

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

·XF

Product Status	Active
Core Processor	ARM® Cortex®-M23
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	17
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.63V
Data Converters	A/D 5x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-VFQFN Exposed Pad
Supplier Device Package	24-VQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsaml10d15a-mut

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

27.2.	Features	386
27.3.	Block Diagram	387
27.4.	Signal Description	388
27.5.	Product Dependencies	388
27.6.	Functional Description	390
27.7.	Register Summary - Mode 0 - 32-Bit Counter	402
27.8.	Register Description - Mode 0 - 32-Bit Counter	403
27.9.	Register Summary - Mode 1 - 16-Bit Counter	426
27.10	. Register Description - Mode 1 - 16-Bit Counter	427
27.11	. Register Summary - Mode 2 - Clock/Calendar	450
27.12	. Register Description - Mode 2 - Clock/Calendar	451
28. DMA	C – Direct Memory Access Controller	. 476
	Overview	
	Features	
	Block Diagram	
	Signal Description	
	Product Dependencies	
	Functional Description	
	Register Summary	
	Register Description	
	Register Summary - SRAM	
	. Register Description - SRAM	
20.10		002
29. EIC	– External Interrupt Controller	. 540
29.1.	Overview	540
29.2.	Features	540
29.3.	Block Diagram	540
29.4.	Signal Description	541
29.5.	Product Dependencies	541
29.6.	Functional Description	543
29.7		
20.7.	Register Summary	550
	Register Summary Register Description	
29.8.	Register Description	551
29.8. 30. NVM	Register Description	551 572
29.8. 30. NVM 30.1.	Register Description ICTRL – Nonvolatile Memory Controller Overview	551 572 572
29.8. 30. NVM 30.1. 30.2.	Register Description ICTRL – Nonvolatile Memory Controller Overview Features	551 572 572 572
29.8. 30. NVM 30.1. 30.2. 30.3.	Register Description ICTRL – Nonvolatile Memory Controller Overview Features Block Diagram	551 572 572 572 573
29.8. 30. NVM 30.1. 30.2. 30.3. 30.4.	Register Description ICTRL – Nonvolatile Memory Controller Overview Features Block Diagram Signal Description	551 572 572 572 573 573
29.8. 30. NVM 30.1. 30.2. 30.3. 30.4. 30.5.	Register Description ICTRL – Nonvolatile Memory Controller Overview Features. Block Diagram Signal Description Product Dependencies.	551 572 572 573 573 573
29.8. 30. NVM 30.1. 30.2. 30.3. 30.4. 30.5. 30.6.	Register Description ICTRL – Nonvolatile Memory Controller Overview Features Block Diagram Signal Description Product Dependencies Functional Description	551 572 572 573 573 573 573
29.8. 30. NVM 30.1. 30.2. 30.3. 30.4. 30.5. 30.6. 30.7.	Register Description ICTRL – Nonvolatile Memory Controller Overview Features Block Diagram Signal Description Product Dependencies Functional Description Register Summary	551 572 572 573 573 573 575 586
29.8. 30. NVM 30.1. 30.2. 30.3. 30.4. 30.5. 30.6. 30.7. 30.8.	Register Description ICTRL – Nonvolatile Memory Controller Overview Features Block Diagram Signal Description Product Dependencies Functional Description Register Summary Register Description	551 572 572 573 573 573 573 575 586 587
29.8. 30. NVM 30.1. 30.2. 30.3. 30.4. 30.5. 30.6. 30.7. 30.8. 31. TRA	Register Description ICTRL – Nonvolatile Memory Controller Overview Features Block Diagram Signal Description Product Dependencies Functional Description Register Summary Register Description M - TrustRAM	551 572 572 573 573 573 573 575 586 587 614
29.8. 30. NVM 30.1. 30.2. 30.3. 30.4. 30.5. 30.6. 30.7. 30.8. 31. TRA 31.1.	Register Description ICTRL – Nonvolatile Memory Controller Overview	551 572 572 573 573 573 573 586 587 614 614
29.8. 30. NVM 30.1. 30.2. 30.3. 30.4. 30.5. 30.6. 30.7. 30.8. 31. TRA 31.1. 31.2.	Register Description ICTRL – Nonvolatile Memory Controller Overview Features Block Diagram Signal Description Product Dependencies Functional Description Register Summary Register Description M - TrustRAM	551 572 572 573 573 573 573 587 587 614 614 614

