E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M23
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	17
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.63V
Data Converters	A/D 5x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-SSOP (0.209", 5.30mm Width)
Supplier Device Package	24-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsaml10d15a-yut

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The API is:

```
/* Type definition for GF(2^128) multiplication */
typedef void (*crya_gf_mult128_t) (const uint32_t *block1, const uint32_t *block2, uint32_t
*dst);
/* GF(2^128) multiplication.
*
* \param block1[In]: A pointer to 128-bit data blocks that are to be multiplied
* \param block2[In]: A pointer to 128-bit data blocks that are to be multiplied
* \param dst[out]: A pointer to a location for storing the result
*/
#define secure_crya_gf_mult128 ((crya_gf_mult128_t) (0x0200190C | 0x1))
```

13.4 True Random Number Generator (TRNG)

Refer to TRNG - True Random Number Generator for more information.

13.5 Secure Boot

A Secure Boot with SHA-based authentication on a configurable portion on the Flash (BS memory area) is available with verification mechanisms allowing to reset and restart the authentication process in case of a failure.

Refer to 14. Boot ROM for more information.

13.6 Secure Pin Multiplexing on SERCOM

The Secure Pin Multiplexing feature can be used on dedicated SERCOM I/O pins to isolate a secured communication with external devices from the non-secure application.

To benefit from this feature, the security attribution of the SERCOM must be set as secured using the PAC peripheral.

When this operation occurs:

- The secured SERCOM instances becomes mapped only on a specific set of I/Os
- All of the alternate I/O pins of the secured SERCOM instance are kept in a Hi-Z configuration
- The PTC cannot enable PTC lines mapped to any of the secured SERCOM instance I/O pins
- The CCL I/Os mapped to the secured SERCOM instance I/O pins are set to '0'

Refer to 4.4.2 Secure Pin Multiplexing (on SERCOM) Pins to obtain the list of pins supporting that feature.

13.7 Data Flash

Refer to 30. NVMCTRL – Nonvolatile Memory Controller to get all security features related to the Data Flash.

13.8 TrustRAM (TRAM)

Refer to TRAM - TrustRAM to get all security features related to the TrustRAM.

16.12.11 Boot Communication Channel 0

Name:	BCC0
Offset:	0x0020
Reset:	N/A
Property:	-

Bit	31	30	29	28	27	26	25	24
Γ				DATA	[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
ſ				DATA	[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				DATA	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
Γ				DATA	\ [7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 31:0 – DATA[31:0] Data Data register.

SAM L10/L11 Family

GCLK - Generic Clock Controller

Offset	Name	Bit Pos.					
		31:24					
		7:0	WRTLOCK	CHEN			GEN[2:0]
0		15:8					
UXB8	PCHCTRL14	23:16					
		31:24					
		7:0	WRTLOCK	CHEN			GEN[2:0]
0		15:8					
UXBC	PCHCTRL15	23:16					
		31:24					
		7:0	WRTLOCK	CHEN			GEN[2:0]
000		15:8					
UXCU	PCHCTRL16	23:16					
		31:24					
		7:0	WRTLOCK	CHEN			GEN[2:0]
0×04	DOLIOTRI 17	15:8					
UXC4	PUNCIKLI	23:16					
		31:24					
		7:0	WRTLOCK	CHEN			GEN[2:0]
0.00		15:8					
UXC8	PCHCTRL18	23:16					
		31:24					
		7:0	WRTLOCK	CHEN			GEN[2:0]
000		15:8					
UXCC	PCHCTRL19	23:16					
		31:24					
		7:0	WRTLOCK	CHEN			GEN[2:0]
0.00		15:8					
UXDU	PCHCTRL20	23:16					
		31:24					

18.8 Register Description

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Some registers are optionally write-protected by the Peripheral Access Controller (PAC). Optional PAC write-protection is denoted by the "PAC Write-Protection" property in each individual register description. For details, refer to 18.5.8 Register Access Protection.

Some registers are synchronized when read and/or written. Synchronization is denoted by the "Write-Synchronized" or the "Read-Synchronized" property in each individual register description. For details, refer to 18.6.6 Synchronization.

