

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

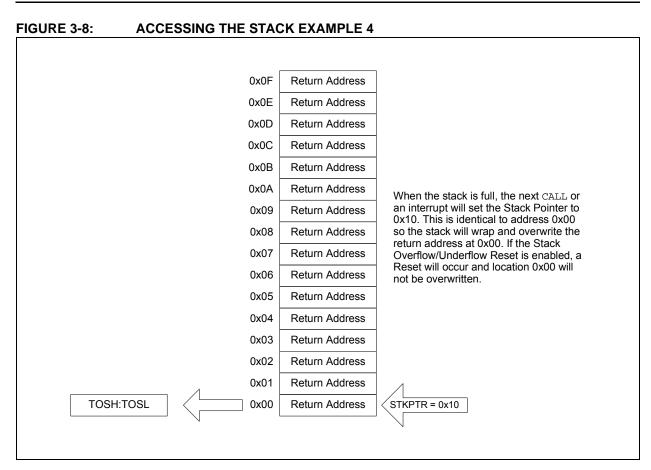
Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	24
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b; D/A 1x5b, 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1718t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

I/O ⁽²⁾	PDIP	TQFP	UQFN	ADC	Reference		comparator	Op Amp	DAC	Zero Cross		Timers		CCP	5	NCO	DVMM			000			MSSP			EUSARI		נ	CLC		Interrupt	Pullup	Basic
RC4	23	42	38	AN16																			SD SD	(1) A ⁽¹⁾	-						IOC	Υ	
RC5	24	43	39	AN17																											IOC	Y	
RC6	25	44	40	AN18									· · · ·												: с	K ⁽³⁾					IOC	Y	
RC7	26	1	1	AN19																					: R	X ⁽³⁾					IOC	Y	
RD0	19	38	34	AN20							• • • •																:•:•				• • • • • •	Y	
RD1	20	39	35	AN21																											• • • • • • •	Υ	
RD2	21	40	36	AN22							· · ·		· · ·														· · · .	· . · .				Υ	
RD3	22	41	37	AN23									· · · ·																			Υ	
RD4	27	2	2	AN24																												Y	
RD5	28	3	3	AN25																											• . • . • . •	Y	
RD6	29	4	4	AN26									: . : .														: . : .					Y	
RD7	30	5	5	AN27									• • •															• • • •				Y	
RE0	8	25	23	AN5																												Y	
RE1	9	26	24	AN6							•] •] •																				• • • • • •	Y	
RE2	10	27	24 25	AN7																												Y	
RE3	1	18	16																												IOC	Y	MCLR V _{PP}
V	11	7	7																														V _{DD}
V _{DD}	32	28	26																														
	12	6	6																														Vss
V_{SS}	31	29	27																														
OUT ⁽⁴⁾						C10UT	C20UT							CCP1	CCP2	NC010UT	PWM3OUT	PWM40UT	COG1A	COG1B	COG1C	CUG1D	SCK/SCI ⁽³⁾	SDO	TX/CK	DT ⁽³⁾	CLC4OUT	CLC3OUT	CLC2OUT	CLC10UT			
1N ⁽⁵⁾											T1G	T1CKI	TOCKI	CCP1	CCP2					COG1IN			SCK/SCI ⁽³⁾	SS	RX ⁽³⁾	СК	CLCINO	CLCIN1	CLCIN2	CLCIN3	INT		

TABLE 2: 40/44-PIN ALLOCATION TABLE (PIC16(L)F1717/9) (CONTINUED)


Note 1: Default peripheral input. Alternate pins can be selected as the peripheral input with the PPS input selection registers.

2: All pin digital outputs default to PORT latch data. Alternate outputs can be selected as the peripheral digital output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

4: Alternate outputs are excluded from solid shaded areas.

5: Alternate inputs are excluded from dot shaded areas.

3.6.2 OVERFLOW/UNDERFLOW RESET

If the STVREN bit in Configuration Words is programmed to '1', the device will be reset if the stack is PUSHed beyond the sixteenth level or POPed beyond the first level, setting the appropriate bits (STKOVF or STKUNF, respectively) in the PCON register.

3.7 Indirect Addressing

The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the File Select Registers (FSR). If the FSRn address specifies one of the two INDFn registers, the read will return '0' and the write will not occur (though Status bits may be affected). The FSRn register value is created by the pair FSRnH and FSRnL.

