	ANSD3	ANSD2	ANSD1	ANSD0	141
CLC1CON	LC1EN		LC10UT	LC1INTP	LC1INTN	L	C1MODE<2:0)>	224
CLC2CON	LC2EN	_	LC2OUT	LC2INTP	LC2INTN	L	C2MODE<2:0)>	224
CLC3CON	LC3EN		LC3OUT	LC3INTP	LC3INTN	L	C3MODE<2:0)>	224
CLCDATA	_				MCL4OUT	MLC3OUT	MLC2OUT	MLC1OUT	231
CLC1GLS0	LC1G1D4T	LC1G1D4N	LC1G1D3T	LC1G1D3N	LC1G1D2T	LC1G1D2N	LC1G1D1T	LC1G1D1N	227
CLC1GLS1	LC1G2D4T	LC1G2D4N	LC1G2D3T	LC1G2D3N	LC1G2D2T	LC1G2D2N	LC1G2D1T	LC1G2D1N	228
CLC1GLS2	LC1G3D4T	LC1G3D4N	LC1G3D3T	LC1G3D3N	LC1G3D2T	LC1G3D2N	LC1G3D1T	LC1G3D1N	229
CLC1GLS3	LC1G4D4T	LC1G4D4N	LC1G4D3T	LC1G4D3N	LC1G4D2T	LC1G4D2N	LC1G4D1T	LC1G4D1N	230
CLC1POL	LC1POL				LC1G4POL	LC1G3POL	LC1G2POL	LC1G1POL	225
CLC1SEL0	_					LC1D1S<4:0>	•		225
CLC1SEL1	—	_				LC1D2S<4:0>	•		226
CLC1SEL2	_					LC1D3S<4:0>	•		226
CLC1SEL3						LC1D4S<4:0>	,		226
CLC2GLS0	LC2G1D4T	LC2G1D4N	LC2G1D3T	LC2G1D3N	LC2G1D2T	LC2G1D2N	LC2G1D1T	LC2G1D1N	227
CLC2GLS1	LC2G2D4T	LC2G2D4N	LC2G2D3T	LC2G2D3N	LC2G2D2T	LC2G2D2N	LC2G2D1T	LC2G2D1N	228
CLC2GLS2	LC2G3D4T	LC2G3D4N	LC2G3D3T	LC2G3D3N	LC2G3D2T	LC2G3D2N	LC2G3D1T	LC2G3D1N	229
CLC2GLS3	LC2G4D4T	LC2G4D4N	LC2G4D3T	LC2G4D3N	LC2G4D2T	LC2G4D2N	LC2G4D1T	LC2G4D1N	230
CLC2POL	LC2POL	_	-	_	LC2G4POL	LC2G3POL	LC2G2POL	LC2G1POL	225
CLC2SEL0	—	_	_	LC2D1S<4:0>				225	
CLC2SEL1	—	—	—			LC2D2S<4:0>	,		226
CLC2SEL2	_	_	_			LC2D3S<4:0>	•		226

Legend: — = unimplemented read as '0'. Shaded cells are not used for CLC module.

Note 1: PIC16(L)F1717/9 only.

				•	•		
R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
ADRES	S<1:0>	—	—	—			—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
u = Bit is unch	u = Bit is unchanged x = Bit is unknown		iown	-n/n = Value at POR and BOR/Value at all other Resets			
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	bit 7-6 ADRES<1:0>: ADC Result Register bits						

REGISTER 21-5: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0

bit 7-6	ADRES<1:0>: ADC Result Register bits
	Lower two bits of 10-bit conversion result
bit 5-0	Reserved: Do not use.

REGISTER 21-6: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| — | — | | — | — | | ADRE | S<9:8> |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2 Reserved: Do not use.

bit 1-0 **ADRES<9:8>**: ADC Result Register bits Upper two bits of 10-bit conversion result

REGISTER 21-7: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
ADRES<7:0>							
bit 7 bit						bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ADRES<7:0>: ADC Result Register bits Lower eight bits of 10-bit conversion result

27.1 Timer1 Operation

The Timer1 module is a 16-bit incrementing counter which is accessed through the TMR1H:TMR1L register pair. Writes to TMR1H or TMR1L directly update the counter.

