

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

·ХГ

Product Status	Active
Core Processor	ARM® Cortex®-M23
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	17
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.63V
Data Converters	A/D 5x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	24-VFQFN Exposed Pad
Supplier Device Package	24-VQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsaml10d16a-mft

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Each peripheral can only be configured either in Secure or in Non-Secure mode.

The PAC NONSECx registers (Read Only) contain one bit per peripheral for that purpose, which is the image of the NONSECx fuses from the NVM User row (UROW).

During Boot ROM execution, the NONSECx fuses from the NVM User row are copied in the PAC peripheral NONSECx registers so that they can be read by the application.

All peripherals are marked as "exempt" in the memory map, meaning that all bus transactions are propagated. As a consequence, any illegal accesses are reported back to the PAC and trigger an interrupt if enabled.

The security configuration (Secure or Non-Secure) is propagated to each individual peripheral, thus it is the responsibility of the peripheral to grant or not the access with the following rules:

- If the peripheral is configured as Non-Secure in the PAC:
 - Secure access and Non-Secure are granted
- If the peripheral is configured as Secure in the PAC:
 - Secure access is granted
 - Non-Secure access is discarded (Write is ignored, read 0x0), a PAC error is triggered

Important: These rules do not apply to the specific peripherals called Mix-Secure peripherals.

Note: The Secure application will usually provide an API for the Non-Secure application using the Non-Secure Callable region (NSC) to allow the Non-Secure application to request specific resources.

 Table 13-8. Peripheral PAC Security Attribution (Excluding Mix-Secure Peripherals)

Mode	Secure Master Access	Non-Secure Master Access
Non-Secure	Read / Write	Read / Write
Secure	Read / Write	Discarded (Write ignored / Read 0x0)
		PAC Error is generated

13.2.5.1 SAM L11 Peripherals Configuration Example

Below is a typical configuration examples where all peripherals except the ADC, TC0, and Event System (EVSYS) are reserved to the Secure application:

- Secure/Non-Secure Peripherals PAC configuration:
 - PAC.NONSECA=PAC.NONSECB=0x0000_0000
 - PAC.NONSECC=0x0000_00091 (ADC, TC0 and EVSYS available for the Non-Secure application)

13.2.6 SAM L11 Memory Space Security Attribution

This table provides the security attributions of the SAM L11 memory space:

19.8.7 APBA Mask

Name:	APBAMASK
Offset:	0x14
Reset:	0x000007FFF
Property:	PAC Write-Protection

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access			I I					
Reset								
Bit	15	14	13	12	11	10	9	8
		Reserved	AC	PORT	FREQM	EIC	RTC	WDT
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		1	1	1	1	1	1	1
Bit	7	6	5	4	3	2	1	0
	GCLK	SUPC	OSC32KCTRL	OSCCTRL	RSTC	MCLK	PM	PAC
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

Bit 14 – Reserved For future use

Reserved bits are unused and reserved for future use. For compatibility with future devices, always write reserved bits to their reset value. If no reset value is given, write 0.

Bit 13 – AC AC APBA Clock Enable

Value	Description
0	The APBA clock for the AC is stopped.
1	The APBA clock for the AC is enabled.

Bit 12 - PORT PORT APBA Clock Enable

Value	Description
0	The APBA clock for the PORT is stopped.
1	The APBA clock for the PORT is enabled.

Bit 11 – FREQM FREQM APBA Clock Enable

Value	Description
0	The APBA clock for the FREQM is stopped.
1	The APBA clock for the FREQM is enabled.

FREQM – Frequency Meter

FREQM is reset. See 20.8.6 INTFLAG for details on how to clear interrupt flags. All interrupt requests from the peripheral are ORed together on system level to generate one combined interrupt request to the NVIC. The user must read the 20.8.6 INTFLAG register to determine which interrupt condition is present.

This interrupt is a synchronous wake-up source.

Note that interrupts must be globally enabled for interrupt requests to be generated.

20.6.5 Events

Not applicable.

20.6.6 Sleep Mode Operation

The FREQM will continue to operate in idle sleep mode where the selected source clock is running. The FREQM's interrupts can be used to wake up the device from idle sleep mode.