The FSR registers form a 16-bit address that allows an addressing space with 65536 locations. These locations are divided into three memory regions:

- · Traditional Data Memory
- Linear Data Memory
- Program Flash Memory

6.2.2.7 Internal Oscillator Clock Switch Timing

When switching between the HFINTOSC, MFINTOSC and the LFINTOSC, the new oscillator may already be shut down to save power (see Figure 6-7). If this is the case, there is a delay after the IRCF<3:0> bits of the OSCCON register are modified before the frequency selection takes place. The OSCSTAT register will reflect the current active status of the HFINTOSC, MFINTOSC and LFINTOSC oscillators. The sequence of a frequency selection is as follows:

- 1. IRCF<3:0> bits of the OSCCON register are modified.
- 2. If the new clock is shut down, a clock start-up delay is started.
- 3. Clock switch circuitry waits for a falling edge of the current clock.
- 4. The current clock is held low and the clock switch circuitry waits for a rising edge in the new clock.
- 5. The new clock is now active.
- 6. The OSCSTAT register is updated as required.
- 7. Clock switch is complete.

See Figure 6-7 for more details.

If the internal oscillator speed is switched between two clocks of the same source, there is no start-up delay before the new frequency is selected. Clock switching time delays are shown in Table 6-1.

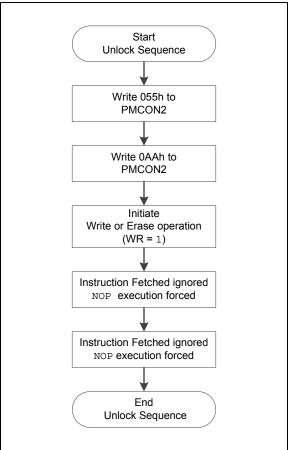
Start-up delay specifications are located in the oscillator tables of **Section 34.0** "**Electrical Specifications**".

10.2.2 FLASH MEMORY UNLOCK SEQUENCE

The unlock sequence is a mechanism that protects the Flash program memory from unintended self-write programming or erasing. The sequence must be executed and completed without interruption to successfully complete any of the following operations:

- Row Erase
- · Load program memory write latches
- Write of program memory write latches to program memory
- Write of program memory write latches to User IDs

The unlock sequence consists of the following steps:


- 1. Write 55h to PMCON2
- 2. Write AAh to PMCON2
- 3. Set the WR bit in PMCON1
- 4. NOP instruction
- 5. NOP instruction

Once the WR bit is set, the processor will always force two NOP instructions. When an Erase Row or Program Row operation is being performed, the processor will stall internal operations (typical 2 ms), until the operation is complete and then resume with the next instruction. When the operation is loading the program memory write latches, the processor will always force the two NOP instructions and continue uninterrupted with the next instruction.

Since the unlock sequence must not be interrupted, global interrupts should be disabled prior to the unlock sequence and re-enabled after the unlock sequence is completed.

FIGURE 10-3:

FLASH PROGRAM MEMORY UNLOCK SEQUENCE FLOWCHART

EXAMPLE 10-2: ERASING ONE ROW OF PROGRAM MEMORY

- ; This row erase routine assumes the following:
- ; 1. A valid address within the erase row is loaded in ADDRH:ADDRL

; 2. ADDRH and ADDRL are located in shared data memory $0\,\mathrm{x}70$ - $0\,\mathrm{x}7F$ (common RAM)

	BCF BANKSEL MOVF MOVWF	INTCON,GIE PMADRL ADDRL,W PMADRL	; Disable ints so required sequences will execute properly ; Load lower 8 bits of erase address boundary
	MOVWF MOVF MOVWF BCF	PMADRL ADDRH,W PMADRH PMCON1,CFGS	; Load upper 6 bits of erase address boundary ; Not configuration space
	BSF BSF	PMCON1, FREE PMCON1, WREN	; Specify an erase operation ; Enable writes
Required Sequence	MOVLW MOVWF MOVLW MOVWF BSF NOP NOP	55h PMCON2 0AAh PMCON2 PMCON1,WR	<pre>; Start of required sequence to initiate erase ; Write 55h ; ; Write AAh ; Set WR bit to begin erase ; NOP instructions are forced as processor starts ; row erase of program memory. ; ; ; The processor stalls until the erase process is complete ; after erase processor continues with 3rd instruction</pre>
	BCF BSF	PMCON1,WREN INTCON,GIE	; Disable writes ; Enable interrupts

REGISTER 11-35: LATE: PORTE DATA LATCH REGISTER⁽¹⁾

—	—	_	—	LATE2	LATE1	LATE0
						bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3	Unimplemented: Read as '0'

bit 2-0 LATE<2:0>: PORTE Output Latch Value bits

Note 1: PIC16(L)F1717/9 only.

