

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 28x10b; D/A 1x5b, 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1719-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F1717/8/9

Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 2	9			•		•	·				
E8Ch		Linimalomoa	tod								
E8Fh	_	Unimplemen	lieu							_	_
E90h	RA0PPS	—	—	—			RA0PPS<4:0)>		0 0000	u uuuu
E91h	RA1PPS	—	—	—			RA1PPS<4:()>		0 0000	u uuuu
E92h	RA2PPS	—	—	—			RA2PPS<4:()>		0 0000	u uuuu
E93h	RA3PPS	—	—	_			RA3PPS4:0	>		0 0000	u uuuu
E94h	RA4PPS	—	—	—			RA4PPS<4:()>		0 0000	u uuuu
E95h	RA5PPS	—	—	—			RA5PPS<4:()>		0 0000	u uuuu
E96h	RA6PPS	—	_	—			RA6PPS<4:()>		0 0000	u uuuu
E97h	RA7PPS	—	-	_			RA7PPS<4:()>		0 0000	u uuuu
E98h	RB0PPS	—	—	—			RB0PPS<4:0)>		0 0000	u uuuu
E99h	RB1PPS	—	_	_			RB1PPS<4:()>		0 0000	u uuuu
E9Ah	RB2PPS	_	_	_			RB2PPS<4:0)>		0 0000	u uuuu
E9BN	RB3PPS	_		_			RB3PPS<4:0	>		0 0000	u uuuu
E9Ch	RB4PPS	_)>		0 0000	u uuuu
E9DI	RB5PPS	_			- RB5PPS<4:0>				0 0000	u uuuu	
E9EN	RB6PPS	_							0 0000	u uuuu	
E9FII	RB7PPS							0 0000	u uuuu		
	RCOPPS	_			RCOPPS<4:0>					0 0000	u uuuu
EAIN	RC1PPS)>		0 0000	u uuuu
EA3h	RC2PPS						PC3PPS <a.< td=""><td>)></td><td></td><td>0 0000</td><td>u uuuu</td></a.<>)>		0 0000	u uuuu
EA4h	RC3PPS						RC4PPS<4:)>		0 0000	
EA5h	RC4FF3						RC5PPS <a:< td=""><td>)></td><td></td><td>0 0000</td><td></td></a:<>)>		0 0000	
EA6h	RCSPPS						RC6PPS<4.0)>		0 0000	
EA7h	RC0PPS						RC7PPS <a:< td=""><td>)></td><td></td><td>0 0000</td><td></td></a:<>)>		0 0000	
EAgh	RC7PPS)>		0 0000	u uuuu
EAOI	RD0PPS()						RD0FF354.0)		0 0000	u uuuu
EA9n	RD1PPS ⁽¹⁾	_	_	_			RD1PPS<4:0)>		0 0000	u uuuu
EAAh	RD2PPS ⁽¹⁾	—	-	—			RD2PPS<4:()>		0 0000	u uuuu
EABh	RD3PPS ⁽¹⁾	—	—	—			RD3PPS<4:()>		0 0000	u uuuu
EACh	RD4PPS ⁽¹⁾	—	—	—	RD4PPS<4:0>				0 0000	u uuuu	
EADh	RD5PPS ⁽¹⁾	—	-	_	RD5PPS<4:0>			0 0000	u uuuu		
EAEh	RD6PPS ⁽¹⁾	_	_	_	RD6PPS<4:0>			0 0000	u uuuu		
EAFh	RD7PPS ⁽¹⁾	_	_	_	RD7PPS<4:0>				0 0000	u uuuu	
EB0h	REOPPS(1)	_	_	_	- RE0PPS<4:0>				0 0000	u uuuu	
EB1h		_	_	_	RE1PDS 10				0 0000		
FB2h		_	_	_			RE2PPS<4.0)>		0 0000	11 1111111
EB3h	RE2PPS''							<i>,</i> -		0 0000	u uuuu
	_	Unimplemen	nted							_	-
EEFh											

TABLE 3-12: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend:

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: Unimplemented on PIC16(L)F1718.

