E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M23
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	25
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.63V
Data Converters	A/D 10x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-VQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsaml10e14a-mut

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

DSU - Device Service Unit

Table 16-6. AMOD Bit Descriptions for MBIST

AMOD[1:0]	Description
0x0	Exit on Error
0x1	Pause on Error
0x2, 0x3	Reserved

Related Links

30. NVMCTRL – Nonvolatile Memory Controller

16.10.7 System Services Availability when Accessed Externally

External access: Access performed in the DSU address offset 0x100-0x1FFF range.

Internal access: Access performed in the DSU address offset 0x0-0xFF range.

Table 16-7. Available Features when Operated From The External Address Range and Device is Protected

Features	Availability From The External Address Range when DAL<2
CRC32	No
CoreSight Compliant Device identification	Yes
Debug communication channels	Yes
Boot communication channels	Yes
Testing of onboard memories (MBIST)	No

18.8.1 Control A

Name:CTRLAOffset:0x00Reset:0x00Property:PAC Write-Protection, Write-Synchronized

Bit	7	6	5	4	3	2	1	0
								SWRST
Access								R/W
Reset								0

Bit 0 - SWRST Software Reset

Writing a zero to this bit has no effect.

Setting this bit to 1 will reset all registers in the GCLK to their initial state after a Power Reset, except for generic clocks and associated Generators that have their WRTLOCK bit in PCHCTRLm set to 1.

Refer to GENCTRL Reset Value for details on GENCTRL register reset.

Refer to PCHCTRL Reset Value for details on PCHCTRL register reset.

Due to synchronization, there is a waiting period between setting CTRLA.SWRST and a completed Reset. CTRLA.SWRST and SYNCBUSY.SWRST will both be cleared when the reset is complete.

Value	Description
0	There is no Reset operation ongoing.
1	A Reset operation is ongoing.

19.5.7 Debug Operation

When the CPU is halted in debug mode, the MCLK continues normal operation. In sleep mode, the clocks generated from the MCLK are kept running to allow the debugger accessing any module. As a consequence, power measurements are incorrect in debug mode.

19.5.8 Register Access Protection

All registers with write-access can be write-protected optionally by the Peripheral Access Controller (PAC), except for the following registers:

• Interrupt Flag register (INTFLAG)

Optional write-protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write-Protection" property in each individual register description.

PAC write-protection does not apply to accesses through an external debugger.

Related Links

15. PAC - Peripheral Access Controller

19.5.9 SAM L11 TrustZone Specific Register Access Protection

On **SAM L11** devices, this peripheral has different access permissions depending on PAC Security Attribution (Secure or Non-Secure):

- If the peripheral is configured as Non-Secure in the PAC:
 - Secure access and Non-Secure access are granted
- If the peripheral is configured as Secure in the PAC:
 - Secure access is granted
 - Non-Secure access is discarded (Write is ignored, read 0x0) and a PAC error is triggered

Refer to Peripherals Security Attribution for more information.

19.5.10 Analog Connections

Not applicable.

19.6 Functional Description

19.6.1 Principle of Operation

The CLK_MAIN clock signal from the GCLK module or the DFLLULP is the source for the main clock, which in turn is the common root for the synchronous clocks for the CPU, APBx, and AHBx modules. The CLK_MAIN is divided by an 8-bit prescaler. Each of the derived clocks can run from any divided or undivided main clock, ensuring synchronous clock sources for each clock domain. The clock domain (CPU) can be changed on the fly to respond to variable load in the application. The clocks for each module in a clock domain can be masked individually to avoid power consumption in inactive modules. Depending on the sleep mode, some clock domains can be turned off.

19.6.2 Basic Operation

19.6.2.1 Initialization

After a Reset, the default clock source of the CLK_MAIN clock (GCLK_MAIN) is started and calibrated before the CPU starts running. The GCLK_MAIN clock is selected as the main clock without any prescaler division.

By default, only the necessary clocks are enabled.

19.8.6 AHB Mask

Name:	AHBMASK
Offset:	0x10
Reset:	0x000001FFF
Property:	PAC Write-Protection

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access		I	I	1			I	
Reset								
Bit	15	14	13	12	11	10	9	8
				TRAM	Reserved	Reserved	Reserved	Reserved
Access				R/W	R/W	R/W	R/W	R/W
Reset				1	1	1	1	1
Bit	7	6	5	4	3	2	1	0
[NVMCTRL	PAC	Reserved	DSU	DMAC	APBC	APBB	APBA
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

Bit 12 – TRAM TRAM AHB Clock Enable

I	Value	Description
	0	The AHB clock for the TRAM is stopped
	1	The AHB clock for the TRAM is enabled

Bit 11 – Reserved Must Be Set to 1

Bit 11 must always be set to '1' when programming the AHBMASK register.

