

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 28x10b; D/A 1x5b, 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1719-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-3: PIC16(L)F1717/9 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
RC4/AN16/SDI ⁽¹⁾ /SDA ⁽¹⁾	RC4	TTL/ST	CMOS	General purpose I/O.
	AN16	AN		ADC Channel 16 input.
	SDI	TTL/ST		SPI Data input.
	SDA ⁽³⁾	l ² C		I ² C Data input.
RC5/AN17	RC5	TTL/ST	CMOS	General purpose I/O.
	AN17	AN	_	ADC Channel 17 input.
RC6/AN18/CK ⁽¹⁾	RC6	TTL/ST	CMOS	General purpose I/O.
	AN18	AN		ADC Channel 18 input.
	СК	TTL/ST		EUSART synchronous clock.
RC7/AN19/RX ⁽¹⁾	RC7	TTL/ST	CMOS	General purpose I/O.
	AN19	AN		ADC Channel 19 input.
	RX	TTL/ST		EUSART receive.
RDO/AN20	RD0	TTL/ST	CMOS	General purpose I/O.
	AN20	AN	_	ADC Channel 20 input.
RD1/AN21	RD1	TTL/ST	CMOS	General purpose I/O.
	AN21	AN	_	ADC Channel 21 input.
RD2/AN22	RD2	TTL/ST	CMOS	General purpose I/O.
	AN22	AN		ADC Channel 22 input.
RD3/AN23	RD3	TTL/ST	CMOS	General purpose I/O.
	AN23	AN		ADC Channel 23 input.
RD4/AN24	RD4	TTL/ST	CMOS	General purpose I/O.
	AN24	AN	_	ADC Channel 24 input.
RD5/AN25	RD5	TTL/ST	CMOS	General purpose I/O.
	AN25	AN		ADC Channel 25 input.
RD6/AN26	RD6	TTL/ST	CMOS	General purpose I/O.
	AN26	AN	_	ADC Channel 26 input.
RD7/AN27	RD7	TTL/ST	CMOS	General purpose I/O.
	AN27	AN	_	ADC Channel 27 input.
RE0/AN5	RE0	TTL/ST	CMOS	General purpose I/O.
	AN5	AN		ADC Channel 5 input.
RE1/AN6	RE1	TTL/ST	CMOS	General purpose I/O.
	AN6	AN	—	ADC Channel 6 input.
RE2/AN7	RE2	TTL/ST	CMOS	General purpose I/O.
	AN7	AN		ADC Channel 7 input.
RE3/MCLR/VPP	RE3	TTL/ST		General purpose input.
	MCLR	ST		Master clear input.
	VPP	HV		Programming voltage.
Vdd	VDD	Power	_	Positive supply.
Vss	Vss	Power		Ground reference.

Legend: AN = Analog input or output CMOS = CMOS compatible input or output OD = Open-Drain

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I^2C = Schmitt Trigger input with I^2C HV = High Voltage XTAL = Crystal levels

Note 1: Default peripheral input. Alternate pins can be selected as the peripheral input with the PPS input selection registers.
 All pin digital outputs default to PORT latch data. Alternate outputs can be selected as the peripheral digital output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

3.0 MEMORY ORGANIZATION

These devices contain the following types of memory:

- Program Memory
 - Configuration Words
 - Device ID
 - User ID
 - Flash Program Memory
- Data Memory
 - Core Registers
 - Special Function Registers
 - General Purpose RAM
 - Common RAM

Note 1: The method to access Flash memory through the PMCON registers is described in Section 10.0 "Flash Program Memory Control".

The following features are associated with access and control of program memory and data memory:

- PCL and PCLATH
- Stack
- Indirect Addressing

TABLE 3-1: DEVICE SIZES AND ADDRESSES

3.1 Program Memory Organization

The enhanced mid-range core has a 15-bit program counter capable of addressing a 32K x 14 program memory space. Table 3-1 shows the memory sizes implemented for the PIC16(L)F1717/8/9 family. Accessing a location above these boundaries will cause a wrap-around within the implemented memory space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 3-1).

3.2 High-Endurance Flash

This device has a 128-byte section of high-endurance program Flash memory (PFM) in lieu of data EEPROM. This area is especially well suited for nonvolatile data storage that is expected to be updated frequently over the life of the end product. See Section 10.2 "Flash **Program Memory Overview**" for more information on writing data to PFM. See Section 3.2.1.2 "Indirect Read with FSR" for more information about using the FSR registers to read byte data stored in PFM.