On **SAM L11** devices, this peripheral has different access permissions depending on PAC Security Attribution (Secure or Non-Secure):

- If the peripheral is configured as Non-Secure in the PAC:
 - Secure access and Non-Secure access are granted

19.8.2 Interrupt Enable Clear

Name:INTENCLROffset:0x01Reset:0x00Property:PAC Write-Protection

This register allows the user to disable an interrupt without doing a read-modify-write operation. Changes in this register will also be reflected in the Interrupt Enable Set (INTENSET) register.

Bit	7	6	5	4	3	2	1	0
								CKRDY
Access								R/W
Reset								0

Bit 0 – CKRDY Clock Ready Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the Clock Ready Interrupt Enable bit and the corresponding interrupt request.

Value	Description
0	The Clock Ready interrupt is enabled and will generate an interrupt request when the Clock
	Ready Interrupt Flag is set.
1	The Clock Ready interrupt is disabled.

20.8.5 Interrupt Enable Set

Name:INTENSETOffset:0x09Reset:0x00Property:PAC Write-Protection

Bit	7	6	5	4	3	2	1	0
								DONE
Access								R/W
Reset								0

Bit 0 – DONE Measurement Done Interrupt Enable Writing a '0' to this bit has no effect.

Writing a '1' to this bit will set the Measurement Done Interrupt Enable bit, which enables the Measurement Done interrupt.

Value	Description
0	The Measurement Done interrupt is disabled.
1	The Measurement Done interrupt is enabled.

Sleep Mode	PDSW	SRAM Mode ⁽¹⁾	NVM	Regulators		
				VDDCORE		
				main	ULP	
Active	active	normal	normal	on	on	
Idle	active	auto ⁽²⁾	on	on	on	
Standby - PDSW in Active mode	active	normal ⁽⁶⁾	auto ⁽²⁾	auto ⁽³⁾	on ⁽⁵⁾	
Standby - PDSW in Retention mode	retention	low power ⁽⁶⁾	low power	auto ⁽⁴⁾	on ⁽⁵⁾	
OFF	off	off	off	off	off	

Table 22-4. Regulators, RAMs, and NVM state in Sleep Mode

Note:

- 1. RAMs mode by default: STDBYCFG.BBIAS bits are set to their default value.
- 2. auto: by default, NVM is in low-power mode if not accessed.
- 3. auto: by default, the main voltage regulator is on if GCLK, APBx, or AHBx clock is running during SleepWalking.
- 4. auto: by default ULP regulator is selected in retention, but main regulator will be selected if VREG RUNSTDBY register bit in Supply Controller is set to 1.
- 5. on: low power voltage reference must be ready, and this is confirmed if STATUS.ULPVREFRDY register bit in SUPC equals to 1
- 6. SRAM can be partially retained in STANDBY using SRAM Power Switch

Related Links

22.6.4.4 Regulator Automatic Low Power Mode

22.6.4 Advanced Features

22.6.4.1 Power Domain Configuration

When entering Standby Sleep mode, a power domain is set automatically to retention state if no activity is required in it, refer to 22.6.3.5 Power Domain Controller for details. This behavior can be changed by writing the Power Domain Configuration bit group in the Standby Configuration register (STDBYCFG.PDCFG). For example, all power domains can be forced to remain in active state during Standby Sleep mode, this will accelerate wake-up time.

22.6.4.2 RAM Automatic Low Power Mode

The RAM is by default put in Low-Power mode (back-biased) if its power domain is in retention state and the device is in Standby Sleep mode.

This behavior can be changed by configuring BBIASxx bit groups in the Standby Configuration register (STDBYCFG.BBIASxx), refer to the table below for details.

Note: in Standby Sleep mode, the DMAC can access the SRAM in Standby Sleep mode only when the power domain PDSW is not in retention and PM.STDBYCFG.BBIASxx=0x0.

