

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 28x10b; D/A 1x5b, 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1719t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

28-PIN ALLOCATION TABLE (PIC16(L)F1718) TABLE 1:

I/O ⁽²⁾	SPDIP,SOIC, SSOP	QFN, UQFN	ADC	Reference	Comparator	Op Amp	DAC	Zero Cross	Timers		ссР	NCO	PWM		900	MSSP	EUSART	CLC	Interrupt	Pull-up	Basic
RA0	2	27	AN0		C1IN0- C2IN0-													CLCIN0 ⁽¹⁾	юс	Y	
RA1	3	28	AN1		C1IN1- C2IN1-	OPA1OUT												CLCIN1 ⁽¹⁾	юс	Y	
RA2	4	1	AN2	V _{REF} -	C1IN0+ C2IN0+		DAC1OUT1												юс	Y	
RA3	5	2	AN3	V _{REF} +	C1IN1+														IOC	Y	
RA4	6	3				OPA1IN+			T0CKI ⁽¹⁾)									IOC	Y	
RA5	7	4	AN4			OPA1IN-	DAC2OUT1									nSS ⁽¹⁾			IOC	Y	
RA6	10	7																	юс	Y	OSC2 CLKOUT
RA7	9	6																	юс	Y	OSC1 CLKIN
RB0	21	18	AN12		C2IN1+			ZCD						(COG1IN ⁽¹⁾				INT ⁽¹⁾ IOC	Y	
RB1	22	19	AN10		C1IN3- C2IN3-	OPA2OUT													юс	Y	
RB2	23	20	AN8			OPA2IN-													IOC	Y	
RB3	24	21	AN9		C1IN2- C2IN2-	OPA2IN+													IOC	Y	
RB4	25	22	AN11																IOC	Y	
RB5	26	23	AN13						T1G ⁽¹⁾										IOC	Y	
RB6	27	24																CLCIN2 ⁽¹⁾	IOC	Y	ICSPCLK
RB7	28	25					DAC1OUT2 DAC2OUT2											CLCIN3 ⁽¹⁾	юс	Y	ICSPDAT
RC0	11	8							T1CKI ⁽¹⁾ SOSCO).).									IOC	Y	
RC1	12	9							SOSCI	c	CP2 ⁽¹⁾								IOC	Y	
RC2	13	10	AN14							С	CP1 ⁽¹⁾								· IOC ·	Y	
RC3	14	11	AN15						· · ·	• :						SCL/SCK ⁽¹⁾			IOC.	Y	

DS40001740B-page 4

Note 1: Default peripheral input. Alternate pins can be selected as the peripheral input with the PPS input selection registers.

2: All pin digital outputs default to PORT latch data. Alternate outputs can be selected as the peripheral digital output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

4: Alternate outputs are excluded from solid shaded areas.

5: Alternate inputs are excluded from dot shaded areas.

TABLE 1-3: PIC16(L)F1717/9 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
RC4/AN16/SDI ⁽¹⁾ /SDA ⁽¹⁾	RC4	TTL/ST	CMOS	General purpose I/O.
	AN16	AN	_	ADC Channel 16 input.
	SDI	TTL/ST		SPI Data input.
	SDA ⁽³⁾	l ² C		I ² C Data input.
RC5/AN17	RC5	TTL/ST	CMOS	General purpose I/O.
	AN17	AN	_	ADC Channel 17 input.
RC6/AN18/CK ⁽¹⁾	RC6	TTL/ST	CMOS	General purpose I/O.
	AN18	AN		ADC Channel 18 input.
	СК	TTL/ST		EUSART synchronous clock.
RC7/AN19/RX ⁽¹⁾	RC7	TTL/ST	CMOS	General purpose I/O.
	AN19	AN		ADC Channel 19 input.
	RX	TTL/ST	_	EUSART receive.
RDO/AN20	RD0	TTL/ST	CMOS	General purpose I/O.
	AN20	AN	_	ADC Channel 20 input.
RD1/AN21	RD1	TTL/ST	CMOS	General purpose I/O.
	AN21	AN	_	ADC Channel 21 input.
RD2/AN22	RD2	TTL/ST	CMOS	General purpose I/O.
	AN22	AN	_	ADC Channel 22 input.
RD3/AN23	RD3	TTL/ST	CMOS	General purpose I/O.
	AN23	AN	_	ADC Channel 23 input.
RD4/AN24	RD4	TTL/ST	CMOS	General purpose I/O.
	AN24	AN	_	ADC Channel 24 input.
RD5/AN25	RD5	TTL/ST	CMOS	General purpose I/O.
	AN25	AN		ADC Channel 25 input.
RD6/AN26	RD6	TTL/ST	CMOS	General purpose I/O.
	AN26	AN		ADC Channel 26 input.
RD7/AN27	RD7	TTL/ST	CMOS	General purpose I/O.
	AN27	AN		ADC Channel 27 input.
RE0/AN5	RE0	TTL/ST	CMOS	General purpose I/O.
	AN5	AN		ADC Channel 5 input.
RE1/AN6	RE1	TTL/ST	CMOS	General purpose I/O.
	AN6	AN		ADC Channel 6 input.
RE2/AN7	RE2	TTL/ST	CMOS	General purpose I/O.
	AN7	AN		ADC Channel 7 input.
RE3/MCLR/VPP	RE3	TTL/ST		General purpose input.
	MCLR	ST		Master clear input.
	Vpp	HV	_	Programming voltage.
Vdd	VDD	Power	—	Positive supply.
Vss	Vss	Power	_	Ground reference.