REGISTER 11-36: ANSELE: PORTE ANALOG SELECT REGISTER⁽²⁾

U-0	U-0	U-0	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1
—	—	—	—	_	ANSE2	ANSE1	ANSE0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3 Unimplemented: Read as '0'

bit 2-0 ANSE<2:0>: Analog Select between Analog or Digital Function on Pins RE<2:0>, respectively⁽¹⁾ D =Digital I/O. Pin is assigned to port or digital special function.
 1 =Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

2: PIC16(L)F1717/9 only.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
CxINTP	CxINTN		CxPCH<2:0>	•		CxNCH<2:0>	
bit 7							bit
Lagandi							
Legend:							
R = Readable		W = Writable		•	mented bit, rea		
u = Bit is unc	•	x = Bit is unkr		-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	CxINTP: Co	mparator Interru	pt on Positive	e Going Edge E	nable bits		
		F interrupt flag v rupt flag will be					
bit 6	CxINTN: Co	mparator Interru	ipt on Negativ	e Going Edge I	Enable bits		
		F interrupt flag					
	0 = No inter	rupt flag will be	set on a nega	tive going edge	e of the CxOUT	bit	
bit 5-3	CxPCH<2:0	Comparator I	Positive Input	Channel Select	t bits		
	-	connects to AG					
		connects to FV					
		connects to DA connects to DA					
		unconnected, i					
		unconnected, i					
		connects to Cx					
	000 = CxVP	connects to Cx	IN0+ pin				
bit 2-0	CxNCH<2:0	>: Comparator I	Vegative Input	t Channel Seleo	ct bits		
	111 = CxVN	connects to AG	SND				
		connects to FV					
		unconnected, i	•				
		unconnected, i					
		connects to Cx					
		connects to Cx connects to Cx	•				

REGISTER 16-2: CMxCON1: COMPARATOR Cx CONTROL REGISTER 1

REGISTER 18-14: COGxPHR: COG RISING EDGE PHASE DELAY COUNT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
_	_			GxPH	IR<5:0>		
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-6 Unimplemented: Read as '0'

bit 5-0

bit 5-0

GxPHR<5:0>: Rising Edge Phase Delay Count Value bits

= Number of COGx clock periods to delay rising edge event

REGISTER 18-15: COGxPHF: COG FALLING EDGE PHASE DELAY COUNT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u						
—	—		GxPHF<5:0>										
bit 7							bit 0						

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-6 Unimplemented: Read as '0'

GxPHF<5:0>: Falling Edge Phase Delay Count Value bits

= Number of COGx clock periods to delay falling edge event

26.2 Register Definitions: Option Register

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1		
WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>			
bit 7							bit (
Legend:									
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'			
u = Bit is und	hanged	x = Bit is unk	nown	-n/n = Value a	at POR and BC	R/Value at all o	other Resets		
'1' = Bit is se	t	'0' = Bit is cle	ared						
bit 7	WPUEN: We	ak Pull-Up Ena	able bit						
		pull-ups are dis							
	-	Il-ups are enab	-	ial WPUx latch	values				
bit 6		ITEDG: Interrupt Edge Select bit							
	•	 1 = Interrupt on rising edge of INT pin 0 = Interrupt on falling edge of INT pin 							
bit 5		mer0 Clock Sou	•						
DIL D		n on TOCKI pin							
		nstruction cycle		4)					
bit 4	TMR0SE: Til	mer0 Source E	dge Select bit						
	1 = Incremer	nt on high-to-low	v transition on	T0CKI pin					
	0 = Incremer	nt on low-to-hig	h transition on	T0CKI pin					
bit 3	PSA: Presca	ler Assignment	bit						
		r is not assigne							
		r is assigned to		odule					
bit 2-0	PS<2:0>: Pr	escaler Rate Se	elect bits						
	Bit	Value Timer0	Rate						
		000 1:2							
		001 1:4							
		010 1:8 011 1:1							
		1.00							

REGISTER 26-1: OPTION_REG: OPTION REGISTER

TABLE 26-1:	SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

1 : 32 1 : 64

1:128

1:256

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	90
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		270
TMR0	Timer0 Module Register					268*			
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	124

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the Timer0 module.

