

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M23
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	17
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.63V
Data Converters	A/D 5x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	24-VFQFN Exposed Pad
Supplier Device Package	24-VQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsaml10d15a-mf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

46.1.	Disclaimer	
46.2.	Thermal Considerations	1125
46.3.	Absolute Maximum Ratings	
46.4.	General Operating Ratings	
46.5.	Supply Characteristics	1127
46.6.	Maximum Clock Frequencies	1127
46.7.	Power Consumption	1129
46.8.	Wake-Up Time	
46.9.	I/O Pin Characteristics	1134
46.10). Injection Current	1135
46.1	. Analog Characteristics	1136
46.12	2. NVM Characteristics	1152
46.13	3. Oscillators Characteristics	1153
46.14	I. Timing Characteristics	
47. 125	C Electrical Characteristics	1166
47 1	Disclaimer	1166
	General Operating Ratings	
	Power Consumption	
	Analog Characteristics	
	Oscillators Characteristics	
	Timing Characteristics	
	•	
48. AC	and DC Characteristics Graphs	1192
	Typical Power Consumption over Temperature in Sleep Modes - 85°C	
	Typical Power Consumption over Temperature in Sleep Modes - 85°C Typical Power Consumption over Temperature in Sleep Modes - 125°C	
48.2.		1194
48.2. 49. Pac	Typical Power Consumption over Temperature in Sleep Modes - 125°C	
48.2. 49. Pac 49.1.	Typical Power Consumption over Temperature in Sleep Modes - 125°C	1194
48.2. 49. Pac 49.1. 49.2.	Typical Power Consumption over Temperature in Sleep Modes - 125°C kaging Information Package Marking Information	1194
48.2. 49. Pac 49.1. 49.2. 49.3.	Typical Power Consumption over Temperature in Sleep Modes - 125°C kaging Information Package Marking Information Package Drawings	
48.2. 49. Pac 49.1. 49.2. 49.3. 50. Sch	Typical Power Consumption over Temperature in Sleep Modes - 125°C kaging Information Package Marking Information Package Drawings Soldering Profile.	
48.2. 49. Pac 49.1. 49.2. 49.3. 50. Sch 50.1.	Typical Power Consumption over Temperature in Sleep Modes - 125°C kaging Information Package Marking Information Package Drawings Soldering Profile ematic Checklist Introduction	
48.2. 49. Pac 49.1. 49.2. 49.3. 50. Sch 50.1. 50.2.	Typical Power Consumption over Temperature in Sleep Modes - 125°C kaging Information Package Marking Information Package Drawings Soldering Profile	
48.2. 49. Pac 49.1. 49.2. 49.3. 50. Sch 50.1. 50.2. 50.3.	Typical Power Consumption over Temperature in Sleep Modes - 125°C kaging Information Package Marking Information Package Drawings Soldering Profile ematic Checklist Introduction Power Supply	
48.2. 49. Pac 49.1. 49.2. 49.3. 50. Sch 50.1. 50.2. 50.3. 50.4.	Typical Power Consumption over Temperature in Sleep Modes - 125°C kaging Information Package Marking Information Package Drawings Soldering Profile ematic Checklist Introduction Power Supply External Analog Reference Connections	
48.2. 49. Pac 49.1. 49.2. 49.3. 50. Sch 50.1. 50.2. 50.3. 50.4. 50.5.	Typical Power Consumption over Temperature in Sleep Modes - 125°C kaging Information Package Marking Information Package Drawings Soldering Profile ematic Checklist Introduction Power Supply External Analog Reference Connections External Reset Circuit.	
48.2. 49. Pac 49.1. 49.2. 49.3. 50. Sch 50.1. 50.2. 50.3. 50.4. 50.5. 50.6.	Typical Power Consumption over Temperature in Sleep Modes - 125°C kaging Information Package Marking Information Package Drawings Soldering Profile ematic Checklist Introduction Power Supply External Analog Reference Connections External Reset Circuit Unused or Unconnected Pins	
48.2. 49. Pac 49.1. 49.2. 49.3. 50. Sch 50.1. 50.2. 50.3. 50.4. 50.5. 50.6. 50.7.	Typical Power Consumption over Temperature in Sleep Modes - 125°C kaging Information Package Marking Information Package Drawings. Soldering Profile ematic Checklist Introduction Power Supply External Analog Reference Connections External Reset Circuit Unused or Unconnected Pins Clocks and Crystal Oscillators	
48.2. 49. Pac 49.1. 49.2. 49.3. 50. Sch 50.1. 50.2. 50.3. 50.4. 50.5. 50.6. 50.7. 50.8.	Typical Power Consumption over Temperature in Sleep Modes - 125°C kaging Information Package Marking Information Package Drawings Soldering Profile ematic Checklist Introduction Power Supply External Analog Reference Connections External Reset Circuit Unused or Unconnected Pins Clocks and Crystal Oscillators Programming and Debug Ports	
48.2. 49. Pac 49.1. 49.2. 49.3. 50. Sch 50.1. 50.2. 50.3. 50.4. 50.5. 50.6. 50.7. 50.8. 51. Con	Typical Power Consumption over Temperature in Sleep Modes - 125°C kaging Information Package Marking Information Package Drawings Soldering Profile ematic Checklist Introduction Power Supply External Analog Reference Connections External Reset Circuit Unused or Unconnected Pins Clocks and Crystal Oscillators Programming and Debug Ports Peripherals Considerations	
48.2. 49. Pac 49.1. 49.2. 49.3. 50. Sch 50.1. 50.2. 50.3. 50.4. 50.5. 50.6. 50.7. 50.8. 51. Con 51.1.	Typical Power Consumption over Temperature in Sleep Modes - 125°C kaging Information Package Marking Information Package Drawings Soldering Profile ematic Checklist Introduction Power Supply External Analog Reference Connections External Reset Circuit Unused or Unconnected Pins Clocks and Crystal Oscillators Programming and Debug Ports Peripherals Considerations Ventions Numerical Notation	
48.2. 49. Pac 49.1. 49.2. 49.3. 50. Sch 50.1. 50.2. 50.3. 50.4. 50.5. 50.6. 50.7. 50.8. 51. Con 51.1. 51.2.	Typical Power Consumption over Temperature in Sleep Modes - 125°C kaging Information Package Marking Information Package Drawings Soldering Profile ematic Checklist Introduction Power Supply External Analog Reference Connections External Reset Circuit Unused or Unconnected Pins Clocks and Crystal Oscillators Programming and Debug Ports Peripherals Considerations Ventions Numerical Notation Memory Size and Type	
48.2. 49. Pac 49.1. 49.2. 49.3. 50. Sch 50.1. 50.2. 50.3. 50.4. 50.5. 50.6. 50.7. 50.8. 51. Con 51.1. 51.2. 51.2.	Typical Power Consumption over Temperature in Sleep Modes - 125°C kaging Information Package Marking Information Package Drawings Soldering Profile ematic Checklist Introduction Power Supply External Analog Reference Connections External Reset Circuit Unused or Unconnected Pins Clocks and Crystal Oscillators Programming and Debug Ports Peripherals Considerations Ventions Numerical Notation	