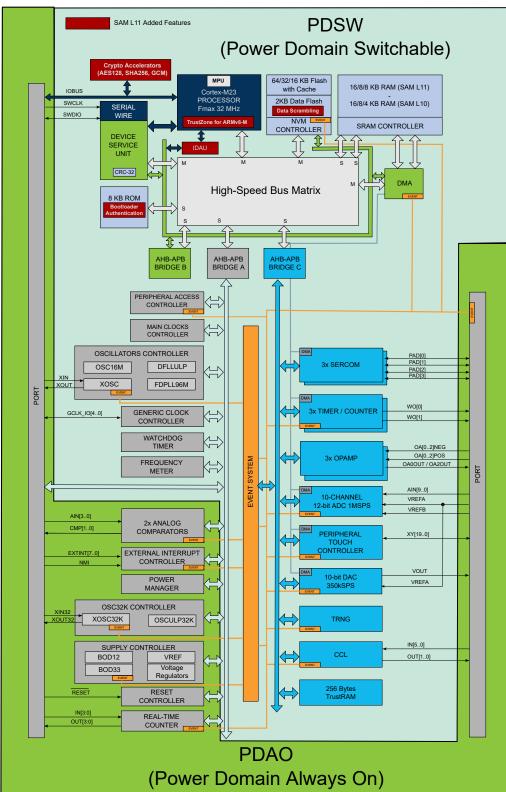
For lowest chip power consumption in sleep modes, FREQM should be disabled before entering a sleep mode.

Related Links

22. PM – Power Manager

20.6.7 Synchronization

Due to asynchronicity between the main clock domain and the peripheral clock domains, some registers need to be synchronized when written or read.


The following bits and registers are write-synchronized:

- Software Reset bit in Control A register (CTRLA.SWRST)
- Enable bit in Control A register (CTRLA.ENABLE)

Required write-synchronization is denoted by the "Write-Synchronized" property in the register description.

PM – Power Manager

CPU Mode	XOSC32K. RUNSTDBY	XOSC32K. ONDEMAND	Sleep Behavior of XOSC32K and CFD
Active or Idle	-	0	Always run
Active or Idle	-	1	Run if requested by peripheral
Standby	1	0	Always run
Standby	1	1	Run if requested by peripheral
Standby	0	-	Run if requested by peripheral

Table 24-1. XOSC32K Sleep Behavior

As a crystal oscillator usually requires a very long start-up time, the 32KHz External Crystal Oscillator will keep running across resets when XOSC32K.ONDEMAND=0, except for power-on reset (POR). After a reset or when waking up from a sleep mode where the XOSC32K was disabled, the XOSC32K will need a certain amount of time to stabilize on the correct frequency. This start-up time can be configured by changing the Oscillator Start-Up Time bit group (XOSC32K.STARTUP) in the 32KHz External Crystal Oscillator Control register. During the start-up time, the oscillator output is masked to ensure that no unstable clock propagates to the digital logic.

Once the external clock or crystal oscillator is stable and ready to be used as a clock source, the XOSC32K Ready bit in the Status register is set (STATUS.XOSC32KRDY=1). The transition of STATUS.XOSC32KRDY from '0' to '1' generates an interrupt if the XOSC32K Ready bit in the Interrupt Enable Set register is set (INTENSET.XOSC32KRDY=1).

The XOSC32K can be used as a source for Generic Clock Generators (GCLK) or for the Real-Time Counter (RTC). Before enabling the GCLK or the RTC module, the corresponding oscillator output must be enabled (XOSC32K.EN32K or XOSC32K.EN1K) in order to ensure proper operation. In the same way, the GCLK or RTC modules must be disabled before the clock selection is changed. For details on RTC clock configuration, refer also to 24.6.6 Real-Time Counter Clock Selection.

Related Links

18. GCLK - Generic Clock Controller

27. RTC – Real-Time Counter

24.6.3 Clock Failure Detection Operation

The Clock Failure Detector (CFD) allows the user to monitor the external clock or crystal oscillator signal provided by the external oscillator (XOSC32K). The CFD detects failing operation of the XOSC32K clock with reduced latency, and allows to switch to a safe clock source in case of clock failure. The user can also switch from the safe clock back to XOSC32K in case of recovery. The safe clock is derived from the OSCULP32K oscillator with a configurable prescaler. This allows to configure the safe clock in order to fulfill the operative conditions of the microcontroller.

In sleep modes, CFD operation is automatically disabled when the external oscillator is not requested to run by a peripheral. See the Sleep Behavior table above when this is the case.