Bit 10 - Reserved Must Be Set to 1

Bit 10 must always be set to '1' when programming the AHBMASK register.

Bit 9 - Reserved Must Be Set to 1

Bit 9 must always be set to '1' when programming the AHBMASK register.

Bit 8 – Reserved Must Be Set to 1

Bit 8 must always be set to '1' when programming the AHBMASK register.

Bit 7 – NVMCTRL NVMCTRL AHB Clock Enable

20.8.9 Value

	Name: Offset: Reset: Property:	VALUE 0x10 0x00000000 -						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
				VALUE	[23:16]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				VALUE	E[15:8]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
					E[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bits 23:0 – VALUE[23:0] Measurement Value Result from measurement.

22.7 Register Summary

Offset	Name	Bit Pos.						
0x01	SLEEPCFG	7:0				S	LEEPMODE[2:	0]
0x02	PLCFG	7:0	PLDIS				PLSE	L[1:0]
0x03	PWCFG	7:0					RAMPS	WC[1:0]
0x04	INTENCLR	7:0						PLRDY
0x05	INTENSET	7:0						PLRDY
0x06	INTFLAG	7:0						PLRDY
0x07	Reserved							
0x08	STDBYCFG	7:0	VREGSM	OD[1:0]	DPGPDSW			PDCFG
0,00	STUBTURG	15:8			BBIASTR	BBIASHS		

22.8 Register Description

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Some registers are optionally write-protected by the Peripheral Access Controller (PAC). Optional PAC write-protection is denoted by the "PAC Write-Protection" property in each individual register description. For details, refer to 22.5.7 Register Access Protection.

On **SAM L11** devices, this peripheral has different access permissions depending on PAC Security Attribution (Secure or Non-Secure):

- If the peripheral is configured as Non-Secure in the PAC:
 - Secure access and Non-Secure access are granted
- If the peripheral is configured as Secure in the PAC:
 - Secure access is granted
 - Non-Secure access is discarded (Write is ignored, read 0x0) and a PAC error is triggered

Refer to Peripherals Security Attribution for more information.

OSCCTRL – Oscillators Controller

Value	Description
0	DPLL Lock rise edge not detected.
1	DPLL Lock rise edge detected.

Bit 10 – DFLLULPNOLOCK DFLLULP No Lock

Value	Description
0	DFLLULP Tuner no lock state is not detected.
1	DFLLULP Tuner no lock state is detected.

Bit 9 – DFLLULPLOCK DFLLULP Lock

Value	Description
0	DFLLULP Tuner lock state is not detected.
1	DFLLULP Tuner lock state is detected.

Bit 8 – DFLLULPRDY DFLLULP Ready

Value	Description
0	DFLLULP is not ready.
1	DFLLULP is stable and ready to be used as a clock source.

Bit 4 – OSC16MRDY OSC16M Ready

	/alue	Description
()	OSC16M is not ready.
-	-	OSC16M is stable and ready to be used as a clock source.

Bit 2 – CLKSW XOSC Clock Switch

Value	Description
0	XOSC is not switched and provides the external clock or crystal oscillator clock.
1	XOSC is switched and provides the safe clock.

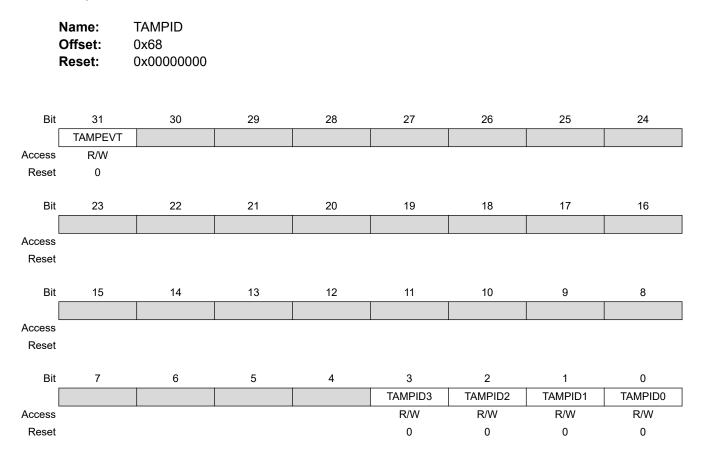
Bit 1 – CLKFAIL XOSC Clock Failure

Value	Description
0	No XOSC failure detected.
1	A XOSC failure was detected.