Legend: AN = Analog input or output CMOS = CMOS compatible input or output OD = Open-Drain

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I^2C = Schmitt Trigger input with I^2C HV = High Voltage XTAL = Crystal levels

Note 1: Default peripheral input. Alternate pins can be selected as the peripheral input with the PPS input selection registers.
 All pin digital outputs default to PORT latch data. Alternate outputs can be selected as the peripheral digital output with the PPS output selection registers.

3: These peripheral functions are bidirectional. The output pin selections must be the same as the input pin selections.

3.4.1 SPECIAL FUNCTION REGISTER

The Special Function Registers are registers used by the application to control the desired operation of peripheral functions in the device. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh). The registers associated with the operation of the peripherals are described in the appropriate peripheral chapter of this data sheet.

3.4.2 GENERAL PURPOSE RAM

There are up to 80 bytes of GPR in each data memory bank. The GPR occupies the 80 bytes after the SFR registers of selected data memory banks.

3.4.2.1 Linear Access to GPR

The general purpose RAM can be accessed in a non-banked method via the FSRs. This can simplify access to large memory structures. See **Section 3.7.2** "**Linear Data Memory**" for more information.

3.4.3 COMMON RAM

There are 16 bytes of common RAM accessible from all banks.

FIGURE 3-3: BANKED MEMORY PARTITIONING

7-bit Bank Offset	Memory Region
00h 0Bh	Core Registers (12 bytes)
0Ch	Special Function Registers (20 bytes maximum)
1Fh	
20h	General Purpose RAM (80 bytes maximum)
6Fh	
70h	Common RAM (16 bytes)
7Fh	

3.4.4 DEVICE MEMORY MAPS

The memory maps for the device family are as shown in Table 3-3 through Table 3-10.

TABLE 3-8: PIC16(L)F1718/9 MEMORY MAP, BANK 24-31

	BANK 24		BANK 25		BANK 26		BANK 27		BANK 28		BANK 29		BANK 30		BANK 31
C00h	Core Registers (Table 3-2)	C80h	Core Registers (Table 3-2)	D00h	Core Registers (Table 3-2)	D80h	Core Registers (Table 3-2)	E00h	Core Registers (Table 3-2)	E80h	Core Registers (Table 3-2)	F00h	Core Registers (Table 3-2)	F80h	Core Registers (Table 3-2)
COBh		C8Bh		D0Bh		D8Bh		E0Bh		E8Bh		F0Bh		F8Bh	
COCh	_	C8Ch	_	D0Ch	—	D8Ch		E0Ch		E8Ch		F0Ch		F8Ch	
C0Dh	_	C8Dh	—	D0Dh	—	D8Dh	—	E0Dh		E8Dh		F0Dh		F8Dh	
C0Eh	—	C8Eh	—	D0Eh	—	D8Eh	—	E0Eh		E8Eh		F0Eh		F8Eh	
C0Fh	_	C8Fh	—	D0Fh	—	D8Fh	—	E0Fh		E8Fh		F0Fh		F8Fh	
C10h	_	C90h	_	D10h	_	D90h		E10h		E90h		F10h		F90h	
C11h	—	C91h	—	D11h	—	D91h	—	E11h		E91h		F11h		F91h	
C12h	—	C92h	—	D12h	—	D92h	—	E12h		E92h		F12h		F92h	
C13h	_	C93h	—	D13h	—	D93h		E13h		E93h		F13h		F93h	
C14h	_	C94h	—	D14h	—	D94h	_	E14h		E94h		F14h		F94h	
C15h	_	C95h	_	D15h	—	D95h	_	E15h		E95h		F15h		F95h	
C16h	_	C96h	—	D16h	—	D96h	_	E16h		E96h		F16h		F96h	
C17h	—	C97h	—	D17h	—	D97h	_	E17h	Soo Toblo 2 0 for	E97h	Soo Table 2.0 for	F17h	Soo Table 2.0 for	F97h	Soo Table 2 10 for
C18h	—	C98h	—	D18h	—	D98h	_	E18h	register mapping	E98h	register mapping	F18h	register mapping	F98h	register mapping
C19h	—	C99h		D19h	_	D99h		E19h	details	E99h	details	F19h	details	F99h	details
C1Ah	_	C9Ah	-	D1Ah		D9Ah	_	E1Ah		E9Ah		F1Ah		F9Ah	
C1Bh	_	C9Bh	-	D1Bh		D9Bh	_	E1Bh		E9Bh		F1Bh		F9Bh	
C1Ch	_	C9Ch	—	D1Ch	-	D9Ch	—	E1Ch		E9Ch		F1Ch		F9Ch	
C1Dh	_	C9Dh	—	D1Dh	-	D9Dh	—	E1Dh		E9Dh		F1Dh		F9Dh	
C1Eh	_	C9Eh	—	D1Eh	-	D9Eh	—	E1Eh		E9Eh		F1Eh		F9Eh	
C1Fh	_	C9Fh	_	D1Fh	_	D9Fh	_	E1Fh		E9Fh		F1Fh		F9Fh	
C20h		CA0h	General Purpose	D20h		DA0h		E20h		EA0h		F20h		FA0h	
	General	CBFh	Register 32 Bytes												
	Purpose	CC0h			Unimplemented		Unimplemented								
	Register		Unimplemented		Read as '0'		Read as '0'								
	80 Bytes		Read as '0'												
C6Fh		CEFh		D6Fh		DEFh		E6Fh		EEFh		F6Fh		FEFh	
C70h		CF0h		D70h		DF0h		E70h		EF0h		F70h		FF0h	
	Accesses														
	70h – 7Fh														
CFFh		CFFh		D7Fh		DFFh		E7Fh		EFFh		F7Fh		FFFh	