The user interface registers allow to enable, disable, and configure the CFD. The Status register provides status flags on failure and clock switch conditions. The CFD can optionally trigger an interrupt or an event when a failure is detected.

WDT – Watchdog Timer

V	VEN	Interrupt Enable	Mode
1		0	Always-on and window mode
1		1	Always-on and window mode with Early Warning interrupt

26.6.8.2 Early Warning

The Early Warning interrupt notifies that the WDT is approaching its time-out condition. The Early Warning interrupt behaves differently in Normal mode and in Window mode.

In Normal mode, the Early Warning interrupt generation is defined by the Early Warning Offset in the Early Warning Control register (EWCTRL.EWOFFSET). The Early Warning Offset bits define the number of CLK_WDT_OSC clocks before the interrupt is generated, relative to the start of the watchdog time-out period.

The user must take caution when programming the Early Warning Offset bits. If these bits define an Early Warning interrupt generation time greater than the watchdog time-out period, the watchdog time-out system reset is generated prior to the Early Warning interrupt. Consequently, the Early Warning interrupt will never be generated.

In window mode, the Early Warning interrupt is generated at the start of the open window period. In a typical application where the system is in sleep mode, the Early Warning interrupt can be used to wake up and clear the Watchdog Timer, after which the system can perform other tasks or return to sleep mode.

If the WDT is operating in Normal mode with CONFIG.PER = 0x2 and EWCTRL.EWOFFSET = 0x1, the Early Warning interrupt is generated 16 CLK_WDT_OSC clock cycles after the start of the time-out period. The time-out system reset is generated 32 CLK_WDT_OSC clock cycles after the start of the watchdog timeout period.

RTC – Real-Time Counter

Value	Description
0	Tamper event output is disabled and will not be generated.
1	Tamper event output is enabled and will be generated for every tamper input.

Bit 8 – CMPEO0 Compare 0 Event Output Enable

Value	Description
0	Compare 0 event is disabled and will not be generated.
1	Compare 0 event is enabled and will be generated for every compare match.

Bits 0, 1, 2, 3, 4, 5, 6, 7 – PEREOn Periodic Interval n Event Output Enable [n = 7..0]

Value	Description
0	Periodic Interval n event is disabled and will not be generated.
1	Periodic Interval n event is enabled and will be generated.

RTC – Real-Time Counter

	Offset: Reset:	SYNCBUSY 0x10 0x00000000 -						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
								[1:0]
Access							R	R
Reset							0	0
Bit		14	13	12	11	10	9	8
	COUNTSYNC							
Access	R							
Reset	0							
Bit	7	6	5	4	3	2	1	0
		COMP1	COMP0	PER	COUNT	FREQCORR	ENABLE	SWRST
Access		R/W	R/W	R	R	R	R	R
Reset		0	0	0	0	0	0	0

27.10.8 Synchronization Busy in COUNT16 mode (CTRLA.MODE=1)

Bits 17:16 - GPn[1:0] General Purpose n Synchronization Busy Status

Value	Description
0	Write synchronization for GPn register is complete.
1	Write synchronization for GPn register is ongoing.

Bit 15 – COUNTSYNC Count Read Sync Enable Synchronization Busy Status

Value	Description
0	Write synchronization for CTRLA.COUNTSYNC bit is complete.
1	Write synchronization for CTRLA.COUNTSYNC bit is ongoing.

Bits 5, 6 – COMPn Compare n Synchronization Busy Status [n = 1..0]

Value	Description
0	Write synchronization for COMPn register is complete.
1	Write synchronization for COMPn register is ongoing.

Bit 4 – PER Period Synchronization Busy Status

Value	Description
0	Write synchronization for PER register is complete.
1	Write synchronization for PER register is ongoing.

29.5.4 DMA

Not applicable.

29.5.5 Interrupts

There are several interrupt request lines, at least one for the external interrupts (EXTINT) and one for non-maskable interrupt (NMI).

The EXTINT interrupt request line is connected to the interrupt controller. Using the EIC interrupt requires the interrupt controller to be configured first.

The NMI interrupt request line is also connected to the interrupt controller, but does not require the interrupt to be configured.

29.5.6 Events

The events are connected to the Event System. Using the events requires the Event System to be configured first.

Related Links

33. EVSYS - Event System

29.5.7 Debug Operation

When the CPU is halted in debug mode, the EIC continues normal operation. If the EIC is configured in a way that requires it to be periodically serviced by the CPU through interrupts or similar, improper operation or data loss may result during debugging.