Device	Program Memory Space (Words)	Last Program Memory Address	High-Endurance Flash Memory Address Range ⁽¹⁾	
PIC16(L)F1717	8,192	1FFFh	1F80h-1FFFh	
PIC16(L)F1718/9	16,384	3FFFh	3F80h-3FFFh	

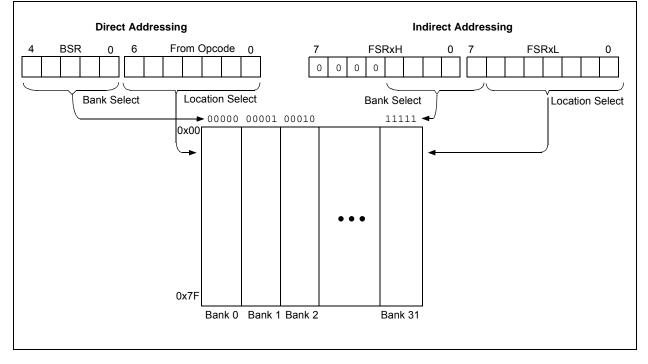
Note 1: High-endurance Flash applies to the low byte of each address in the range.

PIC16(L)F1717/8/9

Addr.	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Banl	k 10									1	
50Ch											
 510h	_	Unimplemen	ited							_	_
511h	OPA1CON	OPA1EN	OPA1SP	—	OPA1UG	—	—	OPA1F	PCH<1:0>	00-000	00-000
512h			•		•		•	•			
— 514h	—	Unimplemen	ited							_	-
515h	OPA2CON	OPA2EN	OPA2SP	_	OPA2UG	_	_	OPA2F	PCH<1:0>	00-000	00-000
516h				1		1					
 51Fh	-	Unimplemen	ited							—	-
Banl	k 11										
58Ch											
to	—	Unimplemen	ited							-	-
59Fh Banl	(12)										
60Ch											
to	—	Unimplemen	ited							_	_
616h											
617h	PWM3DCL	PWM3	DC<1:0>	—			—	—	—	xx	uu
618h	PWM3DCH					DCH<7:0>				XXXX XXXX	uuuu uuuu
619h	PWM3CON	PWM3EN	—	PWM3OUT	PWM3POL	—	_	—	—	0-x0	u-uu
61Ah	PWM4DCL	PWM4L)CL<1:0>		—	-	_	_		xx	uu
61Bh	PWM4DCH			DWARDUIT		DCH<7:0>				XXXX XXXX	uuuu uuuu
61Ch	PWM4CON	PWM4EN	—	PWM4OUT	PWM4POL	—	—	—	—	0-x0	u-uu
61Dh	—	Unimplemen	ited							_	_
61Fh	40										
Bank	C 13										
68Ch to 690h	_	Unimplemen	ited							-	-
691h	COG1PHR	_	—	COG Rising	Edge Phase D	Delay Count R	egister			xx xxxx	uu uuuu
692h	COG1PHF	—	—	COG Falling	Edge Phase [Delay Count R	egister			xx xxxx	uu uuuu
693h	COG1BLKR	—	—	COG Rising	Edge Blanking	g Count Regis	ter			xx xxxx	uu uuuu
694h	COG1BLKF	_	_	COG Falling	Edge Blanking	g Count Regis	ter			xx xxxx	uu uuuu
695h	COG1DBR	_	_	COG Rising	Edge Dead-ba	and Count Reg	gister			xx xxxx	uu uuuu
696h	COG1DBF	—	—	COG Falling	Edge Dead-b	and Count Re	gister			xx xxxx	uu uuuu
697h	COG1CON0	G1EN	G1LD	—	G1CS	S<1:0>		G1MD<2:0>	>	00-0 0000	00-0 0000
698h	COG1CON1	G1RDBS	G1FDBS	_	—	G1POLD	G1POLC	G1POLB	G1POLA	00 0000	00 0000
699h	COG1RIS	G1RIS7	G1RIS6	G1RIS5	G1RIS4	G1RIS3	G1RIS2	G1RIS1	G1RIS0	0000 0000	-000 0000
69Ah	COG1RSIM	G1RSIM7	G1RSIM6	G1RSIM5	G1RSIM4	G1RSIM3	G1RSIM2	G1RSIM1	G1RSIM0	0000 0000	-000 0000
69Bh	COG1FIS	G1FIS7	G1FIS6	G1FIS5	G1FIS4	G1FIS3	G1FIS2	G1FIS1	G1FIS0	0000 0000	-000 0000
69Ch	COG1FSIM	G1FSIM7	G1FSIM6	G1FSIM5	G1FSIM4	G1FSIM3	G1FSIM2	G1FSIM1	G1FSIM0	0000 0000	-000 0000
69Dh	COG1ASD0	G1ASE	G1ARSEN		BD<1:0>		AC<1:0>	_	_	0001 01	0001 01
69Eh	COG1ASD1	_	_	_		G1AS3E	G1AS2E	G1AS1E	G1AS0E	0000	0000
69Fh	COG1STR	G1SDATD	G1SDATC	G1SDATB	G1SDATA	G1STRD	G1STRC	G1STRB	G1STRA	0000 0001	0000 0001
		GIODAID					d, read as '0',		0.0114		