Legend: = Unimplemented data memory locations, read as '0'.

PIC16(L)F1717/8/9

TABLE 3-9: PIC16(L)F1717/8/9 MEMORY MAP, BANK 28-30

	Bank 28		Bank 29		Bank 30			
E0Ch	_	E8Ch		F0Ch	_			
E0Dh		E8Dh		F0Dh	—			
E0Eh	_	E8Eh	—	F0Eh	—			
E0Fh	PPSLOCK	E8Fh		F0Fh	CLCDATA			
E10h	INTPPS	E90h	RA0PPS	F10h	CLC1CON			
E11h	TOCKIPPS	E91h	RA1PPS	F11h	CLC1POL			
E12h	T1CKIPPS	E92h	RA2PPS	F12h	CLC1SEL0			
E13h	T1GPPS	E93h	RA3PPS	F13h	CLC1SEL1			
E14h	CCP1PPS	E94h	RA4PPS	F14h	CLC1SEL2			
E15h	CCP2PPS	E95h	RA5PPS	F15h	CLC1SEL3			
E16h	_	E96h	RA6PPS	F16h	CLC1GLS0			
E17h	COGINPPS	E97h	RA7PPS	F17h	CLC1GLS1			
E18h		E98h	RB0PPS	F18h	CLC1GLS2			
E19h		E99h	RB1PPS	F19h	CLC1GLS3			
EIAN	_	E9An	RB2PPS	FIAN	CLC2CON			
E1Bh	_	E9Bh	RB3PPS	F1Bh	CLC2POL			
E1Ch		E9Ch	RB4PPS ⁽¹⁾	F1Ch	CLC2SEL0			
E1Dh	—	E9Dh	RB5PPS ⁽¹⁾	F1Dh	CLC2SEL1			
E1Eh	_	E9Eh	RB6PPS ⁽¹⁾	F1Eh	CLC2SEL2			
F1Fh		F9Fh	RB7PPS(1)	F1Fh	CLC2SEL3			
E20h	SSPCI KPPS	EA0h	RCOPPS	F20h	CLC2GLS0			
F21h	SSPDATPPS	FA1h	RC1PPS	F21h	CI C2GI S1			
F22h	SSPSSPPS	FA2h	RC2PPS	F22h	CLC2GLS2			
E23h	_	EA3h	RC3PPS	F23h	CLC2GLS3			
E24h	RXPPS	EA4h	RC4PPS	F24h	CLC3CON			
E25h	CKPPS	EA5h	RC5PPS	F25h	CLC3POL			
E26h		EA6h	RC6PPS	F26h				
				- 1 2011				
E2/11			RC/PP3					
E28h	CLCINOPPS	EA8h	RDOPPS()	F28h	CLC3SEL2			
E29h	CLCIN1PPS	EA9h	RD1PPS ⁽¹⁾	F29h	CLC3SEL3			
E2Ah	CLCIN2PPS	EAAh	RD2PPS ⁽¹⁾	F2Ah	CLC3GLS0			
E2Bh	CLCIN3PPS	EABh	RD3PPS ⁽¹⁾	F2Bh	CLC3GLS1			
F2Ch		FACh	RD4PPS(1)	F2Ch	CLC3GLS2			
E2Dh		EADh		E2Dh				
EZEN		EAEN	RD6PP5(*)	FZEN	CLC4CON			
E2Fh		EAFh	RD7PPS()	F2Fh	CLC4POL			
E30h		EB0h	RE0PPS ⁽¹⁾	F30h	CLC4SEL0			
E31h	_	EB1h	RE1PPS ⁽¹⁾	F31h	CLC4SEL1			
E32h	_	EB2h	RE2PPS ⁽¹⁾	F32h	CLC4SEL2			
E33h		EB3h	_	F33h	CLC4SEL3			
E34h		EB4h		F34h	CLC4GLS0			
E35h		EB5h		F35h	CLC4GLS1			
E36h	_	EB6h		F36h	CLC4GLS2			
E37h	_	EB7h		F37h	CLC4GLS3			
E38h	_	EB8h	_	F38h	_			
E39h	_	EB9h	_	F39h	_			
E3Ah	_	EBAh	_	F3Ah	_			
E3Bh	_	EBBh	_	F3Bh				
E3Ch	—	EBCh	—	F3Ch				
E3Dh		EBDh		F3Dh				
E3Eh	—	EBEh	—	F3Eh				
E3Fh		EBFh		F3Fh				
E40h		EC0h		F40h				
	_		_		_			
E6Fh		EEFh		F6Fh				
Legend	: = Unimplem	nented d	ata memory loca	tions, re	ad as '0',			
Note 1:	Only available o	n PIC16	(L)F1717/9 devic	ces.				