29.5.8 Register Access Protection

All registers with write-access can be write-protected optionally by the Peripheral Access Controller (PAC), except for the following registers:

- Interrupt Flag Status and Clear register (INTFLAG)
- Non-Maskable Interrupt Flag Status and Clear register (NMIFLAG)

Optional write-protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write-Protection" property in each individual register description.

PAC write-protection does not apply to accesses through an external debugger.

Related Links

15. PAC - Peripheral Access Controller

29.5.9 SAM L11 TrustZone Specific Register Access Protection

When the EIC is not PAC secured, non-secure and secure code can both access all functionalities. When the EIC is PAC secured, all registers are by default available in the secure alias only.

A PAC secured EIC can open up individual external interrupts for non-secure access. This is done using the NONSEC and the NONSECNMI registers. When an external interrupt has been set as non-secure, it can be handled from non-secure code, using the EIC module non-secure alias. Since only Secured code has the rights to modify the NONSEC register, an interrupt-based mechanism has been added to let Non Secured code know when these registers have been changed by Secured code. A single flag called NSCHK in the INTFLAG register will rise should changes, conditioned by the NSCHK register, occur in the NONSEC or NONSECNMI registers.

• EIC Security Attribution registers (NONSEC and NONSECNMI) can only be written in the secure alias, otherwise a PAC error results.

32.8.8 Data Output Value Toggle

Name:	OUTTGL
Offset:	0x1C
Reset:	0x0000000
Property:	PAC Write-Protection, Mix-Secure

Important: For **SAM L11 Non-Secure** accesses, read and write accesses (RW*) are allowed only if the security attribution for the corresponding I/O pin is set as Non-Secured in the NONSEC register.

This register allows the user to toggle the drive level of one or more output I/O pins, without doing a readmodify-write operation. Changes in this register will also be reflected in the Data Output Value (OUT), Data Output Value Set (OUTSET) and Data Output Value Clear (OUTCLR) registers.

Tip: The I/O pins are assembled in pin groups ("PORT groups") with up to 32 pins. Group 0 consists of the PA pins, group 1 is for the PB pins, etc. Each pin group has its own PORT registers, with a 0x80 address spacing. For example, the register address offset for the Data Direction (DIR) register for group 0 (PA00 to PA31) is 0x00, and the register address offset for the DIR register for group 1 (PB00 to PB31) is 0x80.

Bit	31	30	29	28	27	26	25	24			
Dit [
		OUTTGL[31:24]									
Access	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW			
Reset	0	0	0	0	0	0	0	0			
Bit	23	22	21	20	19	18	17	16			
				OUTTG	L[23:16]						
Access	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW			
Reset	0	0	0	0	0	0	0	0			
Bit	15	14	13	12	11	10	9	8			
[OUTTO	GL[15:8]		<u>.</u>				
Access	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
[OUTTO	GL[7:0]						
Access	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW			
Reset	0	0	0	0	0	0	0	0			

Bits 31:0 – OUTTGL[31:0] PORT Data Output Value Toggle

Writing '0' to a bit has no effect.

32.8.12 Event Input Control

Name:	EVCTRL
Offset:	0x2C
Reset:	0x0000000
Property:	PAC Write-Protection, Secure

Tip: The I/O pins are assembled in pin groups ("PORT groups") with up to 32 pins. Group 0 consists of the PA pins, group 1 is for the PB pins, etc. Each pin group has its own PORT registers, with a 0x80 address spacing. For example, the register address offset for the Data Direction (DIR) register for group 0 (PA00 to PA31) is 0x00, and the register address offset for the DIR register for group 1 (PB00 to PB31) is 0x80.

There are up to four input event pins for each PORT group. Each byte of this register addresses one Event input pin.