Processor and Architecture

Table 11-3. Interrupt Line Mapping

Module	Source	NVIC line
EIC NMI – External Interrupt Controller	NMI	NMI
PM – Power Manager	PLRDY	0
/ICLK - Main Clock	CKRDY	
DSCCTRL - Oscillators Controller	XOSCRDY	
	XOSCFAIL	
	OSC16MRDY	
	DFLLULPRDY	
	DFLLULPLOCK	
	DFLLULPNOLOCK	
	DPLLLCKR	
	DPLLLCKF	
	DPLLLTO	
	DPLLLDRTO	
SC32KCTRL - 32KHz Oscillators Controller	XOSC32KRDY	
	CLKFAIL	
UPC - Supply Controller	BOD33RDY	
	BOD33DET	
	B33SRDY	
	VREGRDY	
	VCORERDY	
	ULPVREFRDY	
VDT – Watchdog Timer	EW	1
RTC – Real Time Counter	СМР0	2
	CMP1	
	OVF	
	PER0	
	PER1	
	PER2	
	PER3	
	PER4	
	PER5	
	PER6	
	PER7	
	TAMPER	
EIC – External Interrupt Controller	EXTINT 0	3
	EXTINT 1	4
	EXTINT 2	5
	EXTINT 3	6
	EXTINT 47	7
	NSCHK ⁽¹⁾	
REQM - Frequency Meter	DONE	8
IVMCTRL – Non-Volatile Memory Controller	DONE	9
	PROGE	

• Non-Secure Callable (NSC): NSC is a special type of Secure memory location. It allows software to transition from Non-Secure to Secure state.

The Cortex-M23 provides two ways for managing the security configurations of the device.

The first solution consists in using the Cortex-M23 SAU (Security Attribution Unit), which is a Memory Protection Unit (MPU) like hardware embedded in the core. The role of the SAU is to manage all the Secure and Non-Secure transactions coming from the core. However, using the SAU implies that the security configuration must be propagated somewhere else in the MCU architecture for security awareness.

The second approach, which is the one used for SAM L11 devices, is articulated around a centralized Implementation Defined Attribution Unit (IDAU), which is a hardware unit external to the core.

For SAM L11 devices, the IDAU is coupled to the Cortex-M23 and manages all the security configurations related to the core. In addition, the IDAU propagates all the security configurations to the memory controllers. The IDAU, Flash, Data Flash and SRAM embedded memories can be split in sub-regions, which are reserved either for the Secure or for the Non-Secure application. Therefore, the SAU is not required and is absent from SAM L10/L11 devices.

The peripherals security attribution is managed by the Peripherals Access Controller (PAC). The PAC and each peripheral can be allocated either to the Secure or to the Non-Secure application, with the exception of the PAC, NVMCTRL, and DSU.

Note:

- 1. The PAC and NVMCTRL peripherals are always secured.
- 2. The DSU peripheral is always non-secured.

Both IDAU and PAC security configurations are stored in NVM fuses, which are read after each reset during Boot ROM execution and are loaded after Boot ROM verifications into their respective registers.

The peripherals security attribution (using PAC) is locked before exiting the Boot ROM execution sequence, that is, it is not possible to change a peripheral's configuration (Secure or Non-Secure) during application execution. However, the security attribution of each peripheral, excluding the PAC, NVMCTRL, and DSU, can be modified using the NONSECx NVM fused from the User Row (UROW) during application execution, hence it can be considered after any reset.

13.2.2 Memories Security Attribution

The IDAU is used to indicate the processor if a particular memory region is Secure (S), Non-secure Callable (NSC), or Non-secure (NS). It can also mark a memory region to be exempted from security checking.

Attribute	Description
Non-Secure	Memory can be accessed in Secure or Non-Secure state.
Secure	Memory can only be accessed in Secure state. It cannot be called from Non-Secure state.
Non-Secure callable	Memory can only be accessed in Secure state, but can be called from Non-Secure state.
Exempt	No attribution check will be done, and the operation will take place on the bus

Table 13-1. IDAU Memory Attribution Definition

Note: Refer to "SAM L11 Security Attribution" chapter for the detailed SAM L11 memories and peripherals security attribution description.

PAC - Peripheral Access Controller

15.7.14 Peripheral Non-Secure Status - Bridge C

Name:	NONSECC
Offset:	0x5C
Reset:	x initially determined from NVM User Row after reset
Property:	Write-Secure

Important: This register is only available for SAM L11 and has no effect for SAM L10.