2: Unimplemented on PIC16LF1717/8/9

		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
		LVP ⁽¹⁾	DEBUG ⁽²⁾	LPBOR	BORV ⁽³⁾	STVREN	PLLEN
		bit 13	•	•	•	•	bit 8
R/P-1	U-1	U-1	U-1	U-1	R/P-1	R/P-1	R/P-1
ZCDDIS	—		—		PPS1WAY	WRT	<1:0>
bit 7							bit 0
Legend:							
R = Readable	bit	P = Programma	able bit	U = Unimpleme	ented bit read as	'1'	
'0' = Bit is clear	red	'1' = Bit is set		-n = Value whe	n blank or after B	ulk Erase	
bit 13	LVP: Low-Volt 1 = Low-voltag 0 = High-voltag	age Programming le pro <u>gramm</u> ing e ge on MCLR musi	I Enable bit ⁽¹⁾ nabled t be used for pro	gramming			
bit 12	DEBUG: In-Ci 1 = In-Circuit I 0 = In-Circuit I	rcuit Debugger Mo Debugger disabled Debugger enabled	ode bit ⁽²⁾ I, ICSPCLK and , ICSPCLK and	ICSPDAT are ge ICSPDAT are de	eneral purpose I/C dicated to the del) pins bugger	
bit 11	LPBOR: Low-1 = Low-Powe 0 = Low-Powe	Power BOR Enab r Brown-out Rese r Brown-out Rese	le bit t is disabled t is enabled				
bit 10	BORV: Brown- 1 = Brown-out 0 = Brown-out	out Reset Voltage Reset voltage (Vi Reset voltage (Vi	e Selection bit ⁽³⁾ BOR), low trip poi BOR), high trip po	nt selected. bint selected.			
bit 9	STVREN: Stac 1 = Stack Ove 0 = Stack Ove	ck Overflow/Unde flow or Underflow flow or Underflow	flow Reset Enab will cause a Re will not cause a	ole bit set ı Reset			
bit 8	PLLEN: PLL E 1 = 4xPLL ena 0 = 4xPLL disa	nable bit bled abled					
bit 7	ZCDDIS: ZCD 1 = ZCD disab 0 = ZCD alway	Disable bit led. ZCD can be o vs enabled	enabled by settir	ng the ZCDSEN b	bit of ZCDCON		
bit 6-3	Unimplement	ed: Read as '1'					
bit 2	 PPS1WAY: PPSLOCK Bit One-Way Set Enable bit 1 = The PPSLOCK bit can only be set once after an unlocking sequence is executed; once PPSLOCK is set, all future changes to PPS registers are prevented a = The PPSLOCK bit can be set and cleared as needed (provided an unlocking sequence is executed) 						
bit 1-0	WRT<1:0>: Fl <u>8 kW Flash m</u> e	ash Memory Self- emory (PIC16(L)F	Write Protection	bits			
	11 = Write protection off 10 = 0000h to 01FFh write-protected, 0200h to 1FFFh may be modified by PMCON control 01 = 0000h to 0FFFh write-protected, 1000h to 1FFFh may be modified by PMCON control 00 = 0000h to 1FFFh write-protected, no addresses may be modified by PMCON control 16 kW Flash memory (PIC16(L)F1718/9) 11 = Write protection off						
	10 = 0000 01 = 0000 00 = 0000	The office of the office offic	protected, 0200 protected, 2000 protected, no ac	h to 3FFFh may l h to 3FFFh may ldresses may be	be modified by Pl be modified by Pl modified by PMC	MCON control MCON control CON control	
Note 1: Th 2: Th	e <u>LVP bit</u> cannot e DEBUG bit in	be programmed Configuration Wo	to '0' when Prog ds is managed a	ramming mode is automatically by	s entered via LVP device developm	ent tools including	g debuggers

REGISTER 4-2: CONFIG2: CONFIGURATION WORD 2

2: The DEBUG bit in Configuration Words is managed automatically by device development tools including debuggers and programmers. For normal device operation, this bit should be maintained as a '1'.

3: See VBOR parameter for specific trip point voltages.

6.4 Two-Speed Clock Start-up Mode

Two-Speed Start-up mode provides additional power savings by minimizing the latency between external oscillator start-up and code execution. In applications that make heavy use of the Sleep mode, Two-Speed Start-up will remove the external oscillator start-up time from the time spent awake and can reduce the overall power consumption of the device. This mode allows the application to wake-up from Sleep, perform a few instructions using the INTOSC internal oscillator block as the clock source and go back to Sleep without waiting for the external oscillator to become stable.

