E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M23
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	17
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.63V
Data Converters	A/D 5x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	24-SSOP (0.209", 5.30mm Width)
Supplier Device Package	24-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsaml10d14a-yft

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PAC - Peripheral Access Controller

- Bit 5 OSC32KCTRL Interrupt Flag for OSC32KCTRL
- Bit 4 OSCCTRL Interrupt Flag for OSCCTRL
- Bit 3 RSTC Interrupt Flag for RSTC
- Bit 2 MCLK Interrupt Flag for MCLK
- Bit 1 PM Interrupt Flag for PM
- Bit 0 PAC Interrupt Flag for PAC

In the data sheet, references to Synchronous Clocks are referring to the CPU and bus clocks (MCLK), while asynchronous clocks are generated by the Generic Clock Controller (GCLK).

17.3 Register Synchronization

17.3.1 Overview

All peripherals are composed of one digital bus interface connected to the APB or AHB bus and running from a corresponding clock in the Main Clock domain, and one peripheral core running from the peripheral Generic Clock (GCLK).

Communication between these clock domains must be synchronized. This mechanism is implemented in hardware, so the synchronization process takes place even if the peripheral generic clock is running from the same clock source and on the same frequency as the bus interface.

All registers in the bus interface are accessible without synchronization.

All registers in the peripheral core are synchronized when written. Some registers in the peripheral core are synchronized when read.

Each individual register description will have the properties "Read-Synchronized" and/or "Write-Synchronized" if a register is synchronized.

As shown in the figure below, each register that requires synchronization has its individual synchronizer and its individual synchronization status bit in the Synchronization Busy register (SYNCBUSY). **Note:** For registers requiring both read- and write-synchronization, the corresponding bit in SYNCBUSY is shared.

GCLK - Generic Clock Controller

index(m)	Name	Description
9	GCLK_EVSYS_CHANNEL_3	EVSYS_CHANNEL_3
10	GCLK_SERCOM[0,1,2]_SLOW	SERCOM[0,1,2]_SLOW
11	GCLK_SERCOM0_CORE	SERCOM0_CORE
12	GCLK_SERCOM1_CORE	SERCOM1_CORE
13	GCLK_SERCOM2_CORE	SERCOM2_CORE
14	GCLK_TC0, GCLK_TC1	TC0,TC1
15	GCLK_TC2	TC2
16	GCLK_ADC	ADC
17	GCLK_AC	AC
18	GCLK_DAC	DAC
19	GCLK_PTC	PTC
20	GCLK_CCL	CCL

19.5.7 Debug Operation

When the CPU is halted in debug mode, the MCLK continues normal operation. In sleep mode, the clocks generated from the MCLK are kept running to allow the debugger accessing any module. As a consequence, power measurements are incorrect in debug mode.

19.5.8 Register Access Protection

All registers with write-access can be write-protected optionally by the Peripheral Access Controller (PAC), except for the following registers:

• Interrupt Flag register (INTFLAG)

Optional write-protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write-Protection" property in each individual register description.

PAC write-protection does not apply to accesses through an external debugger.

Related Links

15. PAC - Peripheral Access Controller

19.5.9 SAM L11 TrustZone Specific Register Access Protection

On **SAM L11** devices, this peripheral has different access permissions depending on PAC Security Attribution (Secure or Non-Secure):

- If the peripheral is configured as Non-Secure in the PAC:
 - Secure access and Non-Secure access are granted
- If the peripheral is configured as Secure in the PAC:
 - Secure access is granted
 - Non-Secure access is discarded (Write is ignored, read 0x0) and a PAC error is triggered

Refer to Peripherals Security Attribution for more information.

19.5.10 Analog Connections

Not applicable.