When used with an internal clock source, the module is a timer and increments on every instruction cycle. When used with an external clock source, the module can be used as either a timer or counter and increments on every selected edge of the external source.

Timer1 is enabled by configuring the TMR1ON and TMR1GE bits in the T1CON and T1GCON registers, respectively. Table 27-1 displays the Timer1 enable selections.

TABLE 27-1:	TIMER1 ENABLE
	SELECTIONS

TMR10N	TMR1GE	Timer1 Operation
0	0	Off
0	1	Off
1	0	Always On
1	1	Count Enabled

27.2 Clock Source Selection

The TMR1CS<1:0> and T1OSCEN bits of the T1CON register are used to select the clock source for Timer1. Table 27-2 displays the clock source selections.

27.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected, the TMR1H:TMR1L register pair will increment on multiples of Fosc as determined by the Timer1 prescaler.

When the Fosc internal clock source is selected, the Timer1 register value will increment by four counts every instruction clock cycle. Due to this condition, a 2 LSB error in resolution will occur when reading the Timer1 value. To utilize the full resolution of Timer1, an asynchronous input signal must be used to gate the Timer1 clock input.

The following asynchronous sources may be used:

- Asynchronous event on the T1G pin to Timer1 gate
- · C1 or C2 comparator input to Timer1 gate

27.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1 module may work as a timer or a counter.

When enabled to count, Timer1 is incremented on the rising edge of the external clock input T1CKI, which can be synchronized to the microcontroller system clock or can run asynchronously.

When used as a timer with a clock oscillator, an external 32.768 kHz crystal can be used in conjunction with the dedicated internal oscillator circuit.

- **Note:** In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge after any one or more of the following conditions:
 - · Timer1 enabled after POR
 - Write to TMR1H or TMR1L
 - Timer1 is disabled
 - Timer1 is disabled (TMR1ON = 0) when T1CKI is high then Timer1 is enabled (TMR1ON=1) when T1CKI is low.

TABLE 27-2: CLOCK SOURCE SELECTIONS

TMR1CS<1:0>	T10SCEN	Clock Source		
11	x	LFINTOSC		
10	0	External Clocking on T1CKI Pin		
01	x	System Clock (Fosc)		
00	x	Instruction Clock (Fosc/4)		

27.3 Timer1 Prescaler

Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The T1CKPS bits of the T1CON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.

27.4 Timer1 (Secondary) Oscillator

A dedicated low-power 32.768 kHz oscillator circuit is built-in between pins SOSCI (input) and SOSCO (amplifier output). This internal circuit is to be used in conjunction with an external 32.768 kHz crystal.

The oscillator circuit is enabled by setting the T1OSCEN bit of the T1CON register. The oscillator will continue to run during Sleep.

Note: The oscillator requires a start-up and stabilization time before use. Thus, T1OSCEN should be set and a suitable delay observed prior to using Timer1. A suitable delay similar to the OST delay can be implemented in software by clearing the TMR1IF bit then presetting the TMR1H:TMR1L register pair to FC00h. The TMR1IF flag will be set when 1024 clock cycles have elapsed, thereby indicating that the oscillator is running and reasonably stable.

27.5 Timer1 Operation in Asynchronous Counter Mode

If the control bit T1SYNC of the T1CON register is set, the external clock input is not synchronized. The timer increments asynchronously to the internal phase clocks. If the external clock source is selected then the timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 27.5.1 "Reading and Writing Timer1 in Asynchronous Counter Mode").

Note:	When switching from synchronous to
	asynchronous operation, it is possible to
	skip an increment. When switching from
	asynchronous to synchronous operation,
	it is possible to produce an additional
	increment.

27.5.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TMR1L register pair.

27.6 Timer1 Gate

Timer1 can be configured to count freely or the count can be enabled and disabled using Timer1 gate circuitry. This is also referred to as Timer1 Gate Enable.

Timer1 gate can also be driven by multiple selectable sources.

27.6.1 TIMER1 GATE ENABLE

The Timer1 Gate Enable mode is enabled by setting the TMR1GE bit of the T1GCON register. The polarity of the Timer1 Gate Enable mode is configured using the T1GPOL bit of the T1GCON register.