Two-Speed Start-up provides benefits when the oscillator module is configured for LP, XT or HS modes. The Oscillator Start-up Timer (OST) is enabled for these modes and must count 1024 oscillations before the oscillator can be used as the system clock source.

If the oscillator module is configured for any mode other than LP, XT or HS mode, then Two-Speed Start-up is disabled. This is because the external clock oscillator does not require any stabilization time after POR or an exit from Sleep.

If the OST count reaches 1024 before the device enters Sleep mode, the OSTS bit of the OSCSTAT register is set and program execution switches to the external oscillator. However, the system may never operate from the external oscillator if the time spent awake is very short.

Note:	Executing a SLEEP instruction will abort
	the oscillator start-up time and will cause
	the OSTS bit of the OSCSTAT register to
	remain clear.

6.4.1 TWO-SPEED START-UP MODE CONFIGURATION

Two-Speed Start-up mode is configured by the following settings:

- IESO (of the Configuration Words) = 1; Internal/External Switchover bit (Two-Speed Start-up mode enabled).
- SCS (of the OSCCON register) = 00.
- FOSC<2:0> bits in the Configuration Words configured for LP, XT or HS mode.

Two-Speed Start-up mode is entered after:

- Power-on Reset (POR) and, if enabled, after Power-up Timer (PWRT) has expired, or
- · Wake-up from Sleep.

Switch From	Switch To	Frequency	Oscillator Delay
Sleep	LFINTOSC ⁽¹⁾ MFINTOSC ⁽¹⁾ HFINTOSC ⁽¹⁾	31 kHz 31.25 kHz-500 kHz 31.25 kHz-16 MHz	Oscillator Warm-up Delay (Twarm) ⁽²⁾
Sleep/POR	EC, RC ⁽¹⁾	DC – 32 MHz	2 cycles
LFINTOSC	EC, RC ⁽¹⁾	DC – 32 MHz	1 cycle of each
Sleep/POR	Secondary Oscillator LP, XT, HS ⁽¹⁾	32 kHz-20 MHz	1024 Clock Cycles (OST)
Any clock source	MFINTOSC ⁽¹⁾ HFINTOSC ⁽¹⁾	31.25 kHz-500 kHz 31.25 kHz-16 MHz	2 μs (approx.)
Any clock source	LFINTOSC ⁽¹⁾	31 kHz	1 cycle of each
Any clock source	Secondary Oscillator	32 kHz	1024 Clock Cycles (OST)
PLL inactive	PLL active	16-32 MHz	2 ms (approx.)

TABLE 6-1: OSCILLATOR SWITCHING DELAYS

Note 1: PLL inactive.

2: See Section 34.0 "Electrical Specifications".

R/W-0/0	R/W-0/0	R-0/0	R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	emented bit, read	l as '0'	
u = Bit is uncl	hanged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	TMR1GIF: T	mer1 Gate Inte	rrupt Flag bit				
	1 = Interrupt	is pending					
	0 = Interrupt	is not pending					
bit 6	ADIF: Analog	g-to-Digital Con	verter (ADC)	Interrupt Flag	bit		
	1 = Interrupt	is pending					
	0 = Interrupt	is not pending					
bit 5	RCIF: USAR	T Receive Inter	rupt Flag bit				
	1 = Interrupt	is pending					
hit 1		is not penuing	runt Elag hit				
DIL 4	1 - Interrupt		rupt Flag bit				
	0 = Interrupt	is not pending					
bit 3	SSP1IF: Syn	chronous Seria	l Port (MSSP) Interrupt Flag	g bit		
	1 = Interrupt	is pending	,	, ,	-		
	0 = Interrupt	is not pending					
bit 2	CCP1IF: CC	P1 Interrupt Fla	g bit				
	1 = Interrupt	is pending					
	0 = Interrupt	is not pending					
bit 1	TMR2IF: Tim	er2 to PR2 Inte	errupt Flag bit				
	1 = Interrupt	is pending					
hit 0		er1 Overflow Ir	terrunt Elan k	nit			
	1 = Interrupt	is pending	iterrupt i lag i				
	0 = Interrupt	is not pending					
			_				
Note: Int	errupt flag bits a	are set when an	interrupt				
CO	ndition occurs, i	egardless of the	e state of				
Fr	able bit. GIF.	of the INTCON	register.				