Reading NONSEC register returns peripheral Security Attribution status:

	Value		Des	cription						
	0 F			Peripheral is secured.						
	1		Peri	Peripheral is non-secured.						
Bit	31	30		29	28	27	26	25	24	
Access										
Reset										
Bit	23	22		21	20	19	18	17	16	
A										
Access Reset										
Bit	15	14		13	12	11	10	9	8	
				TRAM	OPAMP	CCL	TRNG	PTC	DAC	
Access				R/R/R	R/R/R	R/R/R	R/R/R	R/R/R	R/R/R	
Reset				х	х	х	х	х	x	
Bit	7	6		5	4	3	2	1	0	
	ADC	TC2		TC1	TC0	SERCOM2	SERCOM1	SERCOM0	EVSYS	
Access	R/R/R	R/R/F	2	R/R/R	R/R/R	R/R/R	R/R/R	R/R/R	R/R/R	
Reset	x	х		x	x	x	x	x	x	

Bit 13 – TRAM Peripheral TRAM Non-Secure

- Bit 12 OPAMP Peripheral OPAMP Non-Secure
- Bit 11 CCL Peripheral CCL Non-Secure
- Bit 10 TRNG Peripheral TRNG Non-Secure
- Bit 9 PTC Peripheral PTC Non-Secure

25. SUPC – Supply Controller

25.1 Overview

The Supply Controller (SUPC) manages the voltage reference and power supply of the device.

The SUPC controls the voltage regulators for the core (VDDCORE) domain. It sets the voltage regulators according to the sleep modes, or the user configuration. In active mode, the voltage regulators can be selected on the fly between LDO (low-dropout) type regulator or Buck converter.

The SUPC embeds two Brown-Out Detectors. BOD33 monitors the voltage applied to the device (VDD) and BOD12 monitors the internal voltage to the core (VDDCORE). The BOD can monitor the supply voltage continuously (continuous mode) or periodically (sampling mode).

The SUPC generates also a selectable reference voltage and a voltage dependent on the temperature which can be used by analog modules like the ADC or DAC.

25.2 Features

- Voltage Regulator System
 - Main voltage regulator: LDO or Buck Converter in active mode (MAINVREG)
 - Low-Power voltage regulator in Standby mode (LPVREG)
 - Adjustable VDDCORE to the Sleep mode or the performance level
 - Controlled VDDCORE voltage slope when changing VDDCORE
- Voltage Reference System
 - Reference voltage for ADC and DAC
 - Temperature sensor
- 3.3V Brown-Out Detector (BOD33)
 - Programmable threshold
 - Threshold value loaded from NVM User Row at startup
 - Triggers resets or interrupts or event. Action loaded from NVM User Row
 - Operating modes:
 - Continuous mode
 - Sampled mode for low power applications with programmable sample frequency
 - Hysteresis value from Flash User Calibration
- 1.2V Brown-Out Detector (BOD12)
 - Internal non-configurable Brown-Out Detector

27.12.2 Control B in Clock/Calendar mode (CTRLA.MODE=2)

Name:	CTRLB
Offset:	0x2
Reset:	0x0000
Property:	PAC Write-Protection, Enable-Protected

Bit	15	14	13	12	11	10	9	8
ĺ	SEPTO		ACTF[2:0]				DEBF[2:0]	
Access	R/W	R/W	R/W	R/W		R/W	R/W	R/W
Reset	0	0	0	0		0	0	0
Bit	7	6	5	4	3	2	1	0
	DMAEN	RTCOUT	DEBASYNC	DEBMAJ				GP0EN
Access	R/W	R/W	R/W	R/W				R/W
Reset	0	0	0	0				0

Bit 15 – SEPTO Separate Tamper Outputs

Value	Description
0	IN[n] is compared tp OUT[0] (backward-compatible).
1	IN[n] is compared tp OUT[n].

Bits 14:12 – ACTF[2:0] Active Layer Frequency

These bits define the prescaling factor for the RTC clock output (OUT) used during active layer protection in terms of the CLK_RTC.

Value	Name	Description
0x0	DIV2	CLK_RTC_OUT = CLK_RTC / 2
0x1	DIV4	CLK_RTC_OUT = CLK_RTC / 4
0x2	DIV8	CLK_RTC_OUT = CLK_RTC / 8
0x3	DIV16	CLK_RTC_OUT = CLK_RTC / 16
0x4	DIV32	CLK_RTC_OUT = CLK_RTC / 32
0x5	DIV64	CLK_RTC_OUT = CLK_RTC / 64
0x6	DIV128	CLK_RTC_OUT = CLK_RTC / 128
0x7	DIV256	CLK_RTC_OUT = CLK_RTC / 256

Bits 10:8 – DEBF[2:0] Debounce Frequency

These bits define the prescaling factor for the input debouncers in terms of the CLK_RTC.