When Timer1 Gate Enable mode is enabled, Timer1 will increment on the rising edge of the Timer1 clock source. When Timer1 Gate Enable mode is disabled, no incrementing will occur and Timer1 will hold the current count. See Figure 27-3 for timing details.

TABLE 27-3: TIMER1 GATE ENABLE SELECTIONS

T1CLK	T1GPOL	T1G	Timer1 Operation
\uparrow	0	0	Counts
\uparrow	0	1	Holds Count
\uparrow	1	0	Holds Count
1	1	1	Counts

REGISTER 30-5: SSP1MSK: SSP MASK REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	
			MSł	<<7:0>				
bit 7							bit C	
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimplen	mented bit, read	l as '0'		
u = Bit is unchanged x = Bit is unk		nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is se	t	'0' = Bit is cle	ared					
bit 7-1	MSK<7:1>: 1 = The rec 0 = The rec	Mask bits eived address b eived address b	it n is compai it n is not use	red to SSP1ADI ed to detect I ² C	D <n> to detect address match</n>	I ² C address m	atch	
bit 0	MSK<0>: Mask bit for I ² C Slave mode, 10-bit Address I ² C Slave mode, 10-bit address (SSPM<3:0> = 0111 or 1111): 1 = The received address bit 0 is compared to SSP1ADD<0> to detect I ² C address match							

0 = The received address bit 0 is not used to detect I^2C address match

I²C Slave mode, 7-bit address, the bit is ignored

REGISTER 30-6: SSP1ADD: MSSP ADDRESS AND BAUD RATE REGISTER (I²C MODE)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			ADD	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

Master mode:

bit 7-0	ADD<7:0>: Baud Rate Clock Divider bits
	SCL pin clock period = ((ADD<7:0> + 1) *4)/Fosc

10-Bit Slave mode – Most Significant Address Byte:

- bit 7-3 **Not used:** Unused for Most Significant Address Byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by I²C specification and must be equal to '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 ADD<2:1>: Two Most Significant bits of 10-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

10-Bit Slave mode – Least Significant Address Byte:

bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

bit 7-1	ADD<7:1>: 7-bit address

bit 0 Not used: Unused in this mode. Bit state is a "don't care".

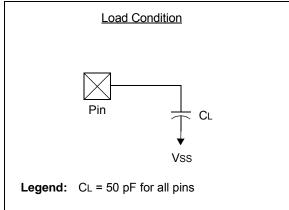
TABLE 34-5: MEMORY PROGRAMMING SPECIFICATIONS

Param. No.	Sym.	Characteristic	Min.	Typ.†	Max.	Units	Conditions		
		Program Memory Programming Specifications							
D110	VIHH	Voltage on MCLR/VPP pin	8.0	_	9.0	V	(Note 2)		
D111	IDDP	Supply Current during Programming	_	_	10	mA			
D112	VBE	VDD for Bulk Erase	2.7	_	VDDMAX	V			
D113	VPEW	VDD for Write or Row Erase	VDDMIN	_	VDDMAX	V			
D114	IPPGM	Current on MCLR/VPP during Erase/Write	—	1.0	—	mA			
D115	IDDPGM	Current on VDD during Erase/Write	_	5.0	_	mA			
		Program Flash Memory							
D121	Eр	Cell Endurance	10K	-	—	E/W	-40°C ≤ TA ≤ +85°C (Note 1)		
D122	VPRW	VDD for Read/Write	VDDMIN	_	VDDMAX	V			
D123	Tiw	Self-timed Write Cycle Time	_	2	2.5	ms			
D124	TRETD	Characteristic Retention	_	40	_	Year	Provided no other specifications are violated		
D125	EHEFC	High-Endurance Flash Cell	100K	_	—	E/W	$-0^{\circ}C \le TA \le +60^{\circ}C$, Lower byte last 128 addresses		

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Self-write and Block Erase.

2: Required only if single-supply programming is disabled.