DECISTED 7 5. DID4. DEDIDUEDAL INTERDURT DEQUEST DECISTED 4

User software should ensure the appropriate interrupt flag bits are clear

prior to enabling an interrupt.

9.0 WATCHDOG TIMER (WDT)

The Watchdog Timer is a system timer that generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The Watchdog Timer is typically used to recover the system from unexpected events.

The WDT has the following features:

- · Independent clock source
- · Multiple operating modes
- WDT is always on
- WDT is off when in Sleep
- WDT is controlled by software
- WDT is always off
- Configurable time-out period is from 1 ms to 256 seconds (nominal)
- Multiple Reset conditions
- Operation during Sleep

FIGURE 9-1: WATCHDOG TIMER BLOCK DIAGRAM

9.1 Independent Clock Source

The WDT derives its time base from the 31 kHz LFINTOSC internal oscillator. Time intervals in this chapter are based on a nominal interval of 1 ms. See Table 34-8: Oscillator Parameters for the LFINTOSC specification.

9.2 WDT Operating Modes

The Watchdog Timer module has four operating modes controlled by the WDTE<1:0> bits in Configuration Words. See Table 9-1.

9.2.1 WDT IS ALWAYS ON

When the WDTE bits of Configuration Words are set to '11', the WDT is always on.

WDT protection is active during Sleep.

9.2.2 WDT IS OFF IN SLEEP

When the WDTE bits of Configuration Words are set to '10', the WDT is on, except in Sleep.

WDT protection is not active during Sleep.

9.2.3 WDT CONTROLLED BY SOFTWARE

When the WDTE bits of Configuration Words are set to '01', the WDT is controlled by the SWDTEN bit of the WDTCON register.

WDT protection is unchanged by Sleep. See Table 9-1 for more details.

WDTE<1:0>	SWDTEN	Device Mode	WDT Mode
11	Х	Х	Active
1.0	v	Awake	Active
10	A	Sleep	Disabled
01	1	~	Active
UL	0	^	Disabled
00	Х	Х	Disabled

TABLE 9-1: WDT OPERATING MODES

10.2.2 FLASH MEMORY UNLOCK SEQUENCE

The unlock sequence is a mechanism that protects the Flash program memory from unintended self-write programming or erasing. The sequence must be executed and completed without interruption to successfully complete any of the following operations:

- Row Erase
- · Load program memory write latches
- Write of program memory write latches to program memory
- Write of program memory write latches to User IDs

The unlock sequence consists of the following steps:

- 1. Write 55h to PMCON2
- 2. Write AAh to PMCON2
- 3. Set the WR bit in PMCON1
- 4. NOP instruction
- 5. NOP instruction

Once the WR bit is set, the processor will always force two NOP instructions. When an Erase Row or Program Row operation is being performed, the processor will stall internal operations (typical 2 ms), until the operation is complete and then resume with the next instruction. When the operation is loading the program memory write latches, the processor will always force the two NOP instructions and continue uninterrupted with the next instruction.

Since the unlock sequence must not be interrupted, global interrupts should be disabled prior to the unlock sequence and re-enabled after the unlock sequence is completed.

FIGURE 10-3:

FLASH PROGRAM MEMORY UNLOCK SEQUENCE FLOWCHART

FIGURE 10-6: FLASH PROGRAM MEMORY WRITE FLOWCHART

10.4 User ID, Device ID and Configuration Word Access

Instead of accessing program memory, the User ID's, Device ID/Revision ID and Configuration Words can be accessed when CFGS = 1 in the PMCON1 register. This is the region that would be pointed to by PC<15> = 1, but not all addresses are accessible. Different access may exist for reads and writes. Refer to Table 10-2.

When read access is initiated on an address outside the parameters listed in Table 10-2, the PMDATH:PMDATL register pair is cleared, reading back '0's.