Bit	31	30	29	28	27	26	25	24	
	PORTEIx	EVACTx[1:0]			PIDx[4:0]				
Access	RW/-/RW	RW/-/RW	RW/-/RW	RW/-/RW	RW/-/RW	RW/-/RW	RW/-/RW	RW/-/RW	
Reset	0	0	0	0	0	0	0	0	
Bit	23	22	21	20	19	18	17	16	
	PORTEIX	EVAC	Tx[1:0]			PIDx[4:0]			
Access	RW/-/RW	RW/-/RW	RW/-/RW	RW/-/RW	RW/-/RW	RW/-/RW	RW/-/RW	RW/-/RW	
Reset	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	
	PORTEIX	EVAC	Tx[1:0]	PIDx[4:0]					
Access	RW/-/RW	RW/-/RW	RW/-/RW	RW/-/RW	RW/-/RW	RW/-/RW	RW/-/RW	RW/-/RW	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	PORTEIX	EVACTx[1:0]				PIDx[4:0]			
Access	RW/-/RW	RW/-/RW	RW/-/RW	RW/-/RW	RW/-/RW	RW/-/RW	RW/-/RW	RW/-/RW	
Reset	0	0	0	0	0	0	0	0	

Bits 31,23,15,7 – PORTEIx PORT Event Input Enable x [x = 3..0]

Value	Description
0	The event action x (EVACTx) will not be triggered on any incoming event.
1	The event action x (EVACTx) will be triggered on any incoming event.

Bits 30:29, 22:21,14:13,6:5 – EVACTx PORT Event Action x [x = 3..0]

These bits define the event action the PORT will perform on event input x. See also Table 32-4.

Bits 28:24,20:16,12:8,4:0 – PIDx PORT Event Pin Identifier x [x = 3..0]

These bits define the I/O pin on which the event action will be performed, according to Table 32-5.

32.8.14 Pin Configuration

Name:	PINCFG
Offset:	0x40 + n*0x01 [n=031]
Reset:	0x00
Property:	PAC Write-Protection, Mix-Secure

Important: For **SAM L11 Non-Secure** accesses, read and write accesses (RW*) are allowed only if the security attribution for the corresponding I/O pin is set as Non-Secured in the NONSEC register.

Tip: The I/O pins are assembled in pin groups ("PORT groups") with up to 32 pins. Group 0 consists of the PA pins, group 1 is for the PB pins, etc. Each pin group has its own PORT registers, with a 0x80 address spacing. For example, the register address offset for the Data Direction (DIR) register for group 0 (PA00 to PA31) is 0x00, and the register address offset for the DIR register for group 1 (PB00 to PB31) is 0x80.

There are up to 32 Pin Configuration registers in each PORT group, one for each I/O line.

Bit	7	6	5	4	3	2	1	0
		DRVSTR				PULLEN	INEN	PMUXEN
Access		RW/RW*/RW				RW/RW*/RW	RW/RW*/RW	RW/RW*/RW
Reset		0				0	0	0

Bit 6 – DRVSTR Output Driver Strength Selection

This bit controls the output driver strength of an I/O pin configured as an output.

Value	Description
0	Pin drive strength is set to normal drive strength.
1	Pin drive strength is set to stronger drive strength.

Bit 2 - PULLEN Pull Enable

This bit enables the internal pull-up or pull-down resistor of an I/O pin configured as an input.

Value	Description
0	Internal pull resistor is disabled, and the input is in a high-impedance configuration.
1	Internal pull resistor is enabled, and the input is driven to a defined logic level in the absence
	of external input.

Bit 1 - INEN Input Enable

This bit controls the input buffer of an I/O pin configured as either an input or output.

Writing a zero to this bit disables the input buffer completely, preventing read-back of the physical pin state when the pin is configured as either an input or output.

32.8.15 Interrupt Enable Clear

Name:	INTENCLR
Offset:	0x60
Reset:	0x0000000
Property:	PAC Write-Protection

This register allows the user to disable an interrupt without doing a read-modify-write operation. Changes in this register will also be reflected in the Interrupt Enable Set register (INTENSET).

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
5.4	45		10	10		10	0	0
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
DIL	/	0	5	4	3	2	I	
								NSCHK
Access								RW/RW/RW
Reset								0

Bit 0 – NSCHK Non-Secure Check Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the Non-Secure Check Interrupt Enable bit, which disables the Non-Secure Check interrupt.

Value	Description
0	The Non-Secure Check interrupt is disabled.
1	The Non-Secure Check interrupt is enabled.

Bit 0 – DRE Data Register Empty Interrupt Enable Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the Data Register Empty Interrupt Enable bit, which disables the Data Register Empty interrupt.

Value	Description
0	Data Register Empty interrupt is disabled.
1	Data Register Empty interrupt is enabled.

37.5.2 Power Management

This peripheral can continue to operate in any sleep mode where its source clock is running. The interrupts can wake up the device from sleep modes.