3.5 PCL and PCLATH

The Program Counter (PC) is 15 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<14:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 3-4 shows the five situations for the loading of the PC.

FIGURE 3-4: LOADING OF PC IN DIFFERENT SITUATIONS

3.5.1 MODIFYING PCL

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<14:8> bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper seven bits to the PCLATH register. When the lower eight bits are written to the PCL register, all 15 bits of the program counter will change to the values contained in the PCLATH register and those being written to the PCL register.

3.5.2 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to Application Note AN556, *"Implementing a Table Read"* (DS00556).

3.5.3 COMPUTED FUNCTION CALLS

A computed function CALL allows programs to maintain tables of functions and provide another way to execute state machines or look-up tables. When performing a table read using a computed function CALL, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block).

If using the CALL instruction, the PCH<2:0> and PCL registers are loaded with the operand of the CALL instruction. PCH<6:3> is loaded with PCLATH<6:3>.

The CALLW instruction enables computed calls by combining PCLATH and W to form the destination address. A computed CALLW is accomplished by loading the W register with the desired address and executing CALLW. The PCL register is loaded with the value of W and PCH is loaded with PCLATH.

3.5.4 BRANCHING

The branching instructions add an offset to the PC. This allows relocatable code and code that crosses page boundaries. There are two forms of branching, BRW and BRA. The PC will have incremented to fetch the next instruction in both cases. When using either branching instruction, a PCL memory boundary may be crossed.

If using BRW, load the W register with the desired unsigned address and execute BRW. The entire PC will be loaded with the address PC + 1 + W.

If using BRA, the entire PC will be loaded with PC + 1 +, the signed value of the operand of the BRA instruction.

5.0 RESETS

There are multiple ways to reset this device:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Low-Power Brown-out Reset (LPBOR)
- MCLR Reset
- WDT Reset
- RESET instruction
- Stack Overflow
- Stack Underflow
- Programming mode exit

To allow VDD to stabilize, an optional Power-up Timer can be enabled to extend the Reset time after a BOR or POR event.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 5-1.

FIGURE 5-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

6.4 Two-Speed Clock Start-up Mode

Two-Speed Start-up mode provides additional power savings by minimizing the latency between external oscillator start-up and code execution. In applications that make heavy use of the Sleep mode, Two-Speed Start-up will remove the external oscillator start-up time from the time spent awake and can reduce the overall power consumption of the device. This mode allows the application to wake-up from Sleep, perform a few instructions using the INTOSC internal oscillator block as the clock source and go back to Sleep without waiting for the external oscillator to become stable.

Two-Speed Start-up provides benefits when the oscillator module is configured for LP, XT or HS modes. The Oscillator Start-up Timer (OST) is enabled for these modes and must count 1024 oscillations before the oscillator can be used as the system clock source.