TABLE 10-2:USER ID, DEVICE ID AND CONFIGURATION WORD ACCESS (CFGS = 1)

Address	Function	Read Access	Write Access
8000h-8003h	User IDs	Yes	Yes
8005h-8006h	Device ID/Revision ID	Yes	No
8007h-8008h	Configuration Words 1 and 2	Yes	No

EXAMPLE 10-4: CONFIGURATION WORD AND DEVICE ID ACCESS

* T * *	his code l PROG_ADDH PROG_DATA	block will read 1 R_LO (must be 00h- A_HI, PROG_DATA_LC	90- 08-0	ord of program memory at the memory address: Bh) data will be returned in the variables;
	BANKSEL	PMADRL	;	Select correct Bank
	MOVLW	PROG_ADDR_LO	;	
	MOVWF	PMADRL	;	Store LSB of address
	CLRF	PMADRH	;	Clear MSB of address
	BSF	PMCON1,CFGS	;	Select Configuration Space
	BCF	INTCON,GIE	;	Disable interrupts
	BSF	PMCON1,RD	;	Initiate read
	NOP		;	Executed (See Figure 10-2)
	NOP		;	Ignored (See Figure 10-2)
	BSF	INTCON, GIE	;	Restore interrupts
				-
	MOVF	PMDATL,W	;	Get LSB of word
	MOVWF	PROG DATA LO	;	Store in user location
	MOVF	PMDATH,W	;	Get MSB of word
	MOVWE	PROG DATA HI	;	Store in user location
	110 1111	I ICOO_DITIA_III	'	

U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
—	—	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'			
u = Bit is unchanged x = Bit is unknow		iown	-n/n = Value at POR and BOR/Value at all other Res			other Resets	
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 11-12: ANSELB: PORTB ANALOG SELECT REGISTER

 bit 7-6
 Unimplemented: Read as '0'

 bit 5-0
 ANSB<5:0>: Analog Select between Analog or Digital Function on Pins RB<5:0>, respectively

 0 = Digital I/O. Pin is assigned to port or digital special function.
 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

REGISTER 11-13: WPUB: WEAK PULL-UP PORTB REGISTER^(1,2)

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| WPUB7 | WPUB6 | WPUB5 | WPUB4 | WPUB3 | WPUB2 | WPUB1 | WPUB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 WPUB<7:0>: Weak Pull-up Register bits

- 1 = Pull-up enabled
- 0 = Pull-up disabled
- **Note 1:** Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.
 - **2:** The weak pull-up device is automatically disabled if the pin is configured as an output.

12.0 PERIPHERAL PIN SELECT (PPS) MODULE

The Peripheral Pin Select (PPS) module connects peripheral inputs and outputs to the device I/O pins. Only digital signals are included in the selections. All analog inputs and outputs remain fixed to their assigned pins. Input and output selections are independent as shown in the simplified block diagram Figure 12-1.

12.1 PPS Inputs

Each peripheral has a PPS register with which the inputs to the peripheral are selected. Inputs include the device pins.

Multiple peripherals can operate from the same source simultaneously. Port reads always return the pin level regardless of peripheral PPS selection. If a pin also has associated analog functions, the ANSEL bit for that pin must be cleared to enable the digital input buffer.

Although every peripheral has its own PPS input selection register, the selections are identical for every peripheral as shown in Register 12-1.

12.2 PPS Outputs

Each I/O pin has a PPS register with which the pin output source is selected. With few exceptions, the port TRIS control associated with that pin retains control over the pin output driver. Peripherals that control the pin output driver as part of the peripheral operation will override the TRIS control as needed. These peripherals include:

- EUSART (synchronous operation)
- MSSP (I²C)
- · COG (auto-shutdown)

Although every pin has its own PPS peripheral selection register, the selections are identical for every pin as shown in Register 12-2.

Note: The notation "Rxy" is a place holder for the pin identifier. For example, RA0PPS.

Note: The notation "xxx" in the register name is a place holder for the peripheral identifier. For example, CLC1PPS.