Value	Name	Description
0x0	DIV2	CLK_RTC_DEB = CLK_RTC / 2
0x1	DIV4	CLK_RTC_DEB = CLK_RTC / 4
0x2	DIV8	CLK_RTC_DEB = CLK_RTC / 8
0x3	DIV16	CLK_RTC_DEB = CLK_RTC / 16
0x4	DIV32	CLK_RTC_DEB = CLK_RTC / 32
0x5	DIV64	CLK_RTC_DEB = CLK_RTC / 64
0x6	DIV128	CLK_RTC_DEB = CLK_RTC / 128
0x7	DIV256	CLK_RTC_DEB = CLK_RTC / 256

TRAM - TrustRAM

Offset	Name	Bit Pos.	
		7:0	DATA[7:0]
0x01A0	RAM40	15:8	DATA[15:8]
UXUTAU		23:16	DATA[23:16]
		31:24	DATA[31:24]
		7:0	DATA[7:0]
0x01A4	RAM41	15:8	DATA[15:8]
010174	rxAivi4 i	23:16	DATA[23:16]
		31:24	DATA[31:24]
		7:0	DATA[7:0]
0x01A8	RAM42	15:8	DATA[15:8]
UXUTAO	RAIVI42	23:16	DATA[23:16]
		31:24	DATA[31:24]
		7:0	DATA[7:0]
0x01AC	RAM43	15:8	DATA[15:8]
UXUTAC	KAIVI43	23:16	DATA[23:16]
		31:24	DATA[31:24]
		7:0	DATA[7:0]
0x01B0	RAM44	15:8	DATA[15:8]
00100	rtAivi44	23:16	DATA[23:16]
		31:24	DATA[31:24]
		7:0	DATA[7:0]
0x01B4	RAM45	15:8	DATA[15:8]
0.0104	TVAIN43	23:16	DATA[23:16]
		31:24	DATA[31:24]
		7:0	DATA[7:0]
0x01B8	RAM46	15:8	DATA[15:8]
0.0100		23:16	DATA[23:16]
		31:24	DATA[31:24]
		7:0	DATA[7:0]
0x01BC	RAM47	15:8	DATA[15:8]
0,0100		23:16	DATA[23:16]
		31:24	DATA[31:24]
		7:0	DATA[7:0]
0x01C0	RAM48	15:8	DATA[15:8]
0,0100		23:16	DATA[23:16]
		31:24	DATA[31:24]
		7:0	DATA[7:0]
0x01C4	RAM49	15:8	DATA[15:8]
		23:16	DATA[23:16]
		31:24	DATA[31:24]
		7:0	DATA[7:0]
0x01C8	RAM50	15:8	DATA[15:8]
0.0100	10 1000	23:16	DATA[23:16]
		31:24	DATA[31:24]
0x01CC	RAM51	7:0	DATA[7:0]
0,0100		15:8	DATA[15:8]

33.7.12 Channel n Status

Name:	CHSTATUSn
Offset:	0x27 + n*0x08 [n=07]
Reset:	0x01
Property:	Mix-Secure

Important: For **SAM L11 Non-Secure** accesses, read accesses (R*) are allowed only if the security attribution for the corresponding channel (CHANNELx) is set as Non-Secured in the NONSECCHAN register.

Bit	7	6	5	4	3	2	1	0
ſ							BUSYCH	RDYUSR
Access				•	•	•	R/R*/R	R/R*/R
Reset							0	0

Bit 1 – BUSYCH Busy Channel

This bit is cleared when channel is idle.

This bit is set if an event on channel has not been handled by all event users connected to channel.

When the event channel path is asynchronous, this bit is always read '0'.

Bit 0 – RDYUSR Ready User

This bit is cleared when at least one of the event users connected to the channel is not ready.

This bit is set when all event users connected to channel are ready to handle incoming events on the channel.

When the event channel path is asynchronous, this bit is always read zero.

35.6.2.6 Data Reception

The receiver accepts data when a valid start bit is detected. Each bit following the start bit will be sampled according to the baud rate or XCK clock, and shifted into the receive shift register until the first stop bit of a frame is received. The second stop bit will be ignored by the receiver.

When the first stop bit is received and a complete serial frame is present in the receive shift register, the contents of the shift register will be moved into the two-level or four-level receive buffer. Then, the Receive Complete interrupt flag in the Interrupt Flag Status and Clear register (INTFLAG.RXC) will be set, and the optional interrupt will be generated.

The received data can be read from the DATA register when the Receive Complete interrupt flag is set.

35.6.2.6.1 Disabling the Receiver

Writing '0' to the Receiver Enable bit in the CTRLB register (CTRLB.RXEN) will disable the receiver, flush the two-level or four-level receive buffer, and data from ongoing receptions will be lost.

35.6.2.6.2 Error Bits

The USART receiver has three error bits in the Status (STATUS) register: Frame Error (FERR), Buffer Overflow (BUFOVF), and Parity Error (PERR). Once an error happens, the corresponding error bit will be set until it is cleared by writing '1' to it. These bits are also cleared automatically when the receiver is disabled.

There are two methods for buffer overflow notification, selected by the Immediate Buffer Overflow Notification bit in the Control A register (CTRLA.IBON):

When CTRLA.IBON=1, STATUS.BUFOVF is raised immediately upon buffer overflow. Software can then empty the receive FIFO by reading RxDATA, until the receiver complete interrupt flag (INTFLAG.RXC) is cleared.