Related Links

22. PM - Power Manager

37.5.3 Clocks

The SERCOM bus clock (CLK_SERCOMx_APB) can be enabled and disabled in the Main Clock Controller. Refer to *Peripheral Clock Masking* for details and default status of this clock.

Two generic clocks are used by SERCOM, GCLK_SERCOMx_CORE and GCLK_SERCOM_SLOW. The core clock (GCLK_SERCOMx_CORE) can clock the I²C when working as a master. The slow clock (GCLK_SERCOM_SLOW) is required only for certain functions, e.g. SMBus timing. These two clocks must be configured and enabled in the Generic Clock Controller (GCLK) before using the I²C.

These generic clocks are asynchronous to the bus clock (CLK_SERCOMx_APB). Due to this asynchronicity, writes to certain registers will require synchronization between the clock domains. Refer to 37.6.6 Synchronization for further details.

Related Links

GCLK - Generic Clock Controller
 19.6.2.6 Peripheral Clock Masking
 PM – Power Manager

37.5.4 DMA

The DMA request lines are connected to the DMA Controller (DMAC). In order to use DMA requests with this peripheral the DMAC must be configured first. Refer to *DMAC – Direct Memory Access Controller* for details.

Related Links

28. DMAC - Direct Memory Access Controller

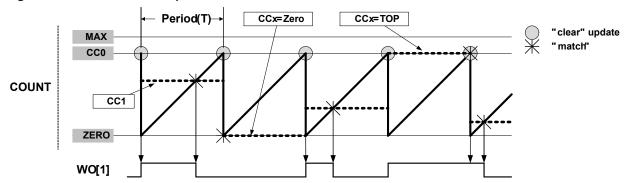
37.5.5 Interrupts

The interrupt request line is connected to the Interrupt Controller. In order to use interrupt requests of this peripheral, the Interrupt Controller (NVIC) must be configured first. Refer to *Nested Vector Interrupt Controller* for details.

37.5.6 Events

Not applicable.

37.5.7 Debug Operation


When the CPU is halted in debug mode, this peripheral will continue normal operation. If the peripheral is configured to require periodical service by the CPU through interrupts or similar, improper operation or data loss may result during debugging. This peripheral can be forced to halt operation during debugging - refer to the Debug Control (DBGCTRL) register for details.

37.5.8 Register Access Protection

Registers with write-access can be write-protected optionally by the peripheral access controller (PAC).

PAC Write-Protection is not available for the following registers:

Figure 38-6. Match PWM Operation

The table below shows the update counter and overflow event/interrupt generation conditions in different operation modes.

Name	Operation	ТОР	Update	Output Waveform		OVFIF/Event	
				On Match	On Update	Up	Down
NFRQ	Normal Frequency	PER	TOP/ ZERO	Toggle	Stable	TOP	ZERO
MFRQ	Match Frequency	CC0	TOP/ ZERO	Toggle	Stable	TOP	ZERO
NPWM	Single-slope PWM	PER	TOP/ ZERO	See description above.		TOP	ZERO
MPWM	Single-slope PWM	CC0	TOP/ ZERO	Toggle	Toggle	TOP	ZERO

Related Links

32. PORT - I/O Pin Controller

38.6.2.7 Double Buffering

The Compare Channels (CCx) registers, and the Period (PER) register in 8-bit mode are double buffered. Each buffer register has a buffer valid bit (CCBUFVx or PERBUFV) in the STATUS register, which indicates that the buffer register contains a new valid value that can be copied into the corresponding register. As long as the respective buffer valid status flag (PERBUFV or CCBUFVx) are set to '1', related syncbusy bits are set (SYNCBUSY.PER or SYNCBUSY.CCx), a write to the respective PER/PERBUF or CCx/CCBUFx registers will generate a PAC error, and access to the respective PER or CCx register is invalid.

When the buffer valid flag bit in the STATUS register is '1' and the Lock Update bit in the CTRLB register is set to '0', (writing CTRLBCLR.LUPD to '1'), double buffering is enabled: the data from buffer registers will be copied into the corresponding register under hardware UPDATE conditions, then the buffer valid flags bit in the STATUS register are automatically cleared by hardware.

Note: The software update command (CTRLBSET.CMD=0x3) is acting independently of the LUPD value.

A compare register is double buffered as in the following figure.