14.3 Register Definitions: FVR Control

R/W-0/	/0 R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
FVRE	N FVRRDY ⁽¹⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	CDAF\	/R<1:0>	ADFVI	R<1:0>
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writable bit		U = Unimplemented bit, read as '0'			
u = Bit is u	unchanged	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets			
'1' = Bit is	set	'0' = Bit is cle	ared	q = Value depends on condition		ion	
bit 7	bit 7 FVREN: Fixed Voltage Reference Enable 1 = Fixed Voltage Reference is enabled 0 = Fixed Voltage Reference is disabled						
bit 6	FVRRDY: Fix 1 = Fixed Vol 0 = Fixed Vol	ed Voltage Re Itage Referenc Itage Referenc	ference Ready e output is rea e output is no	/ Flag bit ⁽¹⁾ ady for use t ready or not e	nabled		
bit 5	TSEN: Temperation 1 = Temperation 0 = Temperation	TSEN: Temperature Indicator Enable bit ⁽³⁾ 1 = Temperature Indicator is enabled 0 = Temperature Indicator is disabled					
bit 4	TSRNG: Tem 1 = VOUT = V 0 = VOUT = V	TSRNG: Temperature Indicator Range Selection bit ⁽³⁾ 1 = VOUT = VDD - 4VT (High Range) 0 = VOUT = VDD - 2VT (Low Range)					
bit 3-2	CDAFVR<1:0>: Comparator FVR Buffer Gain Selection bits 11 = Comparator FVR Buffer Gain is 4x, with output VCDAFVR = 4x VFVR ⁽²⁾ 10 = Comparator FVR Buffer Gain is 2x, with output VCDAFVR = 2x VFVR ⁽²⁾ 01 = Comparator FVR Buffer Gain is 1x, with output VCDAFVR = 1x VFVR 00 = Comparator FVR Buffer is off						
bit 1-0	ADFVR<1:0> 11 = ADC FV 10 = ADC FV 01 = ADC FV 00 = ADC FV	: ADC FVR Bu R Buffer Gain R Buffer Gain R Buffer Gain R Buffer is off	iffer Gain Sele is 4x, with out is 2x, with out is 1x, with out	ection bit put VADFVR = 4 put VADFVR = 2 put VADFVR = 1	x Vfvr (2) x Vfvr (2) x Vfvr		
Note 1: 2:	FVRRDY is always Fixed Voltage Refe	s '1' on PIC16(erence output o	L)F1717/8/9 c cannot exceed	nly. Vdd.			

REGISTER 14-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

3: See Section 15.0 "Temperature Indicator Module" for additional information.

TABLE 14-2: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFV	R<1:0>	165

Legend: Shaded cells are not used with the Fixed Voltage Reference.

22.0 OPERATIONAL AMPLIFIER (OPA) MODULES

The Operational Amplifier (OPA) is a standard three-terminal device requiring external feedback to operate. The OPA module has the following features:

- External connections to I/O ports
- Low leakage inputs
- · Factory Calibrated Input Offset Voltage

When one device is transmitting a logical one, or letting the line float, and a second device is transmitting a logical zero, or holding the line low, the first device can detect that the line is not a logical one. This detection, when used on the SCL line, is called clock stretching. Clock stretching gives slave devices a mechanism to control the flow of data. When this detection is used on the SDA line, it is called arbitration. Arbitration ensures that there is only one master device communicating at any single time.

30.3.1 CLOCK STRETCHING

When a slave device has not completed processing data, it can delay the transfer of more data through the process of clock stretching. An addressed slave device may hold the SCL clock line low after receiving or sending a bit, indicating that it is not yet ready to continue. The master that is communicating with the slave will attempt to raise the SCL line in order to transfer the next bit, but will detect that the clock line has not yet been released. Because the SCL connection is open-drain, the slave has the ability to hold that line low until it is ready to continue communicating.

Clock stretching allows receivers that cannot keep up with a transmitter to control the flow of incoming data.

30.3.2 ARBITRATION

Each master device must monitor the bus for Start and Stop bits. If the device detects that the bus is busy, it cannot begin a new message until the bus returns to an Idle state.

However, two master devices may try to initiate a transmission on or about the same time. When this occurs, the process of arbitration begins. Each transmitter checks the level of the SDA data line and compares it to the level that it expects to find. The first transmitter to observe that the two levels do not match, loses arbitration, and must stop transmitting on the SDA line.

For example, if one transmitter holds the SDA line to a logical one (lets it float) and a second transmitter holds it to a logical zero (pulls it low), the result is that the SDA line will be low. The first transmitter then observes that the level of the line is different than expected and concludes that another transmitter is communicating.

The first transmitter to notice this difference is the one that loses arbitration and must stop driving the SDA line. If this transmitter is also a master device, it also must stop driving the SCL line. It then can monitor the lines for a Stop condition before trying to reissue its transmission. In the meantime, the other device that has not noticed any difference between the expected and actual levels on the SDA line continues with its original transmission. It can do so without any complications, because so far, the transmission appears exactly as expected with no other transmitter disturbing the message.