27.8.13 Tamper Control

Name:	TAMPCTRL
Offset:	0x60
Reset:	0x0000000
Property:	PAC Write-Protection, Enable-Protected

Bit	31	30	29	28	27	26	25	24
					DEBNC3	DEBNC2	DEBNC1	DEBNC0
Access								
Reset					0	0	0	0
Bit	23	22	21	20	19	18	17	16
					TAMLVL3	TAMLVL2	TAMLVL1	TAMLVL0
Access								
Reset					0	0	0	0
Bit	15	14	13	12	11	10	9	8
Access							•	
Reset								
Bit	7	6	5	4	3	2	1	0
	IN3ACT[1:0]		IN2ACT[1:0]		IN1AC	CT[1:0]	IN0AC	T[1:0]
Access							•	
Reset	0	0	0	0	0	0	0	0

Bits 24, 25, 26, 27 – DEBNC Debounce Enable of Tamper Input INn

Value	Description
0	Debouncing is disabled for Tamper input INn
1	Debouncing is enabled for Tamper input INn

Bits 16, 17, 18, 19 - TAMLVL Tamper Level Select of Tamper Input INn

Value	Description
0	A falling edge condition will be detected on Tamper input INn.
1	A rising edge condition will be detected on Tamper input INn.

Bits 0:1, 2:3, 4:5, 6:7 – INACT Tamper Channel n Action

These bits determine the action taken by Tamper Channel n.

Value	Name	Description
0x0	OFF	Off (Disabled)
0x1	WAKE	Wake and set Tamper flag
0x2	CAPTURE	Capture timestamp and set Tamper flag
0x3	ACTL	Compare RTC signal routed between INn and OUT pins . When a mismatch
		occurs, capture timestamp and set Tamper flag

27.10.11 Counter Period in COUNT16 mode (CTRLA.MODE=1)

Name:	PER
Offset:	0x1C
Reset:	0x0000
Property:	PAC Write-Protection, Write-Synchronized

Bit	15	14	13	12	11	10	9	8
				PER	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				PER	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - PER[15:0] Counter Period

These bits define the value of the 16-bit RTC period in COUNT16 mode (CTRLA.MODE=1).

- CRC-16:
 - Polynomial: $x^{16}+x^{12}+x^{5}+1$
 - Hex value: 0x1021
- CRC-32:
 - Polynomial: $x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^8+x^7+x^5+x^4+x^2+x+1$
 - Hex value: 0x04C11DB7

The data source for the CRC engine can either be one of the DMA channels or the APB bus interface, and must be selected by writing to the CRC Input Source bits in the CRC Control register (CRCCTRL.CRCSRC). The CRC engine then takes data input from the selected source and generates a checksum based on these data. The checksum is available in the CRC Checksum register (CRCCHKSUM). When CRC-32 polynomial is used, the final checksum read is bit reversed and complemented, as shown in Figure 28-16.

The CRC polynomial is selected by writing to the CRC Polynomial Type bit in the CRC Control register (CRCCTRL.CRCPOLY), the default is CRC-16. The CRC engine operates on byte only. When the DMA is used as data source for the CRC engine, the DMA channel beat size setting will be used. When used with APB bus interface, the application must select the CRC Beat Size bit field of CRC Control register (CRCCTRL.CRCBEATSIZE). 8-, 16-, or 32-bit bus transfer access type is supported. The corresponding number of bytes will be written in the CRCDATAIN register and the CRC engine will operate on the input data in a byte by byte manner.

Figure 28-16. CRC Generator Block Diagram

29.8.2 Non-Maskable Interrupt Control

Name:	NMICTRL
Offset:	0x01
Reset:	0x00
Property:	PAC Write-Protection, Mix-Secure

Important: For **SAM L11 Non-Secure** accesses, read and write accesses (RW*) are allowed only if the NMI interrupt is set as Non-Secure in the NONSEC register (NONSEC.NMI bit).

Bit	7	6	5	4	3	2	1	0
				NMIASYNCH	NMIFILTEN		NMISENSE[2:0]	
Access				RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW
Reset				0	0	0	0	0

Bit 4 – NMIASYNCH Non-Maskable Interrupt Asynchronous Edge Detection Mode The NMI edge detection can be operated synchronously or asynchronously to the EIC clock.

Value	Description
0	The NMI edge detection is synchronously operated.
1	The NMI edge detection is asynchronously operated.

Bit 3 – NMIFILTEN Non-Maskable Interrupt Filter Enable

Value	Description
0	NMI filter is disabled.
1	NMI filter is enabled.