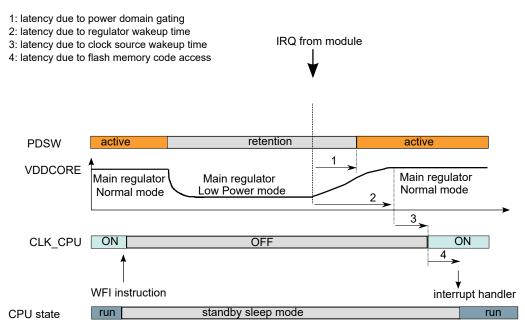
19.6 Functional Description

19.6.1 Principle of Operation

The CLK_MAIN clock signal from the GCLK module or the DFLLULP is the source for the main clock, which in turn is the common root for the synchronous clocks for the CPU, APBx, and AHBx modules. The CLK_MAIN is divided by an 8-bit prescaler. Each of the derived clocks can run from any divided or undivided main clock, ensuring synchronous clock sources for each clock domain. The clock domain (CPU) can be changed on the fly to respond to variable load in the application. The clocks for each module in a clock domain can be masked individually to avoid power consumption in inactive modules. Depending on the sleep mode, some clock domains can be turned off.

19.6.2 Basic Operation

19.6.2.1 Initialization


After a Reset, the default clock source of the CLK_MAIN clock (GCLK_MAIN) is started and calibrated before the CPU starts running. The GCLK_MAIN clock is selected as the main clock without any prescaler division.

By default, only the necessary clocks are enabled.

amount of time for the main regulator to transition to the voltage level corresponding to PL2, causing additional wake-up time.

- Latency due to the CPU clock source wake-up time.
- Latency due to the NVM memory access.
- Latency due to Switchable Power Domain back-bias wake-up time: If back-bias is enabled, and the device wakes up from retention, it takes a certain amount of time for the regulator to settle.

Figure 22-5. Total Wake-up Time from Standby Sleep Mode

22.6.5 Standby with Static Power Domain Gating in Details

In Standby Sleep mode, the switchable power domain (PDSW) of a peripheral can remain in active state to perform the peripheral's tasks. This Static Power Domain Gating feature is supported by all peripherals. For some peripherals it must be enabled by writing a Run in Standby bit in the respective Control A register (CTRLA.RUNSTDBY) to '1'. Refer to each peripheral chapter for details.

The following examples illustrate Standby with static Power Domain Gating:

TC0 Standby with Static Power Domain Gating

TC0 peripheral is used in counter operation mode. An interrupt is generated to wake-up the device based on the TC0 peripheral configuration. To make the TC0 peripheral continue to run in Standby Sleep mode, the RUNSTDBY bit is written to '1'.

- Entering Standby mode: As shown in Figure 22-6, PDSW remains active. Refer to 22.6.3.5 Power Domain Controller for details.
- Exiting Standby mode: When conditions are met, the TC0 peripheral generates an interrupt to wake-up the device, and the CPU is able to operate normally and execute the TC0 interrupt handler accordingly.
- Wake-up time:
 - The required time to set PDSW to active state has to be considered for the global wake-up time, refer to 22.6.4.6 Wake-Up Time for details.

22.8.1 Sleep Configuration

Name:	SLEEPCFG
Offset:	0x01
Reset:	0x2
Property:	PAC Write-Protection

Bit	7	6	5	4	3	2	1	0
						5	SLEEPMODE[2:0)]
Access						R/W	R/W	R/W
Reset						0	0	0

Bits 2:0 – SLEEPMODE[2:0] Sleep Mode

Note: A small latency happens between the store instruction and actual writing of the SLEEPCFG register due to bridges. Software has to make sure the SLEEPCFG register reads the wanted value before issuing WFI instruction.

Value	Name	Definition
0x0	Reserved	Reserved
0x1	Reserved	Reserved
0x2	IDLE	CPU, AHBx, and APBx clocks are OFF
0x3	Reserved	Reserved
0x4	STANDBY	ALL clocks are OFF, unless requested by sleepwalking peripheral
0x5	Reserved	Reserved
0x6	OFF	All power domains are powered OFF
0x7	Reserved	Reserved

27.8.13 Tamper Control

Name:	TAMPCTRL
Offset:	0x60
Reset:	0x0000000
Property:	PAC Write-Protection, Enable-Protected

Bit	31	30	29	28	27	26	25	24
					DEBNC3	DEBNC2	DEBNC1	DEBNC0
Access								
Reset					0	0	0	0
Bit	23	22	21	20	19	18	17	16
					TAMLVL3	TAMLVL2	TAMLVL1	TAMLVL0
Access		•	•					
Reset					0	0	0	0
Bit	15	14	13	12	11	10	9	8
Access				•				
Reset								
Bit	7	6	5	4	3	2	1	0
	IN3ACT[1:0]		IN2ACT[1:0]		IN1ACT[1:0]		IN0ACT[1:0]	
Access								
Reset	0	0	0	0	0	0	0	0