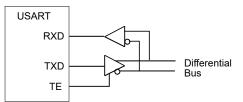
When CTRLA.IBON=0, the buffer overflow condition is attending data through the receive FIFO. After the received data is read, STATUS.BUFOVF will be set along with INTFLAG.RXC.

35.6.2.6.3 Asynchronous Data Reception

The USART includes a clock recovery and data recovery unit for handling asynchronous data reception.

The clock recovery logic can synchronize the incoming asynchronous serial frames at the RxD pin to the internally generated baud-rate clock.

The data recovery logic samples and applies a low-pass filter to each incoming bit, thereby improving the noise immunity of the receiver.


35.6.2.6.4 Asynchronous Operational Range

The operational range of the asynchronous reception depends on the accuracy of the internal baud-rate clock, the rate of the incoming frames, and the frame size (in number of bits). In addition, the operational range of the receiver is depending on the difference between the received bit rate and the internally generated baud rate. If the baud rate of an external transmitter is too high or too low compared to the internally generated baud rate, the receiver will not be able to synchronize the frames to the start bit.

There are two possible sources for a mismatch in baud rate: First, the reference clock will always have some minor instability. Second, the baud-rate generator cannot always do an exact division of the reference clock frequency to get the baud rate desired. In this case, the BAUD register value should be set to give the lowest possible error. Refer to *Clock Generation – Baud-Rate Generator* for details.

Recommended maximum receiver baud-rate errors for various character sizes are shown in the table below.

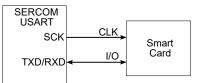
Figure 35-13. RS485 Bus Connection

The TE pin will remain high for the complete frame including stop bit(s). If a Guard Time is programmed in the Control C register (CTRLC.GTIME), the line will remain driven after the last character completion. The following figure shows a transfer with one stop bit and CTRLC.GTIME=3.

Figure 35-14. Example of TE Drive with Guard Time

The Transmit Complete interrupt flag (INTFLAG.TXC) will be raised after the guard time is complete and TE goes low.

35.6.3.6 ISO 7816 for Smart Card Interfacing


The SERCOM USART features an ISO/IEC 7816-compatible operating mode. This mode permits interfacing with smart cards and Security Access Modules (SAM) communicating through an ISO 7816 link. Both T=0 and T=1 protocols defined by the ISO 7816 specification are supported.

ISO 7816 is available with the following configuration:

- ISO 7816 format (CTRLA.FORM = 0x07)
- Inverse transmission and reception (CTRLA.RXINV=1 and CTRLA.TXINV=1)
- Single bidirectional data line (CTRLA.TXPO and CTRLA.RXPO configured to use the same data pin)
- Even parity (CTRLB.PMODE=0)
- 8-bit character size (CTRLB.CHSIZE=0)
- T=0 (CTRLA.CMODE=1) or T=1 (CTRLA.CMODE=0)

ISO 7816 is a half duplex communication on a single bidirectional line. The USART connects to a smart card as shown below. The output is only driven when the USART is transmitting. The USART is considered as the master of the communication as it generates the clock.

Figure 35-15. Connection of a Smart Card to the SERCOM USART

ISO 7816 characters are specified as 8 bits with even parity. The USART must be configured accordingly.

The USART cannot operate concurrently in both receiver and transmitter modes as the communication is unidirectional. It has to be configured according to the required mode by enabling or disabling either the receiver or the transmitter as desired. Enabling both the receiver and the transmitter at the same time in ISO 7816 mode may lead to unpredictable results.

The ISO 7816 specification defines an inverse transmission format. Data bits of the character must be transmitted on the I/O line at their negative value (CTRLA.RXINV=1 and CTRLA.TXINV=1).

35.6.5 Sleep Mode Operation

The behavior in sleep mode is depending on the clock source and the Run In Standby bit in the Control A register (CTRLA.RUNSTDBY):

- Internal clocking, CTRLA.RUNSTDBY=1: GCLK_SERCOMx_CORE can be enabled in all sleep modes. Any interrupt can wake up the device.
- External clocking, CTRLA.RUNSTDBY=1: The Receive Complete interrupt(s) can wake up the device.
- Internal clocking, CTRLA.RUNSTDBY=0: Internal clock will be disabled, after any ongoing transfer was completed. The Receive Complete interrupt(s) can wake up the device.
- External clocking, CTRLA.RUNSTDBY=0: External clock will be disconnected, after any ongoing transfer was completed. All reception will be dropped.

35.6.6 Synchronization

Due to asynchronicity between the main clock domain and the peripheral clock domains, some registers need to be synchronized when written or read.