52. Acronyms and Abbreviations1218						
53. Datasheet Revision History						
The Microchip Web Site 1222						
Customer Change Notification Service1222						
Customer Support 1222						
Product Identification System1223						
Vicrochip Devices Code Protection Feature1223						
Legal Notice1223						
Trademarks 1224						
Quality Management System Certified by DNV1224						
Worldwide Sales and Service1226						

14.4.2.1.3 CRC Computation and Programming

The CRCs needs to be recalculated and updated in their respective NVM row as soon as a data from any of the checked regions is changed.

Important: USERCRC and BOCORCRC CRCs programming must be done by any programming tool supporting the SAM L11 devices.

The algorithm is a CRC-32 module embedded in the DSU peripheral and that uses for both CRC calculation with the following parameters:

- Width = 32 bits
- Polynomial = 0x04C11DB7 (Poly)
- Initial Value = 0xFFFFFFFF (Init)
- Input Data is reflected (RefIn)
- Output Data is reflected (RefOut)
- No XOR is performed on the output CRC (XorOut)

Example: the DSU CRC of 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39 is 0x340BC6D9

14.4.2.2 Memories and Peripherals Configurations Initialization

For SAM L11 devices, memories and peripherals security attributions are done by reading the different fuses values from the NVM User (UROW) and Boot Configuration (BOCOR) rows.