Bits 24, 25, 26, 27 – DEBNC Debounce Enable of Tamper Input INn

Value	Description
0	Debouncing is disabled for Tamper input INn
1	Debouncing is enabled for Tamper input INn

Bits 16, 17, 18, 19 - TAMLVL Tamper Level Select of Tamper Input INn

Value	Description
0	A falling edge condition will be detected on Tamper input INn.
1	A rising edge condition will be detected on Tamper input INn.

Bits 0:1, 2:3, 4:5, 6:7 – INACT Tamper Channel n Action

These bits determine the action taken by Tamper Channel n.

Value	Name	Description
0x0	OFF	Off (Disabled)
0x1	WAKE	Wake and set Tamper flag
0x2	CAPTURE	Capture timestamp and set Tamper flag
0x3	ACTL	Compare RTC signal routed between INn and OUT pins . When a mismatch
		occurs, capture timestamp and set Tamper flag

RTC – Real-Time Counter

Offset	Name	Bit Pos.										
		31:24				GP	31:24]					
		7:0		GP[7:0]								
0x44	GP1	15:8		GP[15:8]								
0844	GFT	23:16				GP[[23:16]					
		31:24				GP[31:24]					
0x48 0x5F	Reserved											
		7:0	IN3AC	CT[1:0]	IN2AC	T[1:0]	IN1AC	CT[1:0]	IN0AC	CT[1:0]		
0x60	TAMPCTRL	15:8										
0,00	TAMFOTIL	23:16					TAMLVL3	TAMLVL2	TAMLVL1	TAMLVL0		
		31:24					DEBNC3	DEBNC2	DEBNC1	DEBNC0		
		7:0	COUNT[7:0]									
0x64	TIMESTAMP	15:8	COUNT[15:8]									
0,04		23:16										
		31:24										
		7:0					TAMPID3	TAMPID2	TAMPID1	TAMPID0		
0x68	TAMPID	15:8										
0,000		23:16										
		31:24	TAMPEVT									
		7:0					ALSI3	ALSI2	ALSI1	ALSI0		
0x6C	TAMPCTRLB	15:8										
0,000		23:16										
		31:24										

27.10 Register Description - Mode 1 - 16-Bit Counter

This Register Description section is valid if the RTC is in COUNT16 mode (CTRLA.MODE=1).

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16-, and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Some registers require synchronization when read and/or written. Synchronization is denoted by the "Read-Synchronized" and/or "Write-Synchronized" property in each individual register description.

Optional write-protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write-Protection" property in each individual register description.

Some registers are enable-protected, meaning they can only be written when the module is disabled. Enable-protection is denoted by the "Enable-Protected" property in each individual register description.

On **SAM L11** devices, this peripheral has different access permissions depending on PAC Security Attribution (Secure or Non-Secure):

- If the peripheral is configured as Non-Secure in the PAC:
 - Secure access and Non-Secure access are granted
- If the peripheral is configured as Secure in the PAC:
 - Secure access is granted
 - Non-Secure access is discarded (Write is ignored, read 0x0) and a PAC error is triggered

RTC – Real-Time Counter

Offset	Name	Bit Pos.										
		7:0		GP[7:0]								
	0.54	15:8		GP[15:8]								
0x44 GP1	23:16				GP[2	23:16]						
		31:24				GP[31:24]					
0x48 0x5F	Reserved											
		7:0	IN3AC	CT[1:0]	IN2A0	CT[1:0]	IN1AC	CT[1:0]	IN0ACT[1:0]			
0,460	TAMPCTRL	15:8										
0x60	TAMPCTRL	23:16					TAMLVL3	TAMLVL2	TAMLVL1	TAMLVL0		
		31:24					DEBNC3	DEBNC2	DEBNC1	DEBNC0		
		7:0	MINUTE[1:0]				SECOND[5:0]					
0x64	TIMESTAMP	15:8	HOUR[3:0]			MINUTE[5:2]						
0704	TIMEOTAW	23:16	MONT	⁻ H[1:0]		DAY[4:0]				HOUR[4:4]		
		31:24		YEAR[5:0]				MONTH[3:2]				
		7:0					TAMPID3	TAMPID2	TAMPID1	TAMPID0		
0x68	TAMPID	15:8										
0,00		23:16										
		31:24	TAMPEVT									
		7:0					ALSI3	ALSI2	ALSI1	ALSI0		
0x6C	TAMPCTRLB	15:8										
0.00		23:16										
		31:24										