The following bits are synchronized when written:

- Software Reset bit in the CTRLA register (CTRLA.SWRST)
- Enable bit in the CTRLA register (CTRLA.ENABLE)
- Receiver Enable bit in the CTRLB register (CTRLB.RXEN)
- Transmitter Enable bit in the Control B register (CTRLB.TXEN)

Note: CTRLB.RXEN is write-synchronized somewhat differently. See also <u>35.8.2</u> CTRLB for details.

Required write-synchronization is denoted by the "Write-Synchronized" property in the register description.

35.7 Register Summary

Offset	Name	Bit Pos.								
		7:0	RUNSTDBY				MODE[2:0]		ENABLE	SWRST
0.400	0x00 CTRLA			SAMPR[2:0]				RXINV	TXINV	IBON
0x00	UXUU CIRLA	23:16	SAMF	PA[1:0]	RXPC	D[1:0]			TXPC	D[1:0]
		31:24		DORD	CPOL	CMODE		FOR	M[3:0]	
		7:0		SBMODE					CHSIZE[2:0]	
0x04	CTRLB	15:8			PMODE			ENC	SFDE	COLDEN
0x04	CIRLB	23:16							RXEN	TXEN
		31:24								
		7:0							GTIME[2:0]	
0.409	CTRLC	15:8								
0x08	CIRLC	23:16			MAXITER[2:0]				DSNACK	INACK
		31:24								
000	DALID	7:0		1	11	BAU	D[7:0]		1	
0x0C	BAUD	15:8				BAUI	D[15:8]			
0x0E	RXPL	7:0				RXP	L[7:0]			
0x0F										
	Reserved									
0x13										
0x14	INTENCLR	7:0	ERROR		RXBRK	CTSIC	RXS	RXC	TXC	DRE
0x15	Reserved									
0x16	INTENSET	7:0	ERROR		RXBRK	CTSIC	RXS	RXC	TXC	DRE
0x17	Reserved									
0x18	INTFLAG	7:0	ERROR		RXBRK	CTSIC	RXS	RXC	TXC	DRE
0x19	Reserved									
0.41.0	STATUS	7:0	ITER	TXE	COLL	ISF	CTS	BUFOVF	FERR	PERR
0x1A	STATUS	15:8								
		7:0					RXERRCNT	CTRLB	ENABLE	SWRST
0×10	SYNCBUSY	15:8								
0x1C	STINCBUST	23:16								
		31:24								
0x20	RXERRCNT	7:0				RXERR	CNT[7:0]			
0x21										
	Reserved									
0x27										
0x29	DATA	7:0				DAT	A[7:0]			
0x28	DAIA	15:8								DATA[8:8]
0x2A										
	Reserved									
0x2F										
0x30	DBGCTRL	7:0								DBGSTOP

SERCOM SPI – SERCOM Serial Peripheral Interface

DOPO	DO	SCK	Slave SS	Master SS
0x0	PAD[0]	PAD[1]	PAD[2]	System configuration
0x1	PAD[2]	PAD[3]	PAD[1]	System configuration
0x2	PAD[3]	PAD[1]	PAD[2]	System configuration
0x3	PAD[0]	PAD[3]	PAD[1]	System configuration

Bit 8 – IBON Immediate Buffer Overflow Notification

This bit controls when the buffer overflow status bit (STATUS.BUFOVF) is set when a buffer overflow occurs.

This bit is not synchronized.

Value	Description
0	STATUS.BUFOVF is set when it occurs in the data stream.
1	STATUS.BUFOVF is set immediately upon buffer overflow.

Bit 7 – RUNSTDBY Run In Standby

This bit defines the functionality in standby sleep mode.

These bits are not synchronized.

RUNSTDBY	Slave	Master
0x0	Disabled. All reception is dropped, including the ongoing transaction.	Generic clock is disabled when ongoing transaction is finished. All interrupts can wake up the device.
0x1	Ongoing transaction continues, wake on Receive Complete interrupt.	Generic clock is enabled while in sleep modes. All interrupts can wake up the device.

Bits 4:2 - MODE[2:0] Operating Mode

These bits must be written to 0x2 or 0x3 to select the SPI serial communication interface of the SERCOM.

0x2: SPI slave operation

0x3: SPI master operation

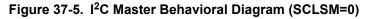
These bits are not synchronized.

Bit 1 - ENABLE Enable

Due to synchronization, there is delay from writing CTRLA.ENABLE until the peripheral is enabled/ disabled. The value written to CTRL.ENABLE will read back immediately and the Synchronization Enable Busy bit in the Synchronization Busy register (SYNCBUSY.ENABLE) will be set. SYNCBUSY.ENABLE is cleared when the operation is complete.

This bit is not enable-protected.

Value	Description
0	The peripheral is disabled or being disabled.
1	The peripheral is enabled or being enabled.