The Boot ROM is responsible for setting these attributions on the different concerned memory and peripheral controllers:

- Set memory security attribution according to AS, ANSC, DS, RS, BS, BSNC and BOOTPROT fuses
- Set peripherals security attribution according to NONSECA, NONSECB and NONSECC fuses

Important: The Boot ROM does not perform any consistency checks on the configured memory attributions (e.g setting BS>BOOTPROT will not trigger any errors during Boot ROM execution).

14.4.2.3 Secure Boot

Depending on the BOOTOPT fuse value (from BOCOR NVM row), the following secure boot integrity checks will be performed on:

- The Flash BS memory area which is composed by:
 - The Flash Secure BOOT memory region
 - The Flash Non-Secure Callable BOOT memory region
- And the NVM Boot Configuration row (BOCOR)

Table 14-4. Secure Boot Options

вооторт	Verified Areas	Verification Method
0	None	-
1	Flash BS Memory Region	SHA-256
	+	
	NVM BOCOR row	

14.4.5.1 Enter Interactive Mode (CMD_INIT)

This command allows launching the Boot Interactive command mode of the Boot ROM.

To reach interactive mode, the debugger will trigger a "cold plugging" sequence as described in DSU chapter.

Important: Debugger must not clear DSU.STATUSA.BREXT bit before clearing DSU.STATUSA.CRSTEXT bit.

When CRSTEXT is cleared, CPU starts Boot ROM Interactive mode execution. After a small delay (5ms advised), the debugger must check if the Boot ROM has not flagged any errors by checking the BCC1D bit in DSU.STATUSB register.

If no error is reported, the debugger writes the CMD_INIT command to DSU.BCC0 register to request Boot ROM Interactive mode entry. When command is successful, Boot ROM will place the "SIG_COMM" status in DSU.BCC1 register.

Related Links

19.6.2.6 Peripheral Clock Masking

19.6.2.2 Enabling, Disabling, and Resetting

The MCLK module is always enabled and cannot be reset.

19.6.2.3 Selecting the Main Clock Source

Refer to the Generic Clock Controller description for details on how to configure the clock source of the GCLK_MAIN clock.

Refer to the Oscillators Controller (OSCCTRL) description for details on how to configure the clock source of the CLK_DFLLULP clock.

Related Links

18. GCLK - Generic Clock Controller

19.6.2.4 Selecting the Synchronous Clock Division Ratio

The main clock CLK_MAIN feeds an 8-bit prescaler, which can be used to generate the synchronous clocks. By default, the synchronous clocks run on the undivided main clock. The user can select a prescaler division for the CPU clock domain by writing the Division (DIV) bits in the CPU Clock Division register CPUDIV, resulting in a CPU clock domain frequency determined by this equation:

$$f_{CPU} = \frac{f_{main}}{CPUDIV}$$

If the application attempts to write forbidden values in CPUDIV register, registers are written but these bad values are not used and a violation is reported to the PAC module.

Division bits (DIV) can be written without halting or disabling peripheral modules. Writing DIV bits allows a new clock setting to be written to all synchronous clocks belonging to the corresponding clock domain at the same time.

Name: SYNCBUSY Offset: 0x0C 0x0000000 Reset: Property: _ Bit 31 30 29 28 27 26 25 24 Access Reset Bit 23 22 21 20 19 18 17 16 Access Reset 15 12 Bit 14 13 11 10 9 8 Access Reset 7 6 5 3 0 Bit 4 2 1 ENABLE SWRST R R Access Reset 0 0

20.8.8 Synchronization Busy

Bit 1 - ENABLE Enable

This bit is cleared when the synchronization of CTRLA.ENABLE is complete.

This bit is set when the synchronization of CTRLA.ENABLE is started.

Bit 0 – SWRST Synchronization Busy

This bit is cleared when the synchronization of CTRLA.SWRST is complete.