38.7.3.13 Counter Value, 32-bit Mode

Name:COUNTOffset:0x14Reset:0x00Property:PAC Write-Protection, Write-Synchronized, Read-Synchronized

Note: Prior to any read access, this register must be synchronized by user by writing the according TC Command value to the Control B Set register (CTRLBSET.CMD=READSYNC).

Bit	31	30	29	28	27	26	25	24		
				COUN	[31:24]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	23	22	21	20	19	18	17	16		
				COUN	F[23:16]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	15	14	13	12	11	10	9	8		
				COUN	T[15:8]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
		COUNT[7:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

Bits 31:0 - COUNT[31:0] Counter Value

These bits contain the current counter value.

Electrical Characteristics

46.11.7 DETREF Characteristics

Table 46-31. Reference Voltage Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
ADC/DAC Ref	ADC/DAC internal reference	AC internal reference nom. $1.0V, V_{CC}=3.0V, T=25^{\circ}C$ 0.976 1.0 nom. $1.1V, V_{CC}=3.0V, T=25^{\circ}C$ 1.077 1.1 nom. $1.2V, V_{CC}=3.0V, T=25^{\circ}C$ 1.174 1.2 nom. $1.25V, V_{CC}=3.0V, T=$ 1.221 1.25 $1.0000, 1.25V, V_{CC}=3.0V, T=$ 1.221 1.25 nom. $2.0V, V_{CC}=3.0V, T=25^{\circ}C$ 1.945 2.0 nom. $2.2V, V_{CC}=3.0V, T=25^{\circ}C$ 2.143 2.2 nom. $2.4V, V_{CC}=3.0V, T=25^{\circ}C$ 2.143 2.2 nom. $2.5V, V_{CC}=3.0V, T=25^{\circ}C$ 2.143 2.5 additional drift over [-40, +25]^{\circ}C - 0.01/+0.005 drift over [+25, +85]^{\circ}C - 0.01/+0.005 drift over [-40, +25]^{\circ}C - 1.086 1.1 addition over [-40, +25]^{\circ}C - 1.086 1.1	1.0	1.022	V	
		nom. 1.1V, V _{CC} =3.0V, T= 25°C	1.077	1.1	1.127	
		nom. 1.2V, V _{CC} =3.0V, T= 25°C	1.174	1.2	1.234	
			1.221	1.25	1.287	
		nom. 2.0V, V _{CC} =3.0V, T= 25°C	1.945	2.0	2.030	
		nom. 2.2V, V _{CC} =3.0V, T= 25°C	2.143	2.2	2.242	
		nom. 2.4V, V_{CC} =3.0V, T= 25°C	2.335	2.4	2.457	
		nom. 2.5V, V _{CC} =3.0V, T= 25°C	2.428	2.5	2.563	
	Ref Temperature coefficient	drift over [-40, +25]°C	-	-0.01/+0.015	-	%/°C
		drift over [+25, +85]°C	-	-0.01/+0.005	-	
	Ref Supply coefficient	drift over [1.6, 3.63]V	-	+/-0.35	-	%/V
AC Ref	AC Ref Accuracy	V _{CC} =3.0V, T=25°C	1.086	1.1	1.128	V
	Ref Temperature coefficient	drift over [-40, +25]°C	-	+/-0.01	-	%/°C
		drift over [+25, +85]°C	-	-0.005/+0.001	-	%/°C
	Ref Supply coefficient	drift over [1.6, 3.63]V	-	-0.35/+0.35	-	%/V

46.11.8 OPAMP Characteristics Table 46-32. Operating Conditions

Symbol	Parameters	Conditions	Min.	Тур.	Max.	Unit
VCC	Power Supply	All power modes	1.6	3	3.63	V
Vin	Input voltage range		0	-	Vcc	V
Vout	Output voltage range		0.15	-	Vcc-0.15	V
Cload	Maximum capacitance load		-	-	50	pF
Rload (1)	Minimum resistive load	Output Range[0.15V;Vcc-0.15V]	3.5	-	-	kΩ
		Output Range[0.3V;Vcc-0.3V]	0.5	-	-	
I _{load} (1)	DC output current load	Output Range[0.15V;Vcc-0.15V]	-	-	1	mA
		Output Range[0.3V;Vcc-0.3V]	-	-	6.9	

Note: 1. These values are based on simulation. They are not covered by production test limits or characterization.