* Page provides register information.

100

101

110

111

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	_	_	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	125
ANSELB	_	_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	131
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	_	_	136
CCP1CON	_	_	DC1B	s<1:0>		CCP1N	1<3:0>		294
CCP2CON	_	_	DC2B	s<1:0>		CCP2N	1<3:0>		294
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	90
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	91
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	94
TMR1H	IR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register						271*		
TMR1L	Holding Re	gister for the	Least Sign	ificant Byte	of the 16-bit	TMR1 Reg	ister		271*
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	124
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	130
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	135
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC		TMR10N	279
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GS	S<1:0>	280

TABLE 27-5: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the Timer1 module.

* Page provides register information.

29.1.2 TIMER1 MODE RESOURCE

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

See Section 27.0 "Timer1 Module with Gate Control" for more information on configuring Timer1.

29.1.3 SOFTWARE INTERRUPT MODE

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCPxIE interrupt enable bit of the PIEx register clear to avoid false interrupts. Additionally, the user should clear the CCPxIF interrupt flag bit of the PIRx register following any change in Operating mode.

Note:	
	(Fosc) should not be used in Capture
	mode. In order for Capture mode to
	recognize the trigger event on the CCPx
	pin, Timer1 must be clocked from the
	instruction clock (Fosc/4) or from an
	external clock source.

29.1.4 CCP PRESCALER

There are four prescaler settings specified by the CCPxM<3:0> bits of the CCPxCON register. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter.

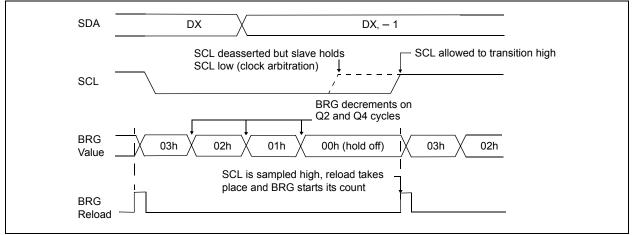
Switching from one capture prescaler to another does not clear the prescaler and may generate a false interrupt. To avoid this unexpected operation, turn the module off by clearing the CCPxCON register before changing the prescaler. Example 29-1 demonstrates the code to perform this function.

EXAMPLE 29-1: CHANGING BETWEEN CAPTURE PRESCALERS

BANKSEI	L CCPxCON	;Set Bank bits to point
		;to CCPxCON
CLRF	CCPxCON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	S;Load the W reg with
		;the new prescaler
		;move value and CCP ON
MOVWF	CCPxCON	;Load CCPxCON with this
		;value

29.1.5 CAPTURE DURING SLEEP

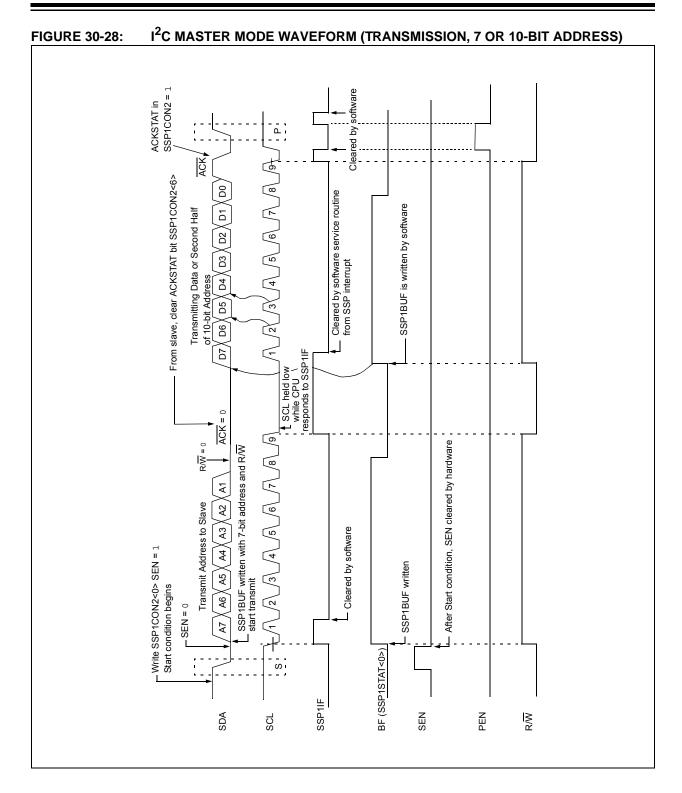
Capture mode depends upon the Timer1 module for proper operation. There are two options for driving the Timer1 module in Capture mode. It can be driven by the instruction clock (Fosc/4), or by an external clock source.