Slave Transmit mode can also be arbitrated, when a master addresses multiple slaves, but this is less common.

If two master devices are sending a message to two different slave devices at the address stage, the master sending the lower slave address always wins arbitration. When two master devices send messages to the same slave address, and addresses can sometimes refer to multiple slaves, the arbitration process must continue into the data stage.

Arbitration usually occurs very rarely, but it is a necessary process for proper multi-master support.

30.6.8 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN bit of the SSP1CON2 register. When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 30-30).

30.6.8.1 WCOL Status Flag

If the user writes the SSP1BUF when an Acknowledge sequence is in progress, then WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

30.6.9 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN bit of the SSP1CON2 register. At the end of a receive/transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit of the SSP1STAT register is set. A TBRG later, the PEN bit is cleared and the SSP1IF bit is set (Figure 30-31).

30.6.9.1 WCOL Status Flag

If the user writes the SSP1BUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

FIGURE 30-30: ACKNOWLEDGE SEQUENCE WAVEFORM

FIGURE 30-31: STOP CONDITION RECEIVE OR TRANSMIT MODE

31.1.2 EUSART ASYNCHRONOUS RECEIVER

The Asynchronous mode is typically used in RS-232 systems. The receiver block diagram is shown in Figure 31-2. The data is received on the RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at 16 times the baud rate, whereas the serial Receive Shift Register (RSR) operates at the bit rate. When all eight or nine bits of the character have been shifted in, they are immediately transferred to a two character First-In-First-Out (FIFO) memory. The FIFO buffering allows reception of two complete characters and the start of a third character before software must start servicing the EUSART receiver. The FIFO and RSR registers are not directly accessible by software. Access to the received data is via the RC1REG register.

31.1.2.1 Enabling the Receiver

The EUSART receiver is enabled for asynchronous operation by configuring the following three control bits:

- CREN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the CREN bit of the RC1STA register enables the receiver circuitry of the EUSART. Clearing the SYNC bit of the TX1STA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RC1STA register enables the EUSART. The programmer must set the corresponding TRIS bit to configure the RX/DT I/O pin as an input.

Note: If the RX/DT function is on an analog pin, the corresponding ANSEL bit must be cleared for the receiver to function.

31.1.2.2 Receiving Data

The receiver data recovery circuit initiates character reception on the falling edge of the first bit. The first bit, also known as the Start bit, is always a zero. The data recovery circuit counts one-half bit time to the center of the Start bit and verifies that the bit is still a zero. If it is not a zero then the data recovery circuit aborts character reception, without generating an error, and resumes looking for the falling edge of the Start bit. If the Start bit zero verification succeeds then the data recovery circuit counts a full bit time to the center of the next bit. The bit is then sampled by a majority detect circuit and the resulting '0' or '1' is shifted into the RSR. This repeats until all data bits have been sampled and shifted into the RSR. One final bit time is measured and the level sampled. This is the Stop bit, which is always a '1'. If the data recovery circuit samples a '0' in the Stop bit position then a framing error is set for this character, otherwise the framing error is cleared for this character. See Section 31.1.2.4 "Receive Framing Error" for more information on framing errors.

Immediately after all data bits and the Stop bit have been received, the character in the RSR is transferred to the EUSART receive FIFO and the RCIF interrupt flag bit of the PIR1 register is set. The top character in the FIFO is transferred out of the FIFO by reading the RC1REG register.

Note:	If the receive FIFO is overrun, no additional			
	characters will be received until the overrun			
	condition is cleared. See Section 31.1.2.5			
	"Receive Overrun Error" for more			
	information on overrun errors.			

31.1.2.3 Receive Interrupts

The RCIF interrupt flag bit of the PIR1 register is set whenever the EUSART receiver is enabled and there is an unread character in the receive FIFO. The RCIF interrupt flag bit is read-only, it cannot be set or cleared by software.

RCIF interrupts are enabled by setting all of the following bits:

- RCIE, Interrupt Enable bit of the PIE1 register
- PEIE, Peripheral Interrupt Enable bit of the INTCON register
- GIE, Global Interrupt Enable bit of the INTCON register

The RCIF interrupt flag bit will be set when there is an unread character in the FIFO, regardless of the state of interrupt enable bits.