Bits 2:0 – NMISENSE[2:0] Non-Maskable Interrupt Sense Configuration

These bits define on which edge or level the NMI triggers.

Value	Name	Description
0x0	NONE	No detection
0x1	RISE	Rising-edge detection
0x2	FALL	Falling-edge detection
0x3	BOTH	Both-edge detection
0x4	HIGH	High-level detection
0x5	LOW	Low-level detection
0x6 -	-	Reserved
0x7		

31.8.1 Control A

Name:	CTRLA
Offset:	0x000
Reset:	0x00
Property:	PAC Write-Protection

Bit	7	6	5	4	3	2	1	0
	SILACC	DRP		TAMPERS			ENABLE	SWRST
Access	R/W	R/W		R/W			R/W	R/W
Reset	0	0		0			0	0

Bit 7 – SILACC Silent Access Enables differential storage of data.

Value	Description
0	Silent access is disabled.
1	Silent access is enabled.

Bit 6 – DRP Data Remanence Prevention

Enables periodic DRP in TrustRAM.

Value	Description
0	Data remanence prevention is disabled.
1	Data remanence prevention is enabled.

Bit 4 – TAMPERS Tamper Erase

Auto-erases TrustRAM and DSCC.DSCKEY on tamper event.

Value	Description
0	Tamper erase is disabled.
1	Tamper erase is enabled.

Bit 1 – ENABLE Enable

Value	Description
0	The TRAM is disabled.
1	The TRAM is enabled.

Bit 0 – SWRST Software Reset

Writing a zero to this bit has no effect.

Writing a one to this bit resets all registers in the TRAM to their initial state, and the TRAM will be disabled. This bit can also be set via hardware when a tamper occurs while CTRLA.TAMPERS is set.

Writing a one to CTRLA.SWRST will always take precedence, meaning that all other writes in the same writeoperation will be discarded.

Due to synchronization there is a delay from writing CTRLA.SWRST until the reset is complete. CTRLA.SWRST and SYNCBUSY.SWRST will both be cleared when the reset is complete.

SAM L10/L11 Family

EVSYS – Event System

Related Links

- 15. PAC Peripheral Access Controller
- 33.4.8 Register Access Protection

35.6.5 Sleep Mode Operation

The behavior in sleep mode is depending on the clock source and the Run In Standby bit in the Control A register (CTRLA.RUNSTDBY):

- Internal clocking, CTRLA.RUNSTDBY=1: GCLK_SERCOMx_CORE can be enabled in all sleep modes. Any interrupt can wake up the device.
- External clocking, CTRLA.RUNSTDBY=1: The Receive Complete interrupt(s) can wake up the device.
- Internal clocking, CTRLA.RUNSTDBY=0: Internal clock will be disabled, after any ongoing transfer was completed. The Receive Complete interrupt(s) can wake up the device.
- External clocking, CTRLA.RUNSTDBY=0: External clock will be disconnected, after any ongoing transfer was completed. All reception will be dropped.

35.6.6 Synchronization

Due to asynchronicity between the main clock domain and the peripheral clock domains, some registers need to be synchronized when written or read.

The following bits are synchronized when written:

- Software Reset bit in the CTRLA register (CTRLA.SWRST)
- Enable bit in the CTRLA register (CTRLA.ENABLE)
- Receiver Enable bit in the CTRLB register (CTRLB.RXEN)
- Transmitter Enable bit in the Control B register (CTRLB.TXEN)

Note: CTRLB.RXEN is write-synchronized somewhat differently. See also <u>35.8.2</u> CTRLB for details.

Required write-synchronization is denoted by the "Write-Synchronized" property in the register description.