If the oscillator module is configured for any mode other than LP, XT or HS mode, then Two-Speed Start-up is disabled. This is because the external clock oscillator does not require any stabilization time after POR or an exit from Sleep.

If the OST count reaches 1024 before the device enters Sleep mode, the OSTS bit of the OSCSTAT register is set and program execution switches to the external oscillator. However, the system may never operate from the external oscillator if the time spent awake is very short.

Note:	Executing a SLEEP instruction will abort						
	the oscillator start-up time and will cause						
	the OSTS bit of the OSCSTAT register to						
	remain clear.						

6.4.1 TWO-SPEED START-UP MODE CONFIGURATION

Two-Speed Start-up mode is configured by the following settings:

- IESO (of the Configuration Words) = 1; Internal/External Switchover bit (Two-Speed Start-up mode enabled).
- SCS (of the OSCCON register) = 00.
- FOSC<2:0> bits in the Configuration Words configured for LP, XT or HS mode.

Two-Speed Start-up mode is entered after:

- Power-on Reset (POR) and, if enabled, after Power-up Timer (PWRT) has expired, or
- · Wake-up from Sleep.

Switch From	Switch To	Frequency	Oscillator Delay
Sleep	LFINTOSC ⁽¹⁾ MFINTOSC ⁽¹⁾ HFINTOSC ⁽¹⁾	31 kHz 31.25 kHz-500 kHz 31.25 kHz-16 MHz	Oscillator Warm-up Delay (Twarm) ⁽²⁾
Sleep/POR	EC, RC ⁽¹⁾	DC – 32 MHz	2 cycles
LFINTOSC	EC, RC ⁽¹⁾	DC – 32 MHz	1 cycle of each
Sleep/POR	Secondary Oscillator LP, XT, HS ⁽¹⁾	32 kHz-20 MHz	1024 Clock Cycles (OST)
Any clock source	MFINTOSC ⁽¹⁾ HFINTOSC ⁽¹⁾	31.25 kHz-500 kHz 31.25 kHz-16 MHz	2 μs (approx.)
Any clock source	LFINTOSC ⁽¹⁾	31 kHz	1 cycle of each
Any clock source	Secondary Oscillator	32 kHz	1024 Clock Cycles (OST)
PLL inactive	PLL active	16-32 MHz	2 ms (approx.)

TABLE 6-1: OSCILLATOR SWITCHING DELAYS

Note 1: PLL inactive.

2: See Section 34.0 "Electrical Specifications".

5: INTF is enabled to be set any time during the Q4-Q1 cycles.

7.3 Interrupts During Sleep

Some interrupts can be used to wake from Sleep. To wake from Sleep, the peripheral must be able to operate without the system clock. The interrupt source must have the appropriate Interrupt Enable bit(s) set prior to entering Sleep.

On waking from Sleep, if the GIE bit is also set, the processor will branch to the interrupt vector. Otherwise, the processor will continue executing instructions after the SLEEP instruction. The instruction directly after the SLEEP instruction will always be executed before branching to the ISR. Refer to **Section 8.0** "**Power-Down Mode (Sleep)**" for more details.

7.4 INT Pin

The INT pin can be used to generate an asynchronous edge-triggered interrupt. This interrupt is enabled by setting the INTE bit of the INTCON register. The INTEDG bit of the OPTION_REG register determines on which edge the interrupt will occur. When the INTEDG bit is set, the rising edge will cause the interrupt. When the INTEDG bit is clear, the falling edge will cause the interrupt. The INTF bit of the INTCON register will be set when a valid edge appears on the INT pin. If the GIE and INTE bits are also set, the processor will redirect program execution to the interrupt vector.

7.5 Automatic Context Saving

Upon entering an interrupt, the return PC address is saved on the stack. Additionally, the following registers are automatically saved in the shadow registers:

- W register
- STATUS register (except for TO and PD)
- BSR register
- FSR registers
- PCLATH register

Upon exiting the Interrupt Service Routine, these registers are automatically restored. Any modifications to these registers during the ISR will be lost. If modifications to any of these registers are desired, the corresponding shadow register should be modified and the value will be restored when exiting the ISR. The shadow registers are available in Bank 31 and are readable and writable. Depending on the user's application, other registers may also need to be saved.