This bit is set when the synchronization of CTRLA.SWRST is started.

RTC – Real-Time Counter

Offset	Name	Bit Pos.									
		15:8		,		GP	[15:8]				
		23:16				GP[23:16]				
		31:24				GP[31:24]				
0x48 0x5F	Reserved										
		7:0	IN3A0	CT[1:0]	IN2AC	CT[1:0]	IN1AC	CT[1:0]	IN0AC	CT[1:0]	
0x60	TAMPCTRL	15:8									
0,00	TAMPETRE	23:16					TAMLVL3	TAMLVL2	TAMLVL1	TAMLVL0	
		31:24					DEBNC3	DEBNC2	DEBNC1	DEBNC0	
		7:0	COUNT[7:0]								
0x64	TIMESTAMP	15:8		COUNT[15:8]							
0,001		23:16		COUNT[23:16]							
		31:24				COUN	T[31:24]				
		7:0					TAMPID3	TAMPID2	TAMPID1	TAMPID0	
0x68	TAMPID	15:8									
0,000		23:16									
		31:24	TAMPEVT								
		7:0					ALSI3	ALSI2	ALSI1	ALSI0	
0x6C	TAMPCTRLB	15:8									
		23:16									
		31:24									

27.8 Register Description - Mode 0 - 32-Bit Counter

This Register Description section is valid if the RTC is in COUNT32 mode (CTRLA.MODE=0).

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16-, and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Some registers require synchronization when read and/or written. Synchronization is denoted by the "Read-Synchronized" and/or "Write-Synchronized" property in each individual register description.

Optional write-protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write-Protection" property in each individual register description.

Some registers are enable-protected, meaning they can only be written when the module is disabled. Enable-protection is denoted by the "Enable-Protected" property in each individual register description.

On **SAM L11** devices, this peripheral has different access permissions depending on PAC Security Attribution (Secure or Non-Secure):

- If the peripheral is configured as Non-Secure in the PAC:
 - Secure access and Non-Secure access are granted
- If the peripheral is configured as Secure in the PAC:
 - Secure access is granted
 - Non-Secure access is discarded (Write is ignored, read 0x0) and a PAC error is triggered

Refer to Peripherals Security Attribution for more information.

27.10.17 Tamper Control B

Name:	TAMPCTRLB
Offset:	0x6C
Reset:	0x0000000
Property:	PAC Write-Protection, Enable-Protected

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
					ALSI3	ALSI2	ALSI1	ALSI0
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0

Bits 0, 1, 2, 3 - ALSI Active Layer Internal Select n

Value	Description
0	Active layer Protection is monitoring the RTC signal using INn and OUTn tamper pins
1	Active layer Protection is monitoring the RTC signal on the TrustRAM shield

28.10.1 Block Transfer Control

Name:	BTCTRL
Offset:	0x00
Property:	-

The BTCTRL register offset is relative to (BASEADDR or WRBADDR) + Channel Number * 0x10

Bit	15	14	13	12	11	10	9	8
	STEPSIZE[2:0] STEPSEL DSTINC		SRCINC	BEATS	IZE[1:0]			
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
				BLOCKA	ACT[1:0]	EVOSI	EL[1:0]	VALID
Access		•						••

Reset

Bits 15:13 – STEPSIZE[2:0] Address Increment Step Size

These bits select the address increment step size. The setting apply to source or destination address, depending on STEPSEL setting.

Value	Name	Description
0x0	X1	Next ADDR = ADDR + (Beat size in byte) * 1
0x1	X2	Next ADDR = ADDR + (Beat size in byte) * 2
0x2	X4	Next ADDR = ADDR + (Beat size in byte) * 4
0x3	X8	Next ADDR = ADDR + (Beat size in byte) * 8
0x4	X16	Next ADDR = ADDR + (Beat size in byte) * 16
0x5	X32	Next ADDR = ADDR + (Beat size in byte) * 32
0x6	X64	Next ADDR = ADDR + (Beat size in byte) * 64
0x7	X128	Next ADDR = ADDR + (Beat size in byte) * 128

Bit 12 – STEPSEL Step Selection

This bit selects if source or destination addresses are using the step size settings.