RRF	Rotate Right f through Carry		
Syntax:	[<i>label</i>] RRF f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		
Operation:	See description below		
Status Affected:	С		
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.		
	C Register f		

SUBLW	Subtract W from literal		
Syntax:	[label] SL	IBLW k	
Operands:	$0 \le k \le 255$		
Operation:	$k - (W) \rightarrow (W)$		
Status Affected:	C, DC, Z		
Description:	The W register is subtracted (2's complement method) from the 8-bit literal 'k'. The result is placed in the W register.		
	C = 0	W > k	
	C = 1	$W \leq k$	
	DC = 0	W<3:0> > k<3:0>	

DC = 1

 $W<3:0> \le k<3:0>$

W<3:0> > f<3:0>

 $W<3:0> \le f<3:0>$

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow \text{WDT}, \\ 0 \rightarrow \text{WDT prescaler}, \\ 1 \rightarrow \overline{\text{TO}}, \\ 0 \rightarrow \text{PD} \end{array}$
Status Affected:	TO, PD
Description:	The power-down Status bit, $\overline{\text{PD}}$ is cleared. Time-out Status bit, $\overline{\text{TO}}$ is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.

SUBWF	Subtract W from f		
Syntax:	[label] SU	BWF f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		
Operation:	(f) - (W) \rightarrow (d	estination)	
Status Affected:	C, DC, Z		
Description:	Subtract (2's register from result is store register. If 'd' back in regist	complement method) W register 'f'. If 'd' is '0', the d in the W is '1', the result is stored er 'f.	
	C = 0	W > f	
	C = 1	W < f	

DC = 0

DC = 1

SUBWFB	Subtract W from f with Borrow
Syntax:	SUBWFB f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f) - (W) - (\overline{B}) \rightarrow dest$
Status Affected:	C, DC, Z
Description:	Subtract W and the BORROW flag (CARRY) from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

PIC16(L)F1717/8/9

SWAPF	Swap Nibbles in f
Syntax:	[label] SWAPF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>), (f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.

XORLW	Exclusive OR literal with W			
Syntax:	[<i>label</i>] XORLW k			
Operands:	$0 \leq k \leq 255$			
Operation:	(W) .XOR. $k \rightarrow (W)$			
Status Affected:	Z			
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.			

TRIS	Load TRIS Register with W
Syntax:	[label] TRIS f
Operands:	$5 \leq f \leq 7$
Operation:	(W) \rightarrow TRIS register 'f'
Status Affected:	None
Description:	Move data from W register to TRIS register. When 'f' = 5, TRISA is loaded. When 'f' = 6, TRISB is loaded. When 'f' = 7, TRISC is loaded.

XORWF	Exclusive OR W with f		
Syntax:	[label] XORWF f,d		
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$		
Operation:	(W) .XOR. (f) \rightarrow (destination)		
Status Affected:	Z		
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.		

|--|

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions	
F10	Fosc	Oscillator Frequency Range	4	_	8	MHz		
F11	Fsys	On-Chip VCO System Frequency	16	—	32	MHz		
F12	TRC	PLL Start-up Time (Lock Time)	_	—	2	ms		
F13*	ΔCLK	CLKOUT Stability (Jitter)	-0.25%	—	+0.25%	%		

These parameters are characterized but not tested.

*

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16(L)F1717/8/9

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 35-85: Temp. Indicator Initial Offset, High Range, Temp. = 20°C, PIC16F1717/8/9 Only.

FIGURE 35-86: Temp. Indicator Initial Offset, Low Range, Temp. = 20°C, PIC16F1717/8/9 Only.

FIGURE 35-87: Temp. Indicator Initial Offset, Low Range, Temp. = 20°C, PIC16LF1717/8/9 Only.

FIGURE 35-88: Temp. Indicator Slope Normalized to 20°C, High Range, VDD = 5.5V, PIC16F1717/8/9 Only.

FIGURE 35-89: Temp. Indicator Slope Normalized to 20°C, High Range, VDD = 3.0V, PIC16F1717/8/9 Only.

FIGURE 35-90: Temp. Indicator Slope Normalized to 20°C, Low Range, VDD = 3.0V, PIC16F1717/8/9 Only.