When Timer1 is clocked by FOSC/4, Timer1 will not increment during Sleep. When the device wakes from Sleep, Timer1 will continue from its previous state.

Capture mode will operate during Sleep when Timer1 is clocked by an external clock source.

30.6.2 CLOCK ARBITRATION

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, releases the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSP1ADD<7:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 30-25).



30.6.3 WCOL STATUS FLAG

If the user writes the SSP1BUF when a Start, Restart, Stop, Receive or Transmit sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write does not occur). Any time the WCOL bit is set it indicates that an action on SSP1BUF was attempted while the module was not idle.

Note:	Because queuing of events is not allowed,						
	writing to the lower five bits of SSP1CON2						
	is disabled until the Start condition is complete.						

31.4.4 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. A Break character consists of a Start bit, followed by 12 '0' bits and a Stop bit.

To send a Break character, set the SENDB and TXEN bits of the TX1STA register. The Break character transmission is then initiated by a write to the TX1REG. The value of data written to TX1REG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

The TRMT bit of the TX1STA register indicates when the transmit operation is active or idle, just as it does during normal transmission. See Figure 31-9 for the timing of the Break character sequence.

31.4.4.1 Break and Sync Transmit Sequence

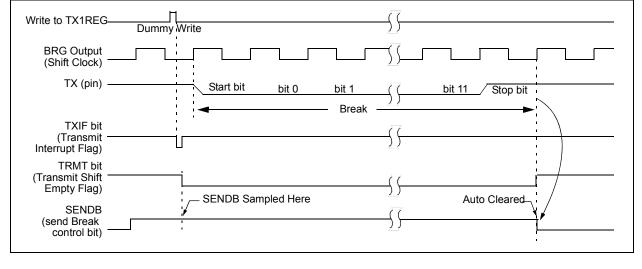
The following sequence will start a message frame header made up of a Break, followed by an auto-baud Sync byte. This sequence is typical of a LIN bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to enable the Break sequence.
- 3. Load the TX1REG with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TX1REG to load the Sync character into the transmit FIFO buffer.
- 5. After the Break has been sent, the SENDB bit is reset by hardware and the Sync character is then transmitted.

When the TX1REG becomes empty, as indicated by the TXIF, the next data byte can be written to TX1REG.

31.4.5 RECEIVING A BREAK CHARACTER

The Enhanced EUSART module can receive a Break character in two ways.


The first method to detect a Break character uses the FERR bit of the RC1STA register and the received data as indicated by RC1REG. The Baud Rate Generator is assumed to have been initialized to the expected baud rate.

A Break character has been received when;

- RCIF bit is set
- FERR bit is set
- RC1REG = 00h

The second method uses the Auto-Wake-up feature described in **Section 31.4.3** "Auto-Wake-up on **Break**". By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RCIF interrupt, and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Detect feature. For both methods, the user can set the ABDEN bit of the BAUD1CON register before placing the EUSART in Sleep mode.

FIGURE 31-9: SEND BREAK CHARACTER SEQUENCE

RX/DT pin TX/CK pin (SCKP = 0)	
TX/CK pin (SCKP = 1) Write to bit SREN	
SREN bit	.0,
RCIF bit (Interrupt) ——— Read	
RC1REG Note: Timing diag	gram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0.

FIGURE 31-12: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

TABLE 31-8:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
RECEPTION

	_	_							
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB		_	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	131
ANSELC	ANSC7	ANSC6	ANSC5	ANSC4	ANSC3	ANSC2	—	—	136
BAUD1CON	ABDOVF	RCIDL	—	SCKP	BRG16	_	WUE	ABDEN	362
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	90
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	91
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	94
RC1REG			EUSA	ART Receiv	e Data Reg	ister			356*
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	361
RXPPS	—	— — — RXPPS<4:0>					152		
RxyPPS	—	— — — RxyPPS<4:0>				153			
SP1BRGL		SP1BRG<7:0>					363*		
SP1BRGH	SP1BRG<15:8>					363*			
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	130
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	135
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	360

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous master reception. * Page provides register information.