11.4 Register Definitions: PORTB

REGISTER 11-9: PORTB: PORTB REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u				
RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0				
bit 7							bit 0				
Legend:											
R = Readable b	oit	W = Writable	bit	U = Unimplemented bit, read as '0'							
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is set		'0' = Bit is clea	ared								

bit 7-0 **RB<7:0>**: PORTB General Purpose I/O Pin bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

REGISTER 11-10: TRISB: PORTB TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISB7 | TRISB6 | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

TRISB<7:0>: PORTB Tri-State Control bits

1 = PORTB pin configured as an input (tri-stated)

0 = PORTB pin configured as an output

REGISTER 11-11: LATB: PORTB DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATB7 | LATB6 | LATB5 | LATB4 | LATB3 | LATB2 | LATB1 | LATB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATB<7:0>: PORTB Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.

11.6 Register Definitions: PORTC

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 11-17: PORTC: PORTC REGISTER

bit 7-0 RC<7:0>: PORTC General Purpose I/O Pin bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

Note 1: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is return of actual I/O pin values.

REGISTER 11-18: TRISC: PORTC TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISC7 | TRISC6 | TRISC5 | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

- TRISC<7:0>: PORTC Tri-State Control bits
- 1 = PORTC pin configured as an input (tri-stated)
- 0 = PORTC pin configured as an output

REGISTER 11-19: LATC: PORTC DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATC7 | LATC6 | LATC5 | LATC4 | LATC3 | LATC2 | LATC1 | LATC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATC<7:0>: PORTC Output Latch Value bits

FIGURE 23-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

23.4 Operation During Sleep

The DAC continues to function during Sleep. When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the DAC1CON0 register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

23.5 Effects of a Reset

A device Reset affects the following:

- DAC is disabled
- DAC output voltage is removed from the DAC1OUT pin
- The DAC1R<7:0> range select bits are cleared

can be determined from the time difference between the ZCDOUT high and low periods. Note that the time difference, ΔT , is 4*T_{offset}. The equation for determining the pull-up and pull-down resistor values from the high and low ZCDOUT periods is shown in Equation 25-4. The ZCDOUT signal can be directly observed on a pin by routing the ZCDOUT signal through one of the CLCs.

EQUATION 25-4:

$$R = R_{series} \left(\frac{V_{bias}}{V_{peak} \left(\sin \left(\pi Freq \frac{(\Delta T)}{2} \right) \right)} - 1 \right)$$

R is pull-up or pull-down resistor

 V_{bias} is V_{pullup} when R is pull-up or VDD when R is pull-down

 ΔT is the ZCDOUT high and low period difference

25.6 Handling V_{peak} variations

If the peak amplitude of the external voltage is expected to vary then the series resistor must be selected to keep the ZCD current source and sink below the design maximum range of ± 600 µA for the maximum expected voltage and high enough to be detected accurately at the minimum peak voltage. A general rule of thumb is that the maximum peak voltage can be no more than six times the minimum peak voltage. To ensure that the maximum current does not exceed \pm 600 μ A and the minimum is at least \pm 100 μ A compute the series resistance as shown in Equation 25-5. The compensating pull-up for this series resistance can be determined with pull-up value Equation 25-3 because the is independent from the peak voltage.

EQUATION 25-5: SERIES R FOR V RANGE

$$R_{series} = \frac{V_{maxpeak} + V_{minpeak}}{7 \times 10^{-4}}$$

25.7 Operation During Sleep

The ZCD current sources and interrupts are unaffected by Sleep.

25.8 Effects of a Reset

The ZCD circuit can be configured to default to the active or inactive state on Power-On-Reset (POR). When the ZCDDIS Configuration bit is cleared, the ZCD circuit will be active at POR. When the ZCDDIS Configuration bit is set, the ZCDxEN bit of the ZCDxCON register must be set to enable the ZCD module.

R/W-0/0	R-0/0	R/W-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/W/HS-0/0
GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is cle	ared	HC = Cleared	d by hardware	S = User set	
bit 7	GCEN: Gene 1 = Enable in:	ral Call Enable terrupt when a	e bit (in I ² C Sla general call a	ve mode only) ddress (0x00 d	or 00h) is receiv	ed in the SSP1	SR
bit 6	ACKSTAT: Ac 1 = Acknowle 0 = Acknowle	cknowledge St dge was not re dge was recei	atus bit (in I ² C eceived ved	mode only)			
bit 5	ACKDT: Ackr	nowledge Data	bit (in I ² C mo	de only)			
	In Receive mode: Value transmitted when the user initiates an Acknowledge sequence at the end of a receive 1 = Not Acknowledge						
bit 4	ACKEN: Ack	nowledge Seq	uence Enable	bit (in I ² C Mas	ter mode only)		
	 In Master Receive mode: 1 = Initiate Acknowledge sequence on SDA and SCL pins, and transmit ACKDT data bit. Automatically cleared by hardware. 0 = Acknowledge sequence idle 						
bit 3	RCEN: Receive Enable bit (in I ² C Master mode only) 1 = Enables Receive mode for I ² C 0 = Receive idle						
bit 2	 PEN: Stop Condition Enable bit (in I²C Master mode only) <u>SCKMSSP Release Control:</u> 1 = Initiate Stop condition on SDA and SCL pins. Automatically cleared by hardware. a = Stop condition Idle 						
bit 1	RSEN: Repe	ated Start Con	dition Enable b	oit (in I ² C Mast	er mode only)		
	1 = Initiate R 0 = Repeated	epeated Start	condition on Son Idle	DA and SCL p	ins. Automatica	lly cleared by h	nardware.
bit 0	SEN: Start Co In Master mod 1 = Initiate Sta 0 = Start cond In Slave mode 1 = Clock stre 0 = Clock stre	ondition Enable <u>de:</u> art condition or dition Idle <u>e:</u> etching is enab etching is disat	e/Stretch Enab n SDA and SC pled for both sla pled	le bit L pins. Automa ave transmit ar	atically cleared nd slave receive	by hardware. e (stretch enable	ed)
				2			