35.8.1 Control A

Name:	CTRLA
Offset:	0x00
Reset:	0x0000000
Property:	PAC Write-Protection, Enable-Protected

Bit	31	30	29	28	27	26	25	24		
		DORD	CPOL	CMODE		FORM[3:0]				
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset		0	0	0	0	0	0	0		
Bit	23	22	21	20	19	18	17	16		
	SAMF	PA[1:0]	RXPO	D[1:0]			ТХРС	D[1:0]		
Access	R/W	R/W	R/W	R/W			R/W	R/W		
Reset	0	0	0	0			0	0		
Bit	15	14	13	12	11	10	9	8		
		SAMPR[2:0]				RXINV	TXINV	IBON		
Access	R/W	R/W	R/W			R/W	R/W	R		
Reset	0	0	0			0	0	0		
Bit	7	6	5	4	3	2	1	0		
	RUNSTDBY				MODE[2:0]		ENABLE	SWRST		
Access	R/W			R/W	R/W	R/W	R/W	R/W		
Reset	0			0	0	0	0	0		

Bit 30 – DORD Data Order

This bit selects the data order when a character is shifted out from the Data register.

This bit is not synchronized.

Value	Description
0	MSB is transmitted first.
1	LSB is transmitted first.

Bit 29 - CPOL Clock Polarity

This bit selects the relationship between data output change and data input sampling in synchronous mode.

This bit is not synchronized.

CPOL	TxD Change	RxD Sample
0x0	Rising XCK edge	Falling XCK edge
0x1	Falling XCK edge	Rising XCK edge

Bit 28 – CMODE Communication Mode

This bit selects asynchronous or synchronous communication.

35.8.5 Receive Pulse Length Register

Name:	RXPL
Offset:	0x0E
Reset:	0x00
Property:	Enable-Protected, PAC Write-Protection

Bit	7	6	5	4	3	2	1	0	
	RXPL[7:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 7:0 – RXPL[7:0] Receive Pulse Length

When the encoding format is set to IrDA (CTRLB.ENC=1), these bits control the minimum pulse length that is required for a pulse to be accepted by the IrDA receiver with regards to the serial engine clock period SE_{per} .

 $PULSE \geq (RXPL + 2) \cdot SE_{per}$

36.8.7 Status

	Name: Offset: Reset: Property:	STATUS 0x1A 0x0000 -						
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
						BUFOVF		
Access		ł	ł			R/W	L	
Reset						0		

Bit 2 – BUFOVF Buffer Overflow

Reading this bit before reading DATA will indicate the error status of the next character to be read.

This bit is cleared by writing '1' to the bit or by disabling the receiver.

This bit is set when a buffer overflow condition is detected. See also CTRLA.IBON for overflow handling.

When set, the corresponding RxDATA will be zero.

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear it.

Value	Description
0	No Buffer Overflow has occurred.
1	A Buffer Overflow has occurred.

37. SERCOM I²C – SERCOM Inter-Integrated Circuit

37.1 Overview

The inter-integrated circuit (I^2C) interface is one of the available modes in the serial communication interface (SERCOM).

The I²C interface uses the SERCOM transmitter and receiver configured as shown in Figure 37-1. Labels in capital letters are registers accessible by the CPU, while lowercase labels are internal to the SERCOM.

A SERCOM instance can be configured to be either an I^2C master or an I^2C slave. Both master and slave have an interface containing a shift register, a transmit buffer and a receive buffer. In addition, the I^2C master uses the SERCOM baud-rate generator, while the I^2C slave uses the SERCOM address match logic.

Related Links

34. SERCOM – Serial Communication Interface

37.2 Features

SERCOM I²C includes the following features:

- Master or slave operation
- Can be used with DMA
- Philips I²C compatible
- SMBus[™] compatible
- PMBus compatible
- Support of 100kHz and 400kHz, 1MHz and 3.4MHz I²C mode
- 4-Wire operation supported
- Physical interface includes:
 - Slew-rate limited outputs
 - Filtered inputs
- Slave operation:
 - Operation in all sleep modes
 - Wake-up on address match
 - 7-bit and 10-bit Address match in hardware for:
 - Unique address and/or 7-bit general call address
 - Address range
 - Two unique addresses can be used with DMA

Related Links

34.2 Features

SAM L10/L11 Family SERCOM I2C – SERCOM Inter-Integrated Circ...