RETFIE	Return from Interrupt
Syntax:	[<i>label</i>] RETFIE k
Operands:	None
Operation:	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$
Status Affected:	None
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a 2-cycle instruction.
Words:	1
Cycles:	2
Example:	RETFIE
	After Interrupt PC = TOS GIE = 1

RETURN	Return from Subroutine
Syntax:	[label] RETURN
Operands:	None
Operation:	$TOS\toPC$
Status Affected:	None
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a 2-cycle instruction.

RETLW	Return with literal in W	RLF	Rotate Left f through Carry			
Syntax:	[<i>label</i>] RETLW k	Syntax:	[<i>label</i>] RLF f,d			
Operands:	$0 \le k \le 255$	Operands:	$0 \leq f \leq 127$			
Operation:	$k \rightarrow (W);$		d ∈ [0,1]			
	$TOS \rightarrow PC$	Operation:	See description below			
Status Affected:	None	Status Affected:	C			
Description:	The W register is loaded with the 8-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a 2-cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.			
Words:	1		C Register f			
Cycles:	2					
Example:	CALL TABLE;W contains table	Words:	1			
,·	;offset value	Cycles:	1			
	 ;W now has table value 	Example:	RLF REG1,0			
TABLE	•		Before Instruction			
	ADDWF PC ;W = offset		REG1 = 1110 0110			
	RETLW k1 ;Begin table		C = 0 After Instruction			
	RETLW k2 ;		REG1 = 1110 0110			
	•		W = 1100 1100			
	• RETLW kn ; End of table		C = 1			
	Before Instruction W = 0x07 After Instruction W = value of k8					

TABLE 34-2:	SUPPLY CURRENT ((IDD) ^(1,2)
--------------------	------------------	------------------------

PIC16LF1717/8/9		Standard Operating Conditions (unless otherwise stated)									
PIC16F1	717/8/9										
Param. Device		Min.	Typ.†	Max.	Units		Conditions				
No.	Characteristics		190.1	max.	onno	Vdd	Note				
D009	LDO Regulator	_	75	—	μA		High-Power mode, normal operation				
		—	15	—	μA		Sleep, VREGCON<1> = 0				
		_	0.3	—	μA		Sleep, VREGCON<1> = 1				
D010		_	8	—	μA	1.8	Fosc = 32 kHz,				
		—	12	—	μA	3.0	LP Oscillator mode (Note 4), -40°C ≤ TA ≤ +85°C				
D010		_	15		μA	2.3	Fosc = 32 kHz,				
		_	17		μA	3.0	LP Oscillator mode (Note 4, Note 5),				
			21		μA	5.0	-40°C ≤ TA ≤ +85°C				
D012		_	140	—	μA	1.8	Fosc = 4 MHz,				
		—	250	—	μA	3.0	XT Oscillator mode				
D012			210		μA	2.3	Fosc = 4 MHz,				
			280	—	μA	3.0	XT Oscillator mode (Note 5)				
			340		μA	5.0					
D014			115	—	μA	1.8	Fosc = 4 MHz,				
		—	210	—	μA	3.0	External Clock (ECM), Medium Power mode				
D014			180	_	μA	2.3	Fosc = 4 MHz,				
			240	—	μA	3.0	External Clock (ECM), Medium Power mode (Note 5)				
			300		μA	5.0					
D015			2.1	—	mA	3.0	Fosc = 32 MHz,				
			2.5	—	mA	3.6	External Clock (ECH), High-Power mode				
D015			2.1	—	mA	3.0	Fosc = 32 MHz,				
		-	2.2	—	mA	5.0	External Clock (ECH), High-Power mode (Note 5)				

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in $k\Omega$

4: FVR and BOR are disabled.

5: 0.1 μ F capacitor on VCAP.

6: 8 MHz clock with 4x PLL enabled.