REGISTER 30-3: SSP1CON2: SSP CONTROL REGISTER 2⁽¹⁾

Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the Idle mode, this bit may not be set (no spooling) and the SSP1BUF may not be written (or writes to the SSP1BUF are disabled).

31.1.1.5 TSR Status

The TRMT bit of the TX1STA register indicates the status of the TSR register. This is a read-only bit. The TRMT bit is set when the TSR register is empty and is cleared when a character is transferred to the TSR register from the TX1REG. The TRMT bit remains clear until all bits have been shifted out of the TSR register. No interrupt logic is tied to this bit, so the user has to poll this bit to determine the TSR status.

Note:	The TSR register is not mapped in data
	memory, so it is not available to the user.

31.1.1.6 Transmitting 9-Bit Characters

The EUSART supports 9-bit character transmissions. When the TX9 bit of the TX1STA register is set, the EUSART will shift nine bits out for each character transmitted. The TX9D bit of the TX1STA register is the ninth, and Most Significant data bit. When transmitting 9-bit data, the TX9D data bit must be written before writing the eight Least Significant bits into the TX1REG. All nine bits of data will be transferred to the TSR shift register immediately after the TX1REG is written.

A special 9-bit Address mode is available for use with multiple receivers. See **Section 31.1.2.7** "Address **Detection**" for more information on the Address mode.

- 31.1.1.7 Asynchronous Transmission Setup
- Initialize the SP1BRGH, SP1BRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 31.4 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If 9-bit transmission is desired, set the TX9 control bit. A set ninth data bit will indicate that the eight Least Significant data bits are an address when the receiver is set for address detection.
- 4. Set SCKP bit if inverted transmit is desired.
- 5. Enable the transmission by setting the TXEN control bit. This will cause the TXIF interrupt bit to be set.
- If interrupts are desired, set the TXIE interrupt enable bit of the PIE1 register. An interrupt will occur immediately provided that the GIE and PEIE bits of the INTCON register are also set.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded into the TX9D data bit.
- 8. Load 8-bit data into the TX1REG register. This will start the transmission.

FIGURE 31-3: ASYNCHRONOUS TRANSMISSION

PIC16(L)F1717/8/9

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2-cycle instruction.

GOTO	Unconditional Branch		
Syntax:	[<i>label</i>] GOTO k		
Operands:	$0 \leq k \leq 2047$		
Operation:	k → PC<10:0> PCLATH<6:3> → PC<14:11>		
Status Affected:	None		
Description:	GOTO is an unconditional branch. The 11-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a 2-cycle instruction.		

INCFSZ	Increment f, Skip if 0
Syntax:	[label] INCFSZ f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a 2-cycle instruction.

IORLW	Inclusive OR literal with W		
Syntax:	[<i>label</i>] IORLW k		
Operands:	$0 \le k \le 255$		
Operation:	(W) .OR. $k \rightarrow$ (W)		
Status Affected:	Z		
Description:	The contents of the W register are OR'ed with the 8-bit literal 'k'. The result is placed in the W register.		

INCF	Increment f	IORWF	Inclusive OR W with f	
Syntax:	[label] INCF f,d	Syntax:	[<i>label</i>] IORWF f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	
Operation:	(f) + 1 \rightarrow (destination)	Operation:	(W) .OR. (f) \rightarrow (destination)	
Status Affected:	Z	Status Affected:	Z	
Description: The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.		Description:	- Inclusive OR the W register with register 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.	

PIC16(L)F1717/8/9

SWAPF	Swap Nibbles in f			
Syntax:	[label] SWAPF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	$(f<3:0>) \rightarrow (destination<7:4>), (f<7:4>) \rightarrow (destination<3:0>)$			
Status Affected:	None			
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.			