TABLE 3-12: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

x = unknown, u = unknanged, q = value depends to Shaded locations are unimplemented, read as '0'. Unimplemented on PIC16(L)F1718.


Note 1:

2: Unimplemented on PIC16LF1717/8/9

3.7.1 TRADITIONAL DATA MEMORY

The traditional data memory is a region from FSR address 0x000 to FSR address 0xFFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers.

configuration memory will be erased.

REGISTER 4-1: **CONFIG1: CONFIGURATION WORD 1 (CONTINUED)** bit 7 **CP:** Code Protection bit⁽¹⁾ 1 = Program memory code protection is disabled 0 = Program memory code protection is enabled MCLRE: MCLR/VPP Pin Function Select bit bit 6 If LVP bit = 1: This bit is ignored. If LVP bit = 0: 1 = MCLR/VPP pin function is MCLR; Weak pull-up enabled. 0 = MCLR/VPP pin function is digital input; MCLR internally disabled; Weak pull-up under control of WPUE3 bit. bit 5 **PWRTE:** Power-up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled bit 4-3 WDTE<1:0>: Watchdog Timer Enable bit 11 = WDT enabled 10 = WDT enabled while running and disabled in Sleep 01 = WDT controlled by the SWDTEN bit in the WDTCON register 00 = WDT disabled bit 2-0 FOSC<2:0>: Oscillator Selection bits 111 = ECH: External Clock, High-Power mode (4-20 MHz): device clock supplied to CLKIN pin 110 = ECM: External Clock, Medium Power mode (0.5-4 MHz): device clock supplied to CLKIN pin 101 = ECL: External Clock, Low-Power mode (0-0.5 MHz): device clock supplied to CLKIN pin 100 = INTOSC oscillator: I/O function on CLKIN pin 011 = EXTRC oscillator: External RC circuit connected to CLKIN pin 010 = HS oscillator: High-speed crystal/resonator connected between OSC1 and OSC2 pins 001 = XT oscillator: Crystal/resonator connected between OSC1 and OSC2 pins 000 = LP oscillator: Low-power crystal connected between OSC1 and OSC2 pins Note 1: The entire Flash program memory will be erased when the code protection is turned off during an erase. When a Bulk Erase Program Memory command is executed, the entire program Flash memory and

5.13 Power Control (PCON) Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Reset Instruction Reset (RI)
- MCLR Reset (RMCLR)
- Watchdog Timer Reset (RWDT)
- Stack Underflow Reset (STKUNF)
- Stack Overflow Reset (STKOVF)

The PCON register bits are shown in Register 5-2.

5.14 Register Definitions: Power Control

REGISTER 5-2: PCON: POWER CONTROL REGISTER

R/W/HS-0/q	R/W/HS-0/q	U-0	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u
STKOVF	STKUNF	—	RWDT	RMCLR	RI	POR	BOR
bit 7							bit 0

Legend:							
HC = Bit is cle	eared by hardw	are	HS = Bit is set by hardware				
R = Readable	bit	W = Writable bit	U = Unimplemented bit, read as '0'				
u = Bit is unch	nanged	x = Bit is unknown	-m/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is cleared	q = Value depends on condition				
h :+ 7							
bit 7		ack Overflow Flag bit Overflow occurred					
		Overflow has not occurred	d or cleared by firmware				
bit 6		ack Underflow Flag bit	,				
	1 = A Stack	Underflow occurred					
	0 = A Stack	Underflow has not occurre	ed or cleared by firmware				
bit 5	Unimpleme	nted: Read as '0'					
bit 4	RWDT: Wato	hdog Timer Reset Flag bit	t				
		•	occurred or set to '1' by firmware				
		-	rred (cleared by hardware)				
bit 3		LR Reset Flag bit					
		Reset has not occurred or Reset has occurred (clear					
bit 2		struction Flag bit					
DIL Z		Ũ	executed or set to '1' by firmware				
			cuted (cleared by hardware)				
bit 1		on Reset Status bit					
	1 = No Powe	er-on Reset occurred					
	0 = A Power	-on Reset occurred (must	be set in software after a Power-on Reset occurs)				
bit 0	BOR: Brown	-out Reset Status bit					
		n-out Reset occurred					
	0 = A Brown- occurs)	-out Reset occurred (must	be set in software after a Power-on Reset or Brown-out Reset				
	occurs)						