34.4 AC Characteristics

Timing Parameter Symbology has been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS

2. Tpp5		1				
Т						
F	Frequency	Т	Time			
Lowerc	Lowercase letters (pp) and their meanings:					
рр						
сс	CCP1	OSC	OSC1			
ck	CLKOUT	rd	RD			
cs	CS	rw	RD or WR			
di	SDI	sc	SCK			
do	SDO	SS	SS			
dt	Data in	tO	TOCKI			
io	I/O PORT	t1	T1CKI			
mc	MCLR	wr	WR			
Upperc	ase letters and their meanings:					
S						
F	Fall	Р	Period			
Н	High	R	Rise			
I	Invalid (High-impedance)	V	Valid			
L	Low	Z	High-impedance			

FIGURE 34-4: LOAD CONDITIONS

TABLE 34-24: SPI MODE REQUIREMENTS

Standar	Standard Operating Conditions (unless otherwise stated)							
Param. No.	Symbol	Characteristic	Min.	Тур.†	Max.	Units	Conditions	
SP70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	2.25 TCY	_	_	ns		
SP71*	TscH	SCK input high time (Slave mode)	Tcy + 20			ns		
SP72*	TscL	SCK input low time (Slave mode)	Tcy + 20	—	_	ns		
SP73*	TDIV2scH, TDIV2scL	Setup time of SDI data input to SCK edge	100	—	_	ns		
SP74*	TscH2DIL, TscL2DIL	Hold time of SDI data input to SCK edge	100	—	—	ns		
SP75*	TDOR	SDO data output rise time	_	10	25	ns	$3.0V \leq V\text{DD} \leq 5.5V$	
				25	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$	
SP76*	TDOF	SDO data output fall time	—	10	25	ns		
SP77*	TssH2doZ	SS [↑] to SDO output high-impedance	10	—	50	ns		
SP78*	TscR	SCK output rise time	—	10	25	ns	$3.0V \leq V\text{DD} \leq 5.5V$	
		(Master mode)	—	25	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$	
SP79*	TscF	SCK output fall time (Master mode)	—	10	25	ns		
SP80*	TscH2doV,	SDO data output valid after SCK	—	_	50	ns	$3.0V \leq V\text{DD} \leq 5.5V$	
	TscL2DoV	edge	—	—	145	ns	$1.8V \leq V\text{DD} \leq 5.5V$	
SP81*	TDOV2scH, TDOV2scL	SDO data output setup to SCK edge	1 Тсү	—	—	ns		
SP82*	TssL2DoV	SDO data output valid after $\overline{SS}\downarrow$ edge	—	—	50	ns		
SP83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge	1.5 Tcy + 40	—	-	ns		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16(L)F1717/8/9

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

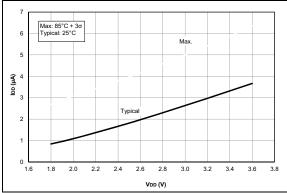


FIGURE 35-43: IPD, Timer1 Oscillator, Fosc = 32 kHz, PIC16LF1717/8/9 Only.

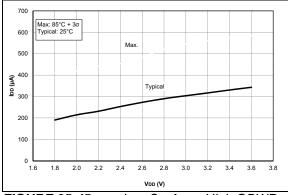
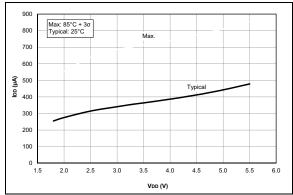




FIGURE 35-44: IPD, Timer1 Oscillator, Fosc = 32 kHz, PIC16F1717/8/9 Only.

FIGURE 35-45: IPD, Op Amp, High GBWP Mode (OPAxSP = 1), PIC16LF1717/8/9 Only.

FIGURE 35-46: IPD, Op Amp, High GBWP Mode (OPAxSP = 1), PIC16F1717/8/9 Only.

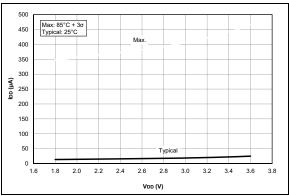


FIGURE 35-47: IPD, ADC Non-Converting, PIC16LF1717/8/9 Only.

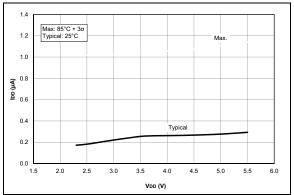


FIGURE 35-48: IPD, ADC Non-Converting, PIC16F1717/8/9 Only.