27.12 Register Description - Mode 2 - Clock/Calendar

This Register Description section is valid if the RTC is in Clock/Calendar mode (CTRLA.MODE=2).

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16-, and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Some registers require synchronization when read and/or written. Synchronization is denoted by the "Read-Synchronized" and/or "Write-Synchronized" property in each individual register description.

Optional write-protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write-Protection" property in each individual register description.

Some registers are enable-protected, meaning they can only be written when the module is disabled. Enable-protection is denoted by the "Enable-Protected" property in each individual register description.

On **SAM L11** devices, this peripheral has different access permissions depending on PAC Security Attribution (Secure or Non-Secure):

- If the peripheral is configured as Non-Secure in the PAC:
 - Secure access and Non-Secure access are granted
- If the peripheral is configured as Secure in the PAC:
 - Secure access is granted
 - Non-Secure access is discarded (Write is ignored, read 0x0) and a PAC error is triggered

DMAC – Direct Memory Access Controller

Value	Name	Description
0x33	CHN	DMA channel 19
0x34	CHN	DMA channel 20
0x35	CHN	DMA channel 21
0x36	CHN	DMA channel 22
0x37	CHN	DMA channel 23
0x38	CHN	DMA channel 24
0x39	CHN	DMA channel 25
0x3A	CHN	DMA channel 26
0x3B	CHN	DMA channel 27
0x3C	CHN	DMA channel 28
0x3D	CHN	DMA channel 29
0x3E	CHN	DMA channel 30
0x3F	CHN	DMA channel 31

Bits 3:2 – CRCPOLY[1:0] CRC Polynomial Type

These bits define the size of the data transfer for each bus access when the CRC is used with I/O interface, as shown in the table below.

Value	Name	Description
0x0	CRC16	CRC-16 (CRC-CCITT)
0x1	CRC32	CRC32 (IEEE 802.3)
0x2-0x3		Reserved

Bits 1:0 - CRCBEATSIZE[1:0] CRC Beat Size

These bits define the size of the data transfer for each bus access when the CRC is used with I/O interface.

Value	Name	Description
0x0	BYTE	8-bit bus transfer
0x1	HWORD	16-bit bus transfer
0x2	WORD	32-bit bus transfer
0x3		Reserved

31.8.5 Status

Name:	STATUS
Offset:	0x007
Reset:	0x00
Property:	Read-Only

Bit	7	6	5	4	3	2	1	0
							DRP	RAMINV
Access							R	R
Reset							0	0

Bit 1 – DRP Data Remanence Prevention Routine

This bit identifies if the data remanence prevention routine is running.

Value	Description
0	The data remanence prevention routine is not running.
1	The data remanence prevention routine is running.

Bit 0 - RAMINV RAM Inversion Bit

This bit identifies if the TrustRAM bit values are inverted.

Value	Description
0	The TrustRAM physical bit information is normal.
1	The TrustRAM physical bit information is inverted.

31.8.10 Security RAM n

Name:	RAM
Offset:	0x0100 + n*0x04 [n=063]
Reset:	0x0000000
Property:	PAC Write-Protected, Enable-Protected

Access to the Security RAM is only permitted when CTRLA.ENABLE=1.

Bit	31	30	29	28	27	26	25	24			
	DATA[31:24]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	23	22	21	20	19	18	17	16			
				DATA	[23:16]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	15	14	13	12	11	10	9	8			
				DATA	[15:8]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
	DATA[7:0]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			

Bits 31:0 - DATA[31:0] RAM Data

- Status register (STATUS)
- Data register (DATA)

Optional PAC Write-Protection is denoted by the "PAC Write-Protection" property in each individual register description.

Write-protection does not apply to accesses through an external debugger.