'1' = Bit is set

13.6 Register Definitions: Interrupt-on-Change Control

REGISTER 13-1: IOCAP: INTERRUPT-ON-CHANGE PORTA POSITIVE EDGE REGISTER

R/W-0/0 R/W-0/0 <t< th=""><th>0</th><th>bit</th><th>W = Writable</th><th>bit</th><th>U = Unimplen</th><th>nented bit, read</th><th>as '0'</th><th></th></t<>	0	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'					
IOCAP7 IOCAP6 IOCAP5 IOCAP4 IOCAP3 IOCAP2 IOCAP1 IOCAP0 bit 7 bit 0	Legend:											
IOCAP7 IOCAP6 IOCAP5 IOCAP4 IOCAP3 IOCAP2 IOCAP1 IOCAP0	Legend:											
IOCAP7 IOCAP6 IOCAP5 IOCAP4 IOCAP3 IOCAP2 IOCAP1 IOCAP0												
	bit 7	•					bit 0					
R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0	IOCAP7	IOCAP6	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0				
		10,00,0,0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				

bit 7-0 **IOCAP<7:0>:** Interrupt-on-Change PORTA Positive Edge Enable bits

'0' = Bit is cleared

1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 13-2: IOCAN: INTERRUPT-ON-CHANGE PORTA NEGATIVE EDGE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCAN7 | IOCAN6 | IOCAN5 | IOCAN4 | IOCAN3 | IOCAN2 | IOCAN1 | IOCAN0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 IOCAN<7:0>: Interrupt-on-Change PORTA Negative Edge Enable bits

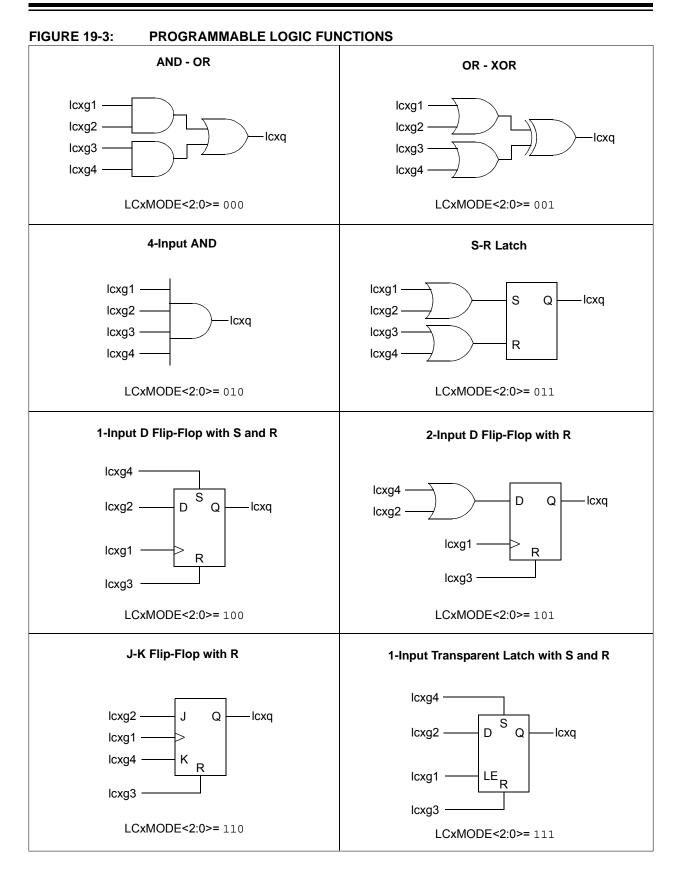
- 1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 13-3: IOCAF: INTERRUPT-ON-CHANGE PORTA FLAG REGISTER

| R/W/HS-0/0 |
|------------|------------|------------|------------|------------|------------|------------|------------|
| IOCAF7 | IOCAF6 | IOCAF5 | IOCAF4 | IOCAF3 | IOCAF2 | IOCAF1 | IOCAF0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-0