37.6.2.4 I²C Master Operation

The I²C master is byte-oriented and interrupt based. The number of interrupts generated is kept at a minimum by automatic handling of most incidents. The software driver complexity and code size are reduced by auto-triggering of operations, and a special smart mode, which can be enabled by the Smart Mode Enable bit in the Control A register (CTRLA.SMEN).

The I²C master has two interrupt strategies.

When SCL Stretch Mode (CTRLA.SCLSM) is '0', SCL is stretched before or after the acknowledge bit . In this mode the I²C master operates according to Master Behavioral Diagram (SCLSM=0). The circles labelled "Mn" (M1, M2..) indicate the nodes the bus logic can jump to, based on software or hardware interaction.

This diagram is used as reference for the description of the I²C master operation throughout the document.

APPLICATION Master Bus INTERRUPT + SCL HOLD (M1 M2 M3 (M4 s ADDRESS R/W (M1 Р Wait for R/W Ā Р IDLE M2 IDLE \overline{W} Sr М3 Α M4 DATA A/Ā Slave Bus INTERRUPT + SCL HOLD Ā M4 Software interaction The master provides data on the bus A/Ā Р IDLE М2 Addressed slave provides data on the bus A/Ā Sr **M**3 A/Ā DATA R Α

In the second strategy (CTRLA.SCLSM=1), interrupts only occur after the ACK bit, as in Master Behavioral Diagram (SCLSM=1). This strategy can be used when it is not necessary to check DATA before acknowledging.

Note: I²C High-speed (*Hs*) mode requires CTRLA.SCLSM=1.

15. PAC - Peripheral Access Controller

41.7 Register Summary

Offset	Name	Bit Pos.								
0x00	CTRLA	7:0	ONDEMAND	RUNSTDBY					ENABLE	SWRST
0x01	CTRLB	7:0						F	RESCALER[2:	0]
0x02	REFCTRL	7:0	REFCOMP					REFS	EL[3:0]	
0x03	EVCTRL	7:0			WINMONEO	RESRDYEO	STARTINV	FLUSHINV	STARTEI	FLUSHEI
0x04	INTENCLR	7:0						WINMON	OVERRUN	RESRDY
0x05	INTENSET	7:0						WINMON	OVERRUN	RESRDY
0x06	INTFLAG	7:0						WINMON	OVERRUN	RESRDY
0x07	SEQSTATUS	7:0	SEQBUSY					SEQSTATE[4:0)]	
000		7:0						MUXPOS[4:0]		
0x08	INPUTCTRL	15:8						MUXNEG[4:0]		
		7:0			RESS	EL[1:0]	CORREN	FREERUN	LEFTADJ	DIFFMODE
0x0A	CTRLC	15:8							WINMODE[2:0]	
0x0C	AVGCTRL	7:0			ADJRES[2:0]			SAMPLE	NUM[3:0]	
0x0D	SAMPCTRL	7:0	OFFCOMP				SAMPL	_EN[5:0]		
0.05		7:0				WINL	T[7:0]			
0x0E	WINLT	15:8				WINLT	[15:8]			
		7:0				WINU	T[7:0]			
0x10	WINUT	15:8				WINU	T[15:8]			
		7:0				GAINCO	DRR[7:0]			
0x12	GAINCORR	15:8						GAINCO	DRR[11:8]	
		7:0				OFFSETC	ORR[7:0]			
0x14	OFFSETCORR	15:8						OFFSETC	ORR[11:8]	
0x16										
	Reserved									
0x17										
0x18	SWTRIG	7:0							START	FLUSH
0x19										
	Reserved									
0x1B										
0x1C	DBGCTRL	7:0								DBGRUN
0x1D										
	Reserved									
0x1F										
		7:0	WINUT	WINLT	SAMPCTRL	AVGCTRL	CTRLC	INPUTCTRL	ENABLE	SWRST
0x20	SYNCBUSY	15:8						SWTRIG	OFFSETCOR R	GAINCORR
0x22										
	Reserved									
0x23										
0.24	RESULT	7:0				RESU	LT[7:0]			
0x24	RESULI	15:8				RESUL	.T[15:8]			
0x26										
	Reserved									
0x27										

41.8.3 Reference Control

Name:	REFCTRL
Offset:	0x02
Reset:	0x00
Property:	PAC Write-Protection, Enable-Protected

Bit	7	6	5	4	3	2	1	0
	REFCOMP					REFSE	EL[3:0]	
Access	R/W				R/W	R/W	R/W	R/W
Reset	0				0	0	0	0

Bit 7 – REFCOMP Reference Buffer Offset Compensation Enable

The gain error can be reduced by enabling the reference buffer offset compensation. This will increase the start-up time of the reference.

Value	Description
0	Reference buffer offset compensation is disabled.
1	Reference buffer offset compensation is enabled.