Value	Name	Description
0x0	DST	Step size settings apply to the destination address
0x1	SRC	Step size settings apply to the source address

Bit 11 – DSTINC Destination Address Increment Enable

Writing a '0' to this bit will disable the destination address incrementation. The address will be kept fixed during the data transfer.

Writing a '1' to this bit will enable the destination address incrementation. By default, the destination address is incremented by 1. If the STEPSEL bit is cleared, flexible step-size settings are available in the STEPSIZE register.

Value	Description
0	The Destination Address Increment is disabled.
1	The Destination Address Increment is enabled.

29.6.10 Synchronization

Due to asynchronicity between the main clock domain and the peripheral clock domains, some registers need to be synchronized when written or read.

The following bits are synchronized when written:

- Software Reset bit in control register (CTRLA.SWRST)
- Enable bit in control register (CTRLA.ENABLE)

Required write-synchronization is denoted by the "Write-Synchronized" property in the register description.

SAM L10/L11 Family TRAM - TrustRAM

Offset	Name	Bit Pos.							
	01FC RAM63	7:0			DATA	A [7:0]			
0.0150		15:8	DATA[15:8]						
UXUIFC		23:16			DATA	[23:16]			
		31:24			DATA	[31:24]			

31.8 Register Description

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16-, and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Some registers require synchronization when read and/or written. Synchronization is denoted by the "Read-Synchronized" and/or "Write-Synchronized" property in each individual register description.

Optional write-protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write-Protection" property in each individual register description.

Some registers are enable-protected, meaning they can only be written when the module is disabled. Enable-protection is denoted by the "Enable-Protected" property in each individual register description.

Refer to PAC - Peripheral Access Controller and 39.6.6 Synchronization for details.

On **SAM L11** devices, this peripheral has different access permissions depending on PAC Security Attribution (Secure or Non-Secure):

- If the peripheral is configured as Non-Secure in the PAC:
 - Secure access and Non-Secure access are granted
- If the peripheral is configured as Secure in the PAC:
 - Secure access is granted
 - Non-Secure access is discarded (Write is ignored, read 0x0) and a PAC error is triggered

Refer to Peripherals Security Attribution for more information.

TRAM - TrustRAM

Value	Description
0	There is no reset operation ongoing.
1	The reset operation is ongoing.

33.7.3 Priority Control

Name:	PRICTRL
Offset:	0x08
Reset:	0x00
Property:	PAC Write-Protection, Secure

Bit	7	6	5	4	3	2	1	0
	RREN						PRI	[1:0]
Access	RW/RW/RW						RW/-/RW	RW/-/RW
Reset	0						0	0

Bit 7 – RREN Round-Robin Scheduling Enable

For details on scheduling schemes, refer to Interrupt Status and Interrupts Arbitration

Value	Description
0	Static scheduling scheme for channels with level priority
1	Round-robin scheduling scheme for channels with level priority

Bits 1:0 - PRI[1:0] Channel Priority Number

When round-robin arbitration is enabled (PRICTRL.RREN=1) for priority level, this register holds the channel number of the last EVSYS channel being granted access as the active channel with priority level. The value of this bit group is updated each time the INTPEND or any of CHINTFLAG registers are written.

When static arbitration is enabled (PRICTRL.RREN=0) for priority level, and the value of this bit group is nonzero, it will not affect the static priority scheme.

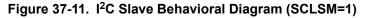
This bit group is not reset when round-robin scheduling gets disabled (PRICTRL.RREN written to zero).

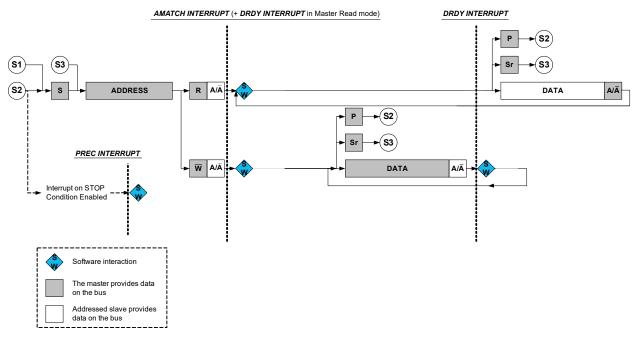
36.8.9 Address

Name:	ADDR
Offset:	0x24
Reset:	0x0000000
Property:	PAC Write-Protection, Enable-Protected

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
				ADDRM	ASK[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
				ADD	R[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 23:16 – ADDRMASK[7:0] Address Mask


These bits hold the address mask when the transaction format with address is used (CTRLA.FORM, CTRLB.AMODE).