Related Links

15. PAC - Peripheral Access Controller

36.5.9 SAM L11 TrustZone Specific Register Access Protection

On **SAM L11** devices, this peripheral has different access permissions depending on PAC Security Attribution (Secure or Non-Secure):

- If the peripheral is configured as Non-Secure in the PAC:
 - Secure access and Non-Secure access are granted
- If the peripheral is configured as Secure in the PAC:
 - Secure access is granted
 - Non-Secure access is discarded (Write is ignored, read 0x0) and a PAC error is triggered

Refer to Peripherals Security Attribution for more information.

36.5.10 Analog Connections

Not applicable.

36.6 Functional Description

36.6.1 Principle of Operation

The SPI is a high-speed synchronous data transfer interface It allows high-speed communication between the device and peripheral devices.

The SPI can operate as master or slave. As master, the SPI initiates and controls all data transactions. The SPI is single buffered for transmitting and double buffered for receiving.

When transmitting data, the Data register can be loaded with the next character to be transmitted during the current transmission.

When receiving, the data is transferred to the two-level or four-level receive buffer, and the receiver is ready for a new character.

The SPI transaction format is shown in SPI Transaction Format. Each transaction can contain one or more characters. The character size is configurable, and can be either 8 or 9 bits.

Figure 36-2. SPI Transaction Format

	•	Character	 Transaction		
MOSI/MISO	\times	Character 0	Character 1	Character 2	
_SS					

37. SERCOM I²C – SERCOM Inter-Integrated Circuit

37.1 Overview

The inter-integrated circuit (I^2C) interface is one of the available modes in the serial communication interface (SERCOM).

The I²C interface uses the SERCOM transmitter and receiver configured as shown in Figure 37-1. Labels in capital letters are registers accessible by the CPU, while lowercase labels are internal to the SERCOM.

A SERCOM instance can be configured to be either an I^2C master or an I^2C slave. Both master and slave have an interface containing a shift register, a transmit buffer and a receive buffer. In addition, the I^2C master uses the SERCOM baud-rate generator, while the I^2C slave uses the SERCOM address match logic.

Related Links

34. SERCOM – Serial Communication Interface

37.2 Features

SERCOM I²C includes the following features:

- Master or slave operation
- Can be used with DMA
- Philips I²C compatible
- SMBus[™] compatible
- PMBus compatible
- Support of 100kHz and 400kHz, 1MHz and 3.4MHz I²C mode
- 4-Wire operation supported
- Physical interface includes:
 - Slew-rate limited outputs
 - Filtered inputs
- Slave operation:
 - Operation in all sleep modes
 - Wake-up on address match
 - 7-bit and 10-bit Address match in hardware for:
 - Unique address and/or 7-bit general call address
 - Address range
 - Two unique addresses can be used with DMA

Related Links

34.2 Features

Note: The I^2C standard *Fm*+ (Fast-mode plus) requires a nominal high to low SCL ratio of 1:2, and BAUD should be set accordingly. At a minimum, BAUD.BAUD and/or BAUD.BAUDLOW must be non-zero.

Startup Timing The minimum time between SDA transition and SCL rising edge is 6 APB cycles when the DATA register is written in smart mode. If a greater startup time is required due to long rise times, the time between DATA write and IF clear must be controlled by software.

Note: When timing is controlled by user, the Smart Mode cannot be enabled.

Master Clock Generation (High-Speed Mode)

For I²C *Hs* transfers, there is no SCL synchronization. Instead, the SCL frequency is determined by the GCLK_SERCOMx_CORE frequency (f_{GCLK}) and the High-Speed Baud setting in the Baud register (BAUD.HSBAUD). When BAUD.HSBAUDLOW=0, the HSBAUD value will determine both SCL high and SCL low. In this case the following formula determines the SCL frequency.

$$f_{\rm SCL} = \frac{f_{\rm GCLK}}{2 + 2 \cdot HS \, BAUD}$$

When HSBAUDLOW is non-zero, the following formula determines the SCL frequency.

$$f_{\rm SCL} = \frac{f_{\rm GCLK}}{2 + HS\,BAUD + HSBAUDLOW}$$

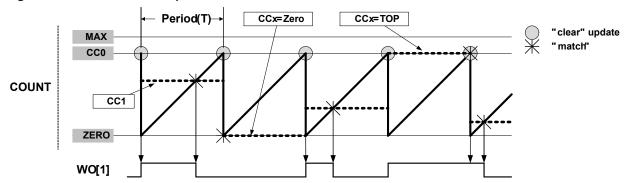
Note: The I²C standard *Hs* (High-speed) requires a nominal high to low SCL ratio of 1:2, and HSBAUD should be set accordingly. At a minimum, BAUD.HSBAUD and/or BAUD.HSBAUDLOW must be non-zero.