IOCAF<7:0>: Interrupt-on-Change PORTA Flag bits

- 1 = An enabled change was detected on the associated pin.
 - Set when IOCAPx = 1 and a rising edge was detected on RAx, or when IOCANx = 1 and a falling edge was detected on RAx.
- 0 = No change was detected, or the user cleared the detected change.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
GxFSIM7	GxFSIM6	GxFSIM5	GxFSIM4	GxFSIM3	GxFSIM2	GxFSIM1	GxFSIM0
bit 7						•	bit (
Legend:							
R = Readable I	pit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value a	t POR and BOP	R/Value at all ot	her Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value dep	ends on conditi	on	
bit 7	<u>GxFIS7 = 1:</u> 1 = NCO1_or		ansition will ca		vent after falling vent	event phase de	elay
	<u>GxFIS7 = 0:</u>						
	_	s no effect on f	-				
bit 6		Gx Falling Eve	ent Input Sourc	e 6 Mode bit			
	0 = PWM3 ou GxFIS6 = 0:		vill cause an ir	nmediate falling	g event after fall g event	ing event phase	e delay
oit 5		Gx Falling Eve					
	0 = CCP2 ou GxFIS5 = 0:		ill cause an im	cause a falling mediate falling	event after fallin event	ng event phase	delay
bit 4	GxFSIM4: CC	Gx Falling Eve	ent Input Sourc	e 4 Mode bit			
	0 = CCP1 low GxFIS4 = 0:	gh-to-low transi v level will caus effect on falling	e an immediat		after falling ever	nt phase delay	
bit 3)Gx Falling Eve		e 3 Mode bit			
	$\frac{GxFIS3 = 1}{1 = CLC1 \text{ out}}$ $0 = CLC1 \text{ out}$ $\frac{GxFIS3 = 0}{2}$	tput high-to-low	transition will ill cause an im		event after fallir event	ng event phase	delay
bit 2)Gx Falling Eve	ent Input Sourc	e 2 Mode bit			
	0 = Compara GxFIS2 = 0:		will cause an ir	nmediate falling	g event after fall g event	ing event phase	e delay
bit 1	GxFSIM1: CC <u>GxFIS1 = 1:</u> 1 = Compara	OGx Falling Eve tor 1 high-to-lo tor 1 low level v	nt Input Source w transition wil will cause an ir	e 1 Mode bit I cause a falling nmediate falling	g event after fall g event	ing event phase	e delay

REGISTER 18-6: COGxFSIM: COG FALLING EVENT SOURCE INPUT MODE REGISTER

PIC16(L)F1717/8/9

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W/HC-0/u	R-x/x	R/W-0/u	R/W-0/u				
TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GS	S<1:0>				
bit 7							bit (
Logondi											
Legend:	, hit		hit		optod bit room						
R = Readable		W = Writable			nented bit, read		athar Daaata				
u = Bit is unch	•	x = Bit is unki				R/Value at all	Juner Reseis				
'1' = Bit is set		'0' = Bit is cle	areu		eared by hardw	ale					
bit 7		mer1 Gate Ena	ble bit								
	This bit is ign If TMR1ON =	<u>If TMR1ON = 0</u> : This bit is ignored <u>If TMR1ON = 1</u> : 1 = Timer1 counting is controlled by the Timer1 gate function									
	0 = Timer1 c	ounts regardle	ss of Timer1 g	ate function							
bit 6	T1GPOL: Timer1 Gate Polarity bit										
		1 = Timer1 gate is active-high (Timer1 counts when gate is high)0 = Timer1 gate is active-low (Timer1 counts when gate is low)									
bit 5	T1GTM: Timer1 Gate Toggle Mode bit										
	0 = Timer1 C		de is disabled	and toggle flip- g edge.	flop is cleared						
bit 4	Timer1 gate flip-flop toggles on every rising edge. T1GSPM: Timer1 Gate Single-Pulse Mode bit										
		Gate Single-Pul Gate Single-Pul		abled and is co abled	ntrolling Timer	1 gate					
bit 3	T1GGO/DONE: Timer1 Gate Single-Pulse Acquisition Status bit										
	 1 = Timer1 gate single-pulse acquisition is ready, waiting for an edge 0 = Timer1 gate single-pulse acquisition has completed or has not been started 										
bit 2	T1GVAL: Timer1 Gate Value Status bit										
	Indicates the current state of the Timer1 gate that could be provided to TMR1H:TMR1L Unaffected by Timer1 Gate Enable (TMR1GE)										
bit 1-0	T1GSS<1:0>	: Timer1 Gate	Source Select	bits							
	 11 = Comparator 2 optionally synchronized output (sync_C2OUT) 10 = Comparator 1 optionally synchronized output (sync_C1OUT) 01 = Timer0 overflow output 00 = Timer1 gate pin 										

REGISTER 27-2: T1GCON: TIMER1 GATE CONTROL REGISTER

PIC16(L)F1717/8/9

The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (FOSC), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

When the 10-bit time base matches the CCPRxH and 2-bit latch, then the CCPx pin is cleared (see Figure 29-4).