Bits 7:0 – ADDR[7:0] Address

These bits hold the address when the transaction format with address is used (CTRLA.FORM, CTRLB.AMODE).

In the second strategy (CTRLA.SCLSM=1), interrupts only occur after the ACK bit is sent as shown in Slave Behavioral Diagram (SCLSM=1). This strategy can be used when it is not necessary to check DATA before acknowledging. For master reads, an address and data interrupt will be issued simultaneously after the address acknowledge. However, for master writes, the first data interrupt will be seen after the first data byte has been received by the slave and the acknowledge bit has been sent to the master.

Note: For I²C High-speed mode (*Hs*), SCLSM=1 is required.

37.6.2.5.1 Receiving Address Packets (SCLSM=0)

When CTRLA.SCLSM=0, the I2C slave stretches the SCL line according to Figure 37-10. When the I²C slave is properly configured, it will wait for a start condition.

When a start condition is detected, the successive address packet will be received and checked by the address match logic. If the received address is not a match, the packet will be rejected, and the I²C slave will wait for a new start condition. If the received address is a match, the Address Match bit in the Interrupt Flag register (INTFLAG.AMATCH) will be set.

SCL will be stretched until the I²C slave clears INTFLAG.AMATCH. As the I²C slave holds the clock by forcing SCL low, the software has unlimited time to respond.

The direction of a transaction is determined by reading the Read / Write Direction bit in the Status register (STATUS.DIR). This bit will be updated only when a valid address packet is received.

If the Transmit Collision bit in the Status register (STATUS.COLL) is set, this indicates that the last packet addressed to the I²C slave had a packet collision. A collision causes the SDA and SCL lines to be released without any notification to software. Therefore, the next AMATCH interrupt is the first indication of the previous packet's collision. Collisions are intended to follow the SMBus Address Resolution Protocol (ARP).

After the address packet has been received from the I²C master, one of two cases will arise based on transfer direction.

© 2018 Microchip Technology Inc.

- If the peripheral is configured as Non-Secure in the PAC:
 - Secure access and Non-Secure access are granted
- If the peripheral is configured as Secure in the PAC:
 - Secure access is granted
 - Non-Secure access is discarded (Write is ignored, read 0x0) and a PAC error is triggered

Refer to *Peripherals Security Attribution* for more information.

OPAMP – Operational Amplifier Controller

Value	OPAMPx	Name	Description
0x0	x=0,1,2	OAxPOS	OPAMPx Positive Input
0x1	x=0,1,2	OAxTAP	OPAMPx Resistor Ladder Taps
0x2	x=0,1,2	REFERENCE	REFERENCE[DAC/REFBUF]
0x3	x=0,1,2	GND	Ground
0x4	x=0	Reserved	
	x=1	OA0OUT	OPAMP0 output
	x=2	OA1OUT	OPAMP1 output
0x5	x=0,1	Reserved	
	x=2	OA0POS	OPAMP0 Positive Input
0x6	x=0,1	Reserved	
	x=2	OA1POS	OPAMP1 Positive Input
0x7	x=0,1	Reserved	
	x=2	OA0TAP	OPAMP0 Resistor Ladder Taps
0x8	x=0,1	Reserved	
	x=2	RES3TAP	

Bits 15:13 – POTMUX[2:0] Potentiometer selection

Resistor selection bits control a numeric potentiometer with eight fixed values.