37.6.2.4.2 Transmitting Address Packets

The I²C master starts a bus transaction by writing the I²C slave address to ADDR.ADDR and the direction bit, as described in 37.6.1 Principle of Operation. If the bus is busy, the I²C master will wait until the bus becomes idle before continuing the operation. When the bus is idle, the I²C master will issue a start condition on the bus. The I²C master will then transmit an address packet using the address written to ADDR.ADDR. After the address packet has been transmitted by the I²C master, one of four cases will arise according to arbitration and transfer direction.

Case 1: Arbitration lost or bus error during address packet transmission

If arbitration was lost during transmission of the address packet, the Master on Bus bit in the Interrupt Flag Status and Clear register (INTFLAG.MB) and the Arbitration Lost bit in the Status register (STATUS.ARBLOST) are both set. Serial data output to SDA is disabled, and the SCL is released, which disables clock stretching. In effect the I²C master is no longer allowed to execute any operation on the bus until the bus is idle again. A bus error will behave similarly to the arbitration lost condition. In this case, the MB interrupt flag and Master Bus Error bit in the Status register (STATUS.BUSERR) are both set in addition to STATUS.ARBLOST.


The Master Received Not Acknowledge bit in the Status register (STATUS.RXNACK) will always contain the last successfully received acknowledge or not acknowledge indication.

In this case, software will typically inform the application code of the condition and then clear the interrupt flag before exiting the interrupt routine. No other flags have to be cleared at this moment, because all flags will be cleared automatically the next time the ADDR.ADDR register is written.

Case 2: Address packet transmit complete – No ACK received

If there is no I²C slave device responding to the address packet, then the INTFLAG.MB interrupt flag and STATUS.RXNACK will be set. The clock hold is active at this point, preventing further activity on the bus.

Figure 38-6. Match PWM Operation

The table below shows the update counter and overflow event/interrupt generation conditions in different operation modes.

Name	Operation	ТОР	Update	Output Waveform		OVFIF/Event	
				On Match On Update		Up	Down
NFRQ	Normal Frequency	PER	TOP/ ZERO	Toggle	Stable	TOP	ZERO
MFRQ	Match Frequency	CC0	TOP/ ZERO	Toggle	Stable	TOP	ZERO
NPWM	Single-slope PWM	PER	TOP/ ZERO	See description above.		TOP	ZERO
MPWM	Single-slope PWM	CC0	TOP/ ZERO	Toggle	Toggle	TOP	ZERO

Related Links

32. PORT - I/O Pin Controller

38.6.2.7 Double Buffering

The Compare Channels (CCx) registers, and the Period (PER) register in 8-bit mode are double buffered. Each buffer register has a buffer valid bit (CCBUFVx or PERBUFV) in the STATUS register, which indicates that the buffer register contains a new valid value that can be copied into the corresponding register. As long as the respective buffer valid status flag (PERBUFV or CCBUFVx) are set to '1', related syncbusy bits are set (SYNCBUSY.PER or SYNCBUSY.CCx), a write to the respective PER/PERBUF or CCx/CCBUFx registers will generate a PAC error, and access to the respective PER or CCx register is invalid.

When the buffer valid flag bit in the STATUS register is '1' and the Lock Update bit in the CTRLB register is set to '0', (writing CTRLBCLR.LUPD to '1'), double buffering is enabled: the data from buffer registers will be copied into the corresponding register under hardware UPDATE conditions, then the buffer valid flags bit in the STATUS register are automatically cleared by hardware.

Note: The software update command (CTRLBSET.CMD=0x3) is acting independently of the LUPD value.

A compare register is double buffered as in the following figure.