Electrical Characteristics

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Units
		Master, VDD)>1,62V	0	-	-	
tMOV	MOSI output	Master, VDD)>2,70V	-	-	34.5	ns
	valid after SCK	Master, VDD	0>1,62V	-	-	38.6	
tMOH	MOSI hold	Master, VDD>2,70V Master, VDD>1,62V		9.7	-	-	
	after SCK			9.7	-	-	
tSSCK	Slave SCK Period when tMIS=0 on the	Slave	Reception	2*(tSIS +tMASTER_OUT)	-	-	
	master side	Slave	Transmission	2*(tSOV +tMASTER_IN) ⁽⁶⁾	-	-	
tSSCKW	SCK high/low width	Slave		-	0,5*tSCK	-	
tSSCKR	SCK rise time ⁽²⁾	Slave		-	0,25*tSCK	-	
tSSCKF	SCK fall time ⁽²⁾	Slave		-	0,25*tSCK	-	
tSIS	MOSI setup to	Slave, VDD>	>2,70V	25.6	-	-	ns
	SCK	Slave, VDD>	>1,62V	26.2	-	-	
tSIH	MOSI hold	Slave, VDD>	>2,70V	13.2	-	-	
	after SCK	Slave, VDD>	>1,62V	13.9	-	-	
tSSS	SS setup to SCK	Slave	PRELOADEN=1	tSOSS+tEXT_MIS +2*tAPBC ^{(8) (9)}	-	-	
			PRELOADEN=0	tSOSS+tEXT_MIS	-	-	
tSSH	SS hold after SCK	Slave		0.5*tSSCK	-	-	
tSOV	MISO output	Slave, VDD>	>2,70V	-	-	69	
	valid after SCK	Slave, VDD>1,62V		-	-	78.4	
tSOH	MISO hold	Slave, VDD>	>2,70V	20.2	-	-	
	after SCK	Slave, VDD>	>1,62V	20.2	-	-	
tSOSS	MISO setup after SS low	Slave, VDD>	>2,70V	-	-	1* tSCK	
		Slave, VDD>	>1,62V	-	-	1* tSCK	

125°C Electrical Characteristics

Symbol	Parameter	Conditi	ions	Min.	Тур.	Max.	Units
tSSCKR	SCK rise time ⁽²⁾	Slave		-	0,25*tSCK	-	
tSSCKF	SCK fall time ⁽²⁾	Slave		-	0,25*tSCK	-	
tSIS	MOSI setup to SCK	Slave, VDD>2,70V		24.2	-	-	
		Slave, VDD>1,62V		24.9	-	-	
tSIH	MOSI hold after SCK	Slave, VDD>2,70V		12.9	-	-	
		Slave, VDD>1,62V		13.5	-	-	
tSSS	SS setup to SCK	Slave	PRELOADEN=1	tSOSS+tEXT_MIS +2*tAPBC ^{(8) (9)}	-	-	ns
			PRELOADEN=0	tSOSS+tEXT_MIS	-	-	
tSSH	SS hold after SCK	Slave		0.5*tSSCK	-	-	
tSOV	MISO output valid after SCK	Slave, VDD>2,70V		-	-	66.9	
		Slave, VDD>1,62V		-	-	76.6	
tSOH	MISO hold after SCK	Slave, VDD>2,70V		22.7	-	-	
		Slave, VDD>1,62V		20.3	-	-	
tSOSS	MISO setup after SS low	Slave, VDD>2,70V		-	-	1* tSCK	
		Slave, VDD>1,62V		-	-	1* tSCK	
tSOSH	MISO hold after SS high	Slave, VDD>2,70V		15	-	-	
		Slave, VDD>1,62V		15	-	-	

Note:

- 1. These values are based on simulation. These values are not covered by test limits in production.
- 2. See I/O Pin Characteristics.
- 3. Where tSLAVE_OUT is the slave external device output response time, generally tEXT_SOV +tLINE_DELAY (See Note 7).
- 4. Where tSLAVE_IN is the slave external device input constraint, generally tEXT_SIS+tLINE_DELAY (See Note 7).
- 5. Where tMASTER_OUT is the master external device output response time, generally tEXT_MOV +tLINE_DELAY (See Note 7).
- 6. Where tMASTER_IN is the master external device input constraint, generally tEXT_MIS +tLINE_DELAY (See Note 7).
- 7. tLINE_DELAY is the transmission line time delay.
- 8. tEXT_MIS is the input constraint for the master external device.
- 9. tAPBC is the APB period for SERCOM.