37.6.2.4.1 Master Clock Generation

The SERCOM peripheral supports several I²C bidirectional modes:

- Standard mode (*Sm*) up to 100 kHz
- Fast mode (*Fm*) up to 400 kHz
- Fast mode Plus (*Fm*+) up to 1 MHz
- High-speed mode (Hs) up to 3.4 MHz

The Master clock configuration for *Sm*, *Fm*, and *Fm*+ are described in Clock Generation (Standard-Mode, Fast-Mode, and Fast-Mode Plus). For *Hs*, refer to Master Clock Generation (High-Speed Mode).

Clock Generation (Standard-Mode, Fast-Mode, and Fast-Mode Plus)

In I²C *Sm, Fm*, and *Fm*+ mode, the Master clock (SCL) frequency is determined as described in this section:

The low (T_{LOW}) and high (T_{HIGH}) times are determined by the Baud Rate register (BAUD), while the rise (T_{RISE}) and fall (T_{FALL}) times are determined by the bus topology. Because of the wired-AND logic of the bus, T_{FALL} will be considered as part of T_{LOW}. Likewise, T_{RISE} will be in a state between T_{LOW} and T_{HIGH} until a high state has been detected.

Required read-synchronization is denoted by the "Read-Synchronized" property in the register description.

38.7 Register Description

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Some registers are optionally write-protected by the Peripheral Access Controller (PAC). Optional PAC write-protection is denoted by the "PAC Write-Protection" property in each individual register description. For details, refer to Register Access Protection.

Some registers are synchronized when read and/or written. Synchronization is denoted by the "Write-Synchronized" or the "Read-Synchronized" property in each individual register description. For details, refer to Synchronization.

Some registers are enable-protected, meaning they can only be written when the peripheral is disabled. Enable-protection is denoted by the "Enable-Protected" property in each individual register description.

On **SAM L11** devices, this peripheral has different access permissions depending on PAC Security Attribution (Secure or Non-Secure):

- If the peripheral is configured as Non-Secure in the PAC:
 - Secure access and Non-Secure access are granted
- If the peripheral is configured as Secure in the PAC:
 - Secure access is granted
 - Non-Secure access is discarded (Write is ignored, read 0x0) and a PAC error is triggered

Refer to *Peripherals Security Attribution* for more information.

SAM L10/L11 Family

Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
		F _{OUT} = 12MHz	-	0.13	0.28	
		F _{OUT} = 16MHz	-	0.13	0.27	
T _{STARTUP} ⁽²⁾	Startup time	F _{OUT} = 4MHz	-	1.16	2.96	μs
		F _{OUT} = 8MHz	-	1.29	2.74	_
		F _{OUT} = 12MHz	-	1.34	2.95	
		F _{OUT} = 16MHz	-	1.39	3.11	
Duty ⁽¹⁾	Duty Cycle	-	45	50	55	%

Note:

- 1. These values are based on simulation. They are not covered by production test limits or characterization.
- 2. These are based on characterization.

Table 46-51. Power Consumption

Symbol	Parameter	Conditions	Та	Min.	Тур.	Max.	Units
I _{DD}	Current consumption	F _{out} =4MHz, V _{CC} =3.3V	Max.85°C Typ.25°C	-	73	139	μA
		F _{out} =8MHz, V _{CC} =3.3V		-	106	169	
		F _{out} =12MHz, V _{CC} =3.3V		-	135	195	
		F _{out} =16MHz, V _{CC} =3.3V		-	166	225	

46.13.5 Digital Frequency Locked Loop (DFLLULP) Characteristics Table 46-52. Digital Frequency Locked Loop Characteristics⁽²⁾

Symbol	Parameter		Min	Тур	Мах	Unit	
FIN	Input Clock Frequency		32	-	33	kHz	
FOUT	Output Clock Frequency	PL2	-	32	-	MHz	
		PL0	-	8	-		
Jp	Period jitter	PL0, Fin= 32 kHz 50 ppm, Fout = 8MHz	-4	-	4	%	
		PL2, Fin= 32 kHz 50 ppm, Fout = 32 MHz	-4.3	-	4.3		
tLOCK	Lock Time	After startup, time to get lock signal Fin = 32768 Hz, Fout = 8MHz, PL0 Binary Search mode enabled	-	362	-	μs	
		After startup, time to get lock signal Fin = 32768 Hz, Fout = 32 MHz, PL2	-	362	-	μs	