Value	R1	R2
0x0	14R	2R
0x1	12R	4R
0x2	8R	8R
0x3	6R	10R
0x4	4R	12R
0x5	3R	13R
0x6	2R	14R
0x7	R	15R

Bits 12:10 – RES1MUX[2:0] Resistor 1 Mux

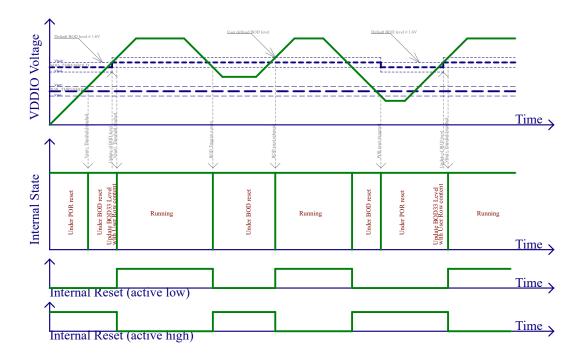
These bits select the connection of R1 resistor of the potentiometer.

Value	OPAMPx	Name	Description
0x0	x=0,1,2	OAxPOS	OPAMPx Positive Input
0x1	x=0,1,2	OAxNEG	OPAMPx Negative Input

Bit 1 – RES1EN Resistor 1 Enable

RES1EN = 1 is required in order to provide DAC/REFBUF to POSMUX, NEGMUX and RES1MUX.

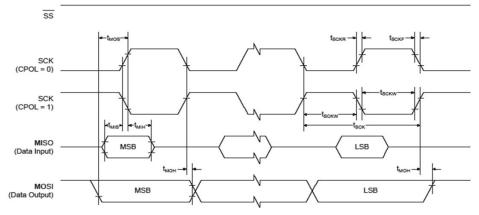
Value	Description
0	R1 disconnected from RES1MUX.
1	R1 connected to RES1MUX.


Bit 0 – RES2OUT Resistor ladder To Output

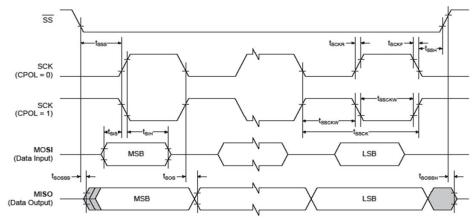
RES2OUT switch can only be closed if all OPAMPs are enabled.

Value	Description
0	Swith open.
1	Switch closed.

Electrical Characteristics



46.11.3 Brown-Out Detectors (BOD) Characteristics Table 46-20. BOD33 Characteristics (BOD33.VREFSEL = 0)


Symbol	Parameters	Conditions	Min.	Тур.	Max.	Unit
V _{BOD+} ⁽²⁾	BOD33 high threshold level	BOD33.LEVEL = 6	1.66	1.68	1.70	V
		BOD33.LEVEL = 7	1.70	1.72	1.74	
		BOD33.LEVEL = 39	2.79	2.84	2.89	
		BOD33.LEVEL = 48	3.12	3.18	3.20	
V _{BOD-} /	BOD33 low threshold level	BOD33.LEVEL = 6	1.61	1.64	1.65	V
V _{BOD} ⁽²⁾		BOD33.LEVEL = 7	1.65	1.67	1.68	
		BOD33.LEVEL = 39	2.74	2.78	2.80	
		BOD33.LEVEL = 48	3.04	3.09	3.11	
-	Step size	-	-	34	-	mV
V _{HYS}	Hysteresis (V _{BOD+} - V _{BOD-})	BOD33.LEVEL = 0x0 to 0x3F	40	-	180	mV
T _{START} ⁽¹⁾	Startup time	time from enable to RDY	-	3.2	-	μs

Electrical Characteristics

Maximum SPI Frequency

Master Mode

 $f_{SCKmax} = 1/2^*(t_{MIS} + t_{valid})$, where t_{valid} is the slave time response to output data after detecting an SCK edge. For a non-volatile memory with $t_{valid} = 12$ ns Max, $f_{SPCKMax} = 9.8$ MHz @ VDDIO > 2.7V

Slave Mode

 $f_{SCKmax} = 1/2^*(t_{SOV} + t_{su})$, where t_{su} is the setup time from the master before sampling data. With a perfect master (t_{su} =0), $f_{SPCKMax}$ = 16.3MHz @ VDDIO > 2.7V