29.3.6 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is 10 bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 29-4.

EQUATION 29-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PR2 + 1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period, the assigned PWM pin(s) will remain unchanged.

 TABLE 29-1:
 EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 29-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

29.3.7 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

29.3.8 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 6.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

30.5.6 CLOCK STRETCHING

Clock stretching occurs when a device on the bus holds the SCL line low, effectively pausing communication. The slave may stretch the clock to allow more time to handle data or prepare a response for the master device. A master device is not concerned with stretching as anytime it is active on the bus and not transferring data it is stretching. Any stretching done by a slave is invisible to the master software and handled by the hardware that generates SCL.

The CKP bit of the SSP1CON1 register is used to control stretching in software. Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. Setting CKP will release SCL and allow more communication.

30.5.6.1 Normal Clock Stretching

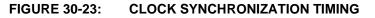
Following an ACK if the R/W bit of SSP1STAT is set, a read request, the slave hardware will clear CKP. This allows the slave time to update SSP1BUF with data to transfer to the master. If the SEN bit of SSP1CON2 is set, the slave hardware will always stretch the clock after the ACK sequence. Once the slave is ready; CKP is set by software and communication resumes.

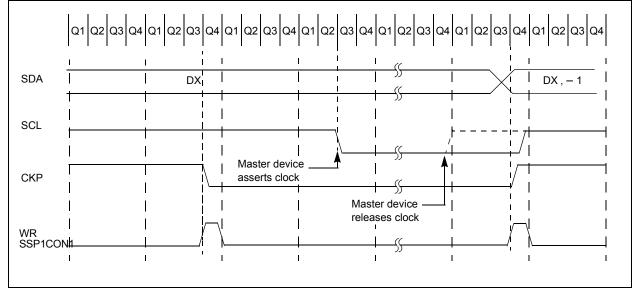
- Note 1: The BF bit has no effect on if the clock will be stretched or not. This is different than previous versions of the module that would not stretch the clock, clear CKP, if SSP1BUF was read before the 9th falling edge of SCL.
 - 2: Previous versions of the module did not stretch the clock for a transmission if SSP1BUF was loaded before the 9th falling edge of SCL. It is now always cleared for read requests.

30.5.6.2 10-Bit Addressing Mode

In 10-bit Addressing mode, when the UA bit is set the clock is always stretched. This is the only time the SCL is stretched without CKP being cleared. SCL is released immediately after a write to SSP1ADD.

Note:	Previous versions of the module did not
	stretch the clock if the second address byte
	did not match.


30.5.6.3 Byte NACKing


When AHEN bit of SSP1CON3 is set; CKP is cleared by hardware after the eighth falling edge of SCL for a received matching address byte. When DHEN bit of SSP1CON3 is set; CKP is cleared after the eighth falling edge of SCL for received data.

Stretching after the eighth falling edge of SCL allows the slave to look at the received address or data and decide if it wants to ACK the received data.

30.5.7 CLOCK SYNCHRONIZATION AND THE CKP BIT

Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. However, clearing the CKP bit will not assert the SCL output low until the SCL output is already sampled low. Therefore, the CKP bit will not assert the SCL line until an external I^2C master device has already asserted the SCL line. The SCL output will remain low until the CKP bit is set and all other devices on the I^2C bus have released SCL. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCL (see Figure 30-23).

30.6.6 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSP1BUF register. This action will set the Buffer Full flag bit, BF, and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted. SCL is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCL is released high. When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA. This allows the slave device being addressed to respond with an \overline{ACK} bit during the ninth bit time if an address match occurred, or if data was received properly. The status of ACK is written into the ACKSTAT bit on the rising edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSP1IF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSP1BUF, leaving SCL low and SDA unchanged (Figure 30-28).

After the write to the SSP1BUF, each bit of the address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will release the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT Status bit of the SSP1CON2 register. Following the falling edge of the ninth clock transmission of the address, the SSP1IF is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSP1BUF takes place, holding SCL low and allowing SDA to float.

30.6.6.1 BF Status Flag

In Transmit mode, the BF bit of the SSP1STAT register is set when the CPU writes to SSP1BUF and is cleared when all eight bits are shifted out.

30.6.6.2 WCOL Status Flag

If the user writes the SSP1BUF when a transmit is already in progress (i.e., SSP1SR is still shifting out a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

WCOL must be cleared by software before the next transmission.