46.7 **Power Consumption**

The values in this section are measured values of power consumption under the following conditions, except where noted:

- Operating Conditions
 - V_{DDIO} = 3.3V or 1.8V
 - CPU is running on Flash with required Wait states, as recommended in the NVM Characteristics section
 - Low-power cache is enabled
 - BOD33 is disabled
 - I/Os are configured with digital input trigger disabled (default Reset configuration)
- Oscillators
 - XOSC (crystal oscillator) stopped
 - XOSC32K (32.768 kHz crystal oscillator) running with external 32.768 kHz crystal
 - When in Active mode with Performance Level 2 (PL2), DPLL is running at 32 MHz and using XOSC32K as reference
 - When in Active mode on DFLLULP, the DFLLULP is configured in Closed Loop mode using XOSC32K as reference clock and MCLK.CTRLA.CKSEL = 1

Table 46-8. Active Current Consumption

Mode	Conditions	Regulator	PL	CPU Clock	Vcc	Та	Тур.	Мах	Units
ACTIVE	COREMARK/	LDO	PL0		1.8V Max at 85°C		64.1	82	µA/Mhz
	FIBONACCI		8MHz 3.3V Typ at 25°	Typ at 25°	64.4	84			
				OSC 8MHz	1.8V		66.6	81	
					3.3V		70.3	83	
				OSC 4MHz	1.8V		74.1	102	
					3.3V		77.8 1 82.0 8	106	
			PL2	FDPLL96M at	1.8V			89	
				32MHz	3.3V		82.5	89	
				DFLLULP at	1.8V		75.8	99	
				32MHz	3.3V		75.8	96	
	BUCK	BUCK	PL0 DFLLULP at	1.8V		40.0	53		
				8MHz	3.3V		25.3	5.3 34	
		OSC 8MHz 1.8V		43.8	53				
					3.3V		32.13950.368	39	-
		P		OSC 4MHz	1.8V			68	
					3.3V		38.9	52	
			PL2	PL2	FDPLL96M at 32MHz	1.8V		59.9	66

Electrical Characteristics

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Units	
		Master, VDD)>1,62V	0	-	-		
tMOV	MOSI output	Master, VDD)>2,70V	-	-	34.5	ns	
	valid after SCK	Master, VDD	0>1,62V	-	-	38.6		
tMOH	MOSI hold	Master, VDD)>2,70V	9.7	-	-		
	after SCK	Master, VDD>1,62V 9.7		9.7	-	-		
tSSCK	Slave SCK Period when tMIS=0 on the	Slave	Reception	2*(tSIS +tMASTER_OUT)	-	-		
	master side	Slave	Transmission	2*(tSOV +tMASTER_IN) ⁽⁶⁾	-	-		
tSSCKW	SCK high/low width	Slave		-	0,5*tSCK	-		
tSSCKR	SCK rise time ⁽²⁾	Slave		-	0,25*tSCK	-		
tSSCKF	SCK fall time ⁽²⁾	Slave		-	0,25*tSCK	-		
tSIS	MOSI setup to SCK	Slave, VDD>	>2,70V	25.6	-	-	ns	
		Slave, VDD>1,62V		26.2	-	-		
tSIH	MOSI hold	Slave, VDD>2,70V		13.2	-	-		
	after SCK	Slave, VDD>	>1,62V	13.9	-	-		
tSSS	SS setup to SCK	Slave	PRELOADEN=1	tSOSS+tEXT_MIS +2*tAPBC ^{(8) (9)}	-	-		
			PRELOADEN=0	tSOSS+tEXT_MIS	-	-		
tSSH	SS hold after SCK	Slave		0.5*tSSCK	-	-		
tSOV	MISO output	Slave, VDD>2,70V		-	-	69		
	valid after SCK	Slave, VDD>1,62V		-	-	78.4		
tSOH	MISO hold	Slave, VDD>2,70V		20.2	-	-		
	after SCK	Slave, VDD>1,62V		20.2	-	-		
tSOSS	MISO setup after SS low	Slave, VDD>	>2,70V	-	-	1* tSCK		
		Slave, VDD>	>1,62V	-	-	1* tSCK		