PIC16LF1717/8/9 PIC16F1717/8/9		Standard Operating Conditions (unless otherwise stated)								
Param. Device		Min.	True	Max.	Units		Conditions			
No.	No. Characteristics	WIITI.	Тур.†	IVIAX.	Units	Vdd	Note			
D017		—	130		μA	1.8	Fosc = 500 kHz,			
		_	150		μA	3.0	MFINTOSC mode			
D017		—	150		μA	2.3	Fosc = 500 kHz,			
		—	170		μA	3.0	MFINTOSC mode (Note 5)			
		—	220		μA	5.0				
D019		_	0.8		mA	1.8	Fosc = 16 MHz,			
			1.2		mA	3.0	HFINTOSC mode			
D019			1.0		mA	2.3	Fosc = 16 MHz,			
			1.3		mA	3.0	HFINTOSC mode (Note 5)			
			1.4	—	mA	5.0				
D020			2.1	—	mA	3.0	Fosc = 32 MHz,			
		—	2.5	—	mA	3.6	HFINTOSC mode			
D020			2.1	—	mA	3.0	Fosc = 32 MHz,			
		—	2.2	—	mA	5.0	HFINTOSC mode			
D022			2.1	—	mA	3.0	Fosc = 32 MHz,			
		—	2.5	—	mA	3.6	HS Oscillator mode (Note 6)			
D022	-		2.1		mA	3.0	Fosc = 32 MHz			
		—	2.2	—	mA	5.0	HS Oscillator mode (Note 5, Note 6)			

TABLE 34-2: SUPPLY CURRENT (IDD)^(1,2) (CONTINUED)

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

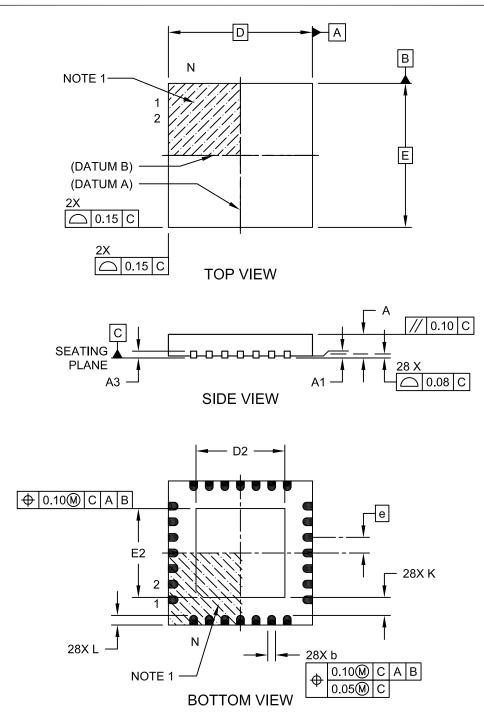
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in $k\Omega$

- 4: FVR and BOR are disabled.
- 5: 0.1 µF capacitor on VCAP.
- 6: 8 MHz clock with 4x PLL enabled.

TABLE 34-26: I²C BUS DATA REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Symbol	Characte	eristic	Max.	Units	Conditions		
SP100*	Тнідн	Clock high time	100 kHz mode	4.0	-	μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz	
			SSP module	1.5Tcy				
SP101* TLOW	Clock low time	100 kHz mode	4.7	—	μS	Device must operate at a minimum of 1.5 MHz		
			400 kHz mode	1.3	-	μS	Device must operate at a minimum of 10 MHz	
			SSP module	1.5Tcy				
SP102* TR	TR	SDA and SCL rise	100 kHz mode	—	1000	ns		
	time	400 kHz mode	20 + 0.1CB	300	ns	CB is specified to be from 10-400 pF		
SP103* TF	TF	SDA and SCL fall	100 kHz mode	—	250	ns		
tin		time	400 kHz mode	20 + 0.1CB	250	ns	CB is specified to be from 10-400 pF	
SP106* THD:DAT	Data input hold time	100 kHz mode	0		ns			
		400 kHz mode	0	0.9	μs			
SP107* TSU:DAT	TSU:DAT	Data input setup	100 kHz mode	250		ns	(Note 2)	
		time	400 kHz mode	100		ns		
SP109* TAA	TAA	Output valid from clock	100 kHz mode	—	3500	ns	(Note 1)	
			400 kHz mode	_	_	ns		
SP110*	TBUF	Bus free time	100 kHz mode	4.7	_	μS	Time the bus must be free	
			400 kHz mode	1.3	—	μS	before a new transmission can start	
SP111	Св	Bus capacitive loading	Ig		400	pF		


* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement TsU:DAT \ge 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-124C Sheet 1 of 2