30.6.6.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit of the SSP1CON2 register is cleared when the slave has sent an Acknowledge ($\overline{ACK} = 0$) and is set when the slave does not Acknowledge ($\overline{ACK} = 1$). A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

30.6.6.4 Typical Transmit Sequence

- 1. The user generates a Start condition by setting the SEN bit of the SSP1CON2 register.
- 2. SSP1IF is set by hardware on completion of the Start.
- 3. SSP1IF is cleared by software.
- 4. The MSSP module will wait the required start time before any other operation takes place.
- 5. The user loads the SSP1BUF with the slave address to transmit.
- 6. Address is shifted out the SDA pin until all eight bits are transmitted. Transmission begins as soon as SSP1BUF is written to.
- 7. The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSP1CON2 register.
- 8. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSP1IF bit.
- 9. The user loads the SSP1BUF with eight bits of data.
- 10. Data is shifted out the SDA pin until all eight bits are transmitted.
- 11. The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSP1CON2 register.
- 12. Steps 8-11 are repeated for all transmitted data bytes.
- 13. The user generates a Stop or Restart condition by setting the PEN or RSEN bits of the SSP1CON2 register. Interrupt is generated once the Stop/Restart condition is complete.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-0/0					
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D					
bit 7		·					bit C					
Legend:												
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'						
u = Bit is unc	hanged	x = Bit is unki	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets					
'1' = Bit is set	:	'0' = Bit is cle	ared									
bit 7		Port Enable bi	t									
	1 = Serial po	rt enabled rt disabled (he	ld in Reset)									
bit 6		eceive Enable l										
bit 0		-bit reception										
		B-bit reception										
bit 5	SREN: Single	e Receive Enal	ole bit									
	Asynchronou	Asynchronous mode:										
	Don't care	•										
	•	Synchronous mode – Master:										
		1 = Enables single receive										
		 0 = Disables single receive This bit is cleared after reception is complete. 										
		I his bit is cleared after reception is complete. Synchronous mode – Slave										
	Don't care											
bit 4	CREN: Conti	nuous Receive	Enable bit									
	<u>Asynchronou</u>	Asynchronous mode:										
	1 = Enables	1 = Enables receiver										
		0 = Disables receiver										
		Synchronous mode:										
	 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive 											
bit 3	ADDEN: Add	ress Detect Er	able bit									
	Asynchronous mode 9-bit (RX9 = 1):											
	1 = Enables	1 = Enables address detection, enable interrupt and load the receive buffer when RSR<8> is set										
		0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit										
	-	Asynchronous mode 8-bit (RX9 = 0):										
	Don't care											
bit 2	FERR: Frami	-										
	1 = Framing 0 = No frami		pdated by rea	ading RC1REG	register and rec	ceive next valio	i byte)					
bit 1	OERR: Over	un Error bit										
		error (can be c	leared by clea	aring bit CREN)							
	0 = No overr		-	-								
bit 0	RX9D: Ninth	bit of Received	Data									
					calculated by us							

REGISTER 31-2: RC1STA: RECEIVE STATUS AND CONTROL REGISTER

PIC16LF1		Standard Operating Conditions (unless otherwise stated) Low-Power Sleep Mode									
PIC16F1717/8/9			Low-P	Low-Power Sleep Mode, VREGPM = 1							
Param. Device Min.			Typ.†	_ Max.	Max.	Units	Conditions				
No.	Characteristics	IVIIII.	тур.т	+85°C	+125°C	Units	Vdd	Note			
D029		—	0.05	2	9	μA	1.8	ADC Current (Note 3),			
		_	0.08	3	10	μA	3.0	no conversion in progress			
D029			0.3	4	12	μA	2.3	ADC Current (Note 3),			
			0.4	5	13	μA	3.0	no conversion in progress			
			0.5	7	16	μA	5.0				
D030			250	—	_	μA	1.8	ADC Current (Note 3),			
		—	250		_	μA	3.0	conversion in progress			
D030		_	280			μA	2.3	ADC Current (Note 3),			
		_	280	_	_	μA	3.0	conversion in progress			
		—	280		_	μA	5.0				
D031		—	250	650	_	μA	3.0	Op Amp (High power)			
D031		—	250	650		μA	3.0	Op Amp (High power)			
		—	350	650	_	μA	5.0				
D032		_	250	600	—	μA	1.8	Comparator,			
		—	300	650	—	μA	3.0	CxSP = 0			
D032		—	280	600	—	μA	2.3	Comparator,			
		_	300	650	_	μA	3.0	CxSP = 0 VREGPM = 0			
		_	310	650	—	μA	5.0				

TABLE 34-3: POWER-DOWN CURRENTS (IPD)^(1,2) (CONTINUED)

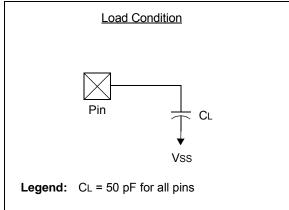
* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to Vss.