Bits 3:0 - REFSEL[3:0] Reference Selection

These bits select the reference for the ADC.

Value	Name	Description
0x0	INTREF	Internal variable reference voltage, refer to the SUPC.VREF register for voltage reference value
x01	INTVCC0	1/1.6 VDDANA
0x2	INTVCC1	1/2 VDDANA (only for VDDANA > 2.0V)
0x3	VREFA	External reference
0x4	VREFB	External reference
0x5	INTVCC2	VDDANA
0x6 -		Reserved
0xF		

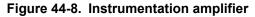
42.8.11 Scaler n

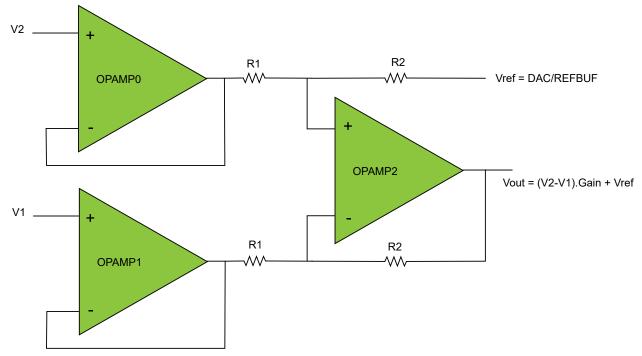
Name:	SCALER
Offset:	0x0C + n*0x01 [n=01]
Reset:	0x00
Property:	PAC Write-Protection

Bit	7	6	5	4	3	2	1	0
			VALUE[5:0]					
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0

Bits 5:0 - VALUE[5:0] Scaler Value

These bits define the scaling factor for channel n of the V_{DD} voltage scaler. The output voltage, V_{SCALE} , is:


 $V_{\text{SCALE}} = \frac{V_{\text{DD}} \cdot (\text{VALUE}+1)}{64}$


OPAMP – Operational Amplifier Controller

OPAMPCTRL0.POTMUX	OPAMPCTRL2.POTMUX	GAIN
0x7	Reserved	Reserved
0x6	0x0	1/7
0x5	Reserved	Reserved
0x4	0x1	1/3
0x3	Reserved	Reserved
0x2	0x2	1
0x1	0x4	3
0x0	0x6	7

Table 44-10. Instrumentation Amplifier Gain Selection

Note: Either the DAC or GND must be the reference, selected by the OPAMPCTRL0.RES1MUX bits. Refer to the OPAMP Control 'x' register (44.8.3 OPAMPCTRL) for details.

44.6.10.8 High Gain Instrumentation Amplifier

In this mode, OPAMP0 and OPAMP1 are configured as non inverting amplifiers [Stage 1]. OPAMP2 is configured as difference amplifier[Stage 2]. Total gain of the instrumentation amplifier is product of gains of stage 1 and stage 2. The OPAMPCTRLx and RESCTRL registers can be configured as follows:

Electrical Characteristics

Mode	Conditions	Regulator Mode	Vcc	Та	Тур.	Max.	Units
OFF			1.8V	25°C	34.6	54.4	nA
				85°C	595.7	1197.3	
			3.3V	25°C	61.2	89.1	
				85°C	796.1	1622.8	

46.8 Wake-Up Time

Conditions:

- VDDIO/VDDANA = 3.3V
- LDO Regulation mode
- CPU clock = OSC16M @ 4 MHz
- One Wait-state
- Cache enabled
- Flash Fast Wake-up enabled (NVMCTRL.CTRLB.FWUP = 1)
- Flash in WAKEUPINSTANT mode (NVMCTRL.CTRLB.SLEEPPRM = 1)

Measurement Method:

For Idle and Standby, the CPU sets an I/O by writing PORT->IOBUS without jumping in an interrupt handler (Cortex M23 register PRIMASK = 1). The wake-up time is measured between the edge of the wake-up input signal and the edge of the GPIO pin.

For Off mode, the exit of the mode is done through the reset pin, the time is measured between the falling edge of the RESETN signal (with the minimum reset pulse length), and the set of the I/O which is done by the first executed instructions after Reset.

Sleep Mode	Condition			Unit
Idle	PL2 or PL0	_2 or PL0		
Standby	PL0	PDSW domain in retention		
		PDSW domain in active	2.6	
	·	PDSW domain in retention	76	
	Voltage scaling at default values: SUPC >VREG.VSVSTEP=0 SUPC > VREG.VSPER=0	PDSW domain in active	75	
	PL2	PDSW domain in retention	16	
	Voltage scaling at fastest setting: SUPC > VREG.VSVSTEP=15 SUPC > VREG.VSPER=0	PDSW domain in active	15	
OFF	L10 with BOOTOPT=0		3.2	ms