XORLW	Exclusive OR literal with W				
Syntax:	[<i>label</i>] XORLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	(W) .XOR. $k \rightarrow (W)$				
Status Affected:	Z				
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.				

TRIS	Load TRIS Register with W
Syntax:	[label] TRIS f
Operands:	$5 \leq f \leq 7$
Operation:	(W) \rightarrow TRIS register 'f'
Status Affected:	None
Description:	Move data from W register to TRIS register. When 'f' = 5, TRISA is loaded. When 'f' = 6, TRISB is loaded. When 'f' = 7, TRISC is loaded.

XORWF	Exclusive OR W with f				
Syntax:	[label] XORWF f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	(W) .XOR. (f) \rightarrow (destination)				
Status Affected:	Z				
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.				

34.0 ELECTRICAL SPECIFICATIONS

34.1 Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on pins with respect to Vss	
on VDD pin	
PIC16F1717/8/9	-0.3V to +6.5V
PIC16LF1717/8/9	0.3V to +4.0V
on MCLR pin	-0.3V to +9.0V
on all other pins	0.3V to (VDD + 0.3V)
Maximum current	
on Vss pin ⁽¹⁾	
$-40^{\circ}C \leq TA \leq +85^{\circ}C$	340 mA
$-40^{\circ}C \leq TA \leq +125^{\circ}C$	140 mA
on VDD pin ⁽¹⁾ PIC16(L)F1718 only	
$-40^{\circ}C \leq TA \leq +85^{\circ}C$	250 mA
$-40^{\circ}C \le TA \le +125^{\circ}C$	85 mA
on VDD pin ⁽¹⁾ PIC16(L)F1717/9 only	
$-40^{\circ}C \le TA \le +85^{\circ}C$	350 mA
$-40^{\circ}C \le TA \le +125^{\circ}C$	120 mA
Sunk by any standard I/O pin	50 mA
Sourced by any standard I/O pin	50 mA
Sourced by any Op Amp output pin	100 mA
Clamp current, IK (VPIN < 0 or VPIN > VDD)	±20 mA
Total power dissipation ⁽²⁾	800 mW

Note 1: Maximum current rating requires even load distribution across I/O pins. Maximum current rating may be limited by the device package power dissipation characterizations, see Table 34-6 to calculate device specifications.

2: Power dissipation is calculated as follows:

Pdis = $VDD^* \{Idd - \Sigma Ioh\} + \Sigma \{VDD - Voh\}^* Ioh\} + \Sigma (Vol^* Iol).$

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

PIC16LF1717/8/9		Standard Operating Conditions (unless otherwise stated)					
PIC16F1717/8/9							
Param. Device		Min	T 4		L les la s	Conditions	
No.	Characteristics	with.	тур.т	wax.	Units	Vdd	Note
D009	LDO Regulator	—	75	—	μA	—	High-Power mode, normal operation
		—	15		μA	—	Sleep, VREGCON<1> = 0
		_	0.3		μA	—	Sleep, VREGCON<1> = 1
D010		—	8	—	μA	1.8	Fosc = 32 kHz,
		—	12	—	μA	3.0	LP Oscillator mode (Note 4), -40°C \leq TA \leq +85°C
D010		—	15		μA	2.3	Fosc = 32 kHz,
		_	17		μA	3.0	LP Oscillator mode (Note 4, Note 5),
		_	21		μA	5.0	$-40^{\circ}C \le IA \le +85^{\circ}C$
D012		—	140	—	μA	1.8	Fosc = 4 MHz,
		_	250	—	μA	3.0	XT Oscillator mode
D012		_	210		μA	2.3	Fosc = 4 MHz,
		—	280		μA	3.0	XT Oscillator mode (Note 5)
		_	340		μA	5.0	
D014		_	115		μA	1.8	Fosc = 4 MHz,
		-	210	-	μA	3.0	External Clock (ECM), Medium Power mode
D014		_	180		μA	2.3	Fosc = 4 MHz,
		_	240		μA	3.0	External Clock (ECM),
		—	300		μA	5.0	Medium Power mode (Note 5)
D015		_	2.1		mA	3.0	Fosc = 32 MHz,
		—	2.5	—	mA	3.6	External Clock (ECH), High-Power mode
D015			2.1	_	mA	3.0	Fosc = 32 MHz,
		_	2.2	—	mA	5.0	External Clock (ECH), High-Power mode (Note 5)

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in $k\Omega$

4: FVR and BOR are disabled.

5: 0.1 μ F capacitor on VCAP.

6: 8 MHz clock with 4x PLL enabled.

FIGURE 34-17: SPI MASTER MODE TIMING (CKE = 0, SMP = 0)