3: ADC clock source is FRC.


34.4 AC Characteristics

Timing Parameter Symbology has been created with one of the following formats:

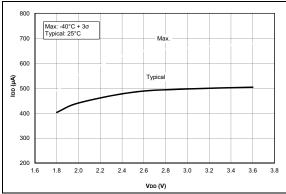
- 1. TppS2ppS
- 2. TppS

2. Tpp5		1	
Т			
F	Frequency	Т	Time
Lowerc	ase letters (pp) and their meanings:		
рр			
сс	CCP1	OSC	OSC1
ck	CLKOUT	rd	RD
cs	CS	rw	RD or WR
di	SDI	sc	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O PORT	t1	T1CKI
mc	MCLR	wr	WR
Upperc	ase letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance

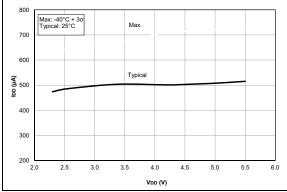
FIGURE 34-4: LOAD CONDITIONS

TABLE 34-12: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)


Operatin	ng Temperature	$e -40^{\circ}C \le TA \le$	+125°C						
Param. No.	Sym.		Characterist	ic	Min.	Typ.†	Max.	Units	Conditions
40*	Тт0Н	T0CKI High Pulse Width No Prescaler			0.5 Tcy + 20	_	—	ns	
			With Prescaler		10		_	ns	
41*	TT0L	T0CKI Low F	Pulse Width	No Prescaler	0.5 Tcy + 20		_	ns	
				With Prescaler	10	_	—	ns	
42*	Ττ0Ρ	T0CKI Period	t		Greater of: 20 or <u>Tcy + 40</u> N	—	—	ns	N = prescale value
45*	T⊤1H	T1CKI High Time	Synchronous, No Prescaler		0.5 Tcy + 20	_	—	ns	
			Synchronous, with Prescaler		15		_	ns	
			Asynchronous		30	_	—	ns	
46*	T⊤1L	T1CKI Low	Synchronous, No Prescaler		0.5 Tcy + 20		_	ns	
		Time	Synchronous, with Prescaler		15		_	ns	
			Asynchronous		30	_	—	ns	
47*	TT1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	—	—	ns	N = prescale value
			Asynchronous		60	_		ns	
48	F⊤1		•	requency Range bit T1OSCEN)	32.4	32.76 8	33.1	kHz	
49*	TCKEZTMR1	Delay from E Increment	xternal Clock E	dge to Timer	2 Tosc	—	7 Tosc	—	Timers in Sync mode

These parameters are characterized but not tested. *


Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not † tested.

PIC16(L)F1717/8/9

Note: Unless otherwise noted, VIN = 5V, Fosc = 500 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 35-49: IPD, Comparator, NP Mode (CxSP = 1), PIC16LF1717/8/9 Only.

FIGURE 35-50: IPD, Comparator, NP Mode (CxSP = 1), PIC16F1717/8/9 Only.

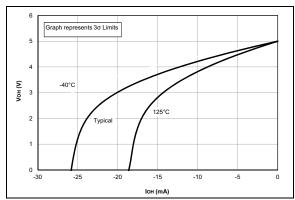


 FIGURE 35-51:
 VOH vs. IOH Over

 Temperature, VDD = 5.0V, PIC16F1717/8/9 Only.

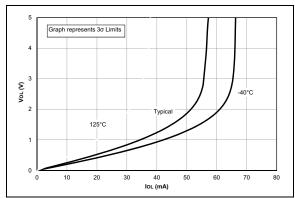
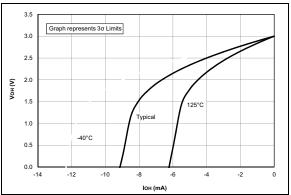



FIGURE 35-52: Vol vs. Iol Over Temperature, VDD = 5.0V, PIC16F1717/8/9 Only.

FIGURE 35-53: VOH vs. IOH Over Temperature, VDD = 3.0V.

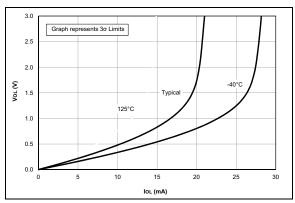


FIGURE 35-54: VOL vs. IOL Over Temperature, VDD = 3.0V.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway

Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

07/14/15