SAM L10/L11 Family 125°C Electrical Characteristics

47.5 Oscillators Characteristics

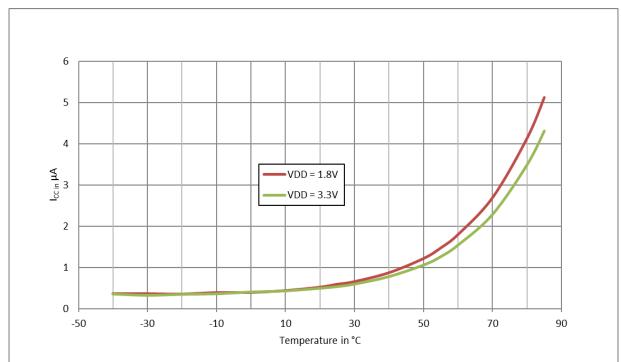
47.5.1 Crystal Oscillator (XOSC) Characteristics Table 47-18. Power Consumption

Symbol	Parameter	Conditions		Та	Min.	Тур.	Max.	Units
I _{DD}	Current	F=2MHz - CL=20pF	AMPGC=OFF		-	66	106	μA
	consumption	XOSC,GAIN=0, VCC=3.3V	AMPGC=ON Typ 25°C	-	62	107		
		F=4MHz - CL=20pF	AMPGC=OFF	-	-	107	164	-
		XOSC,GAIN=1, VCC=3.3V	AMPGC=ON		-	70	132	
		F=8MHz - CL=20pF	AMPGC=OFF		-	200	307	
		XOSC,GAIN=2, VCC=3.3V	AMPGC=ON		-	118	180	
		F=16MHz - CL=20pF XOSC,GAIN=3, VCC=3.3V	AMPGC=OFF		-	436	630	
			AMPGC=ON		-	247	382	
		F=32MHz - CL=20pF XOSC,GAIN=4, VCC=3.3V	AMPGC=OFF		-	1303	2251	
			AMPGC=ON		-	627	1116	

47.5.2 External 32KHz Crystal Oscillator (XOSC32K) Characteristics Table 47-19. Power Consumption

Symbol	Parameter	Conditions	Та	Min.	Тур.	Max.	Units
I _{DD}	Current consumption	VCC=3.3V	Max 125°C Typ 25°C	-	309	767	nA

47.5.3 Ultra Low-Power Internal 32 kHz RC Oscillator (OSCULP32K) Characteristics Table 47-20. Ultra Low-Power Internal 32 kHz RC Oscillator Electrical Characteristics

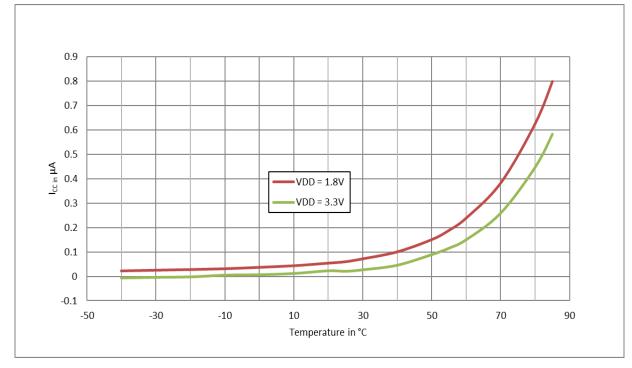

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
F _{OUT}	Output frequency	at 25°C, at V _{DDIO} =3.3V	30.84	32.768	34.51	kHz
		at 25°C, over [1.62, 3.63]V	30.84	32.768	34.74	kHz
		over[-40,+125]°C, over [1.62, 3.63]V	25.17	32.768	41.76	kHz
Duty	Duty Cycle		-	50	-	%

47.5.4 16 MHz RC Oscillator (OSC16M) Characteristics

Table 47-21. Multi-RC Oscillator Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
F _{OUT}	Output frequency	V _{DD} =3.3V, T=25°C	3.96	4.00	4.04	MHz

AC and DC Characteristics Graphs


Figure 48-2. Power Consumption over Temperature in Standby Sleep Mode with PDSW in Retention state

Power Consumption in Off Sleep Mode

Operating conditions:

• VDDIO = 3.3V or 1.8V

Figure 48-3. Power Consumption over Temperature in Off Sleep Mode