Bit 0 – XOSCRDY XOSC Ready

Value	Description
0	XOSC is not ready.
1	XOSC is stable and ready to be used as a clock source.

24.7 Register Summary


Offset	Name	Bit Pos.								
		7:0						CLKFAIL		XOSC32KRD Y
0x00	INTENCLR	15:8								
		23:16								
		31:24								
		7:0						CLKFAIL		XOSC32KRD Y
0x04	INTENSET	15:8								
		23:16								
		31:24								
		7:0						CLKFAIL		XOSC32KRD Y
0x08	INTFLAG	15:8								
		23:16								
		31:24								
		7:0				ULP32KSW	CLKSW	CLKFAIL		XOSC32KRD Y
0x0C	STATUS	15:8								
		23:16								
		31:24								
0x10	RTCCTRL	7:0							RTCSEL[2:0]	
0x11										
	Reserved									
0x13										
		7:0	ONDEMAND	RUNSTDBY		EN1K	EN32K	XTALEN	ENABLE	
0x14	XOSC32K	15:8				WRTLOCK			STARTUP[2:0]]
0x16	CFDCTRL	7:0						CFDPRESC	SWBACK	CFDEN
0x17	EVCTRL	7:0								CFDEO
0x18										
	Reserved									
0x1B										
		7:0			ULP32KSW					
0.40		15:8	WRTLOCK					CALIB[4:0]		
0x1C	OSCULP32K	23:16								
		31:24								

24.8 Register Description

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16-, and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register and the 8-bit halves of a 16-bit register can be accessed directly.

All registers with write-access can be write-protected optionally by the peripheral access controller (PAC). Optional Write-Protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write-

27.10.16 Tamper ID

Bit 31 – TAMPEVT Tamper Event Detected

Writing a '0' to this bit has no effect. Writing a '1' to this bit clears the tamper detection bit.

Value	Description
0	A tamper input event has not been detected
1	A tamper input event has been detected

Bits 0, 1, 2, 3 - TAMPID Tamper on Channel n Detected

Writing a '0' to this bit has no effect. Writing a '1' to this bit clears the tamper detection bit.

Value	Description
0	A tamper condition has not been detected on Channel n
1	A tamper condition has been detected on Channel n

PORT - I/O Pin Controller

, , , , , , , , , , , , , , , , , , ,				
EVACT0	EVACT1	EVACT2	EVACT3	Executed Event Action
SET	SET	SET	SET	SET
CLR	CLR	CLR	CLR	CLR
All Other Comb	inations			TGL

Table 32-3. Priority on Simultaneous SET/CLR/TGL Event Actions

Be careful when the event is output to pin. Due to the fact the events are received asynchronously, the I/O pin may have unpredictable levels, depending on the timing of when the events are received. When several events are output to the same pin, the lowest event line will get the access. All other events will be ignored.

Related Links

33. EVSYS - Event System

32.6.6 PORT Access Priority

The PORT is accessed by different systems:

- The ARM[®] CPU through the ARM[®] single-cycle I/O port (IOBUS)
- The ARM[®] CPU through the high-speed matrix and the AHB/APB bridge (APB)
- EVSYS through four asynchronous input events

The following priority is adopted:

- 1. ARM[®] CPU IOBUS (No wait tolerated)
- 2. APB
- 3. EVSYS input events

For input events that require different actions on the same I/O pin, refer to 32.6.5 Events.

32.8.11 Write Configuration

Name:	WRCONFIG
Offset:	0x28
Reset:	0x0000000
Property:	PAC Write-Protection, Mix-Secure

Important: For **SAM L11 Non-Secure** accesses, write accesses (W*) are allowed only if the security attribution for the corresponding I/O pin is set as Non-Secured in the NONSEC register.

Tip: The I/O pins are assembled in pin groups ("PORT groups") with up to 32 pins. Group 0 consists of the PA pins, group 1 is for the PB pins, etc. Each pin group has its own PORT registers, with a 0x80 address spacing. For example, the register address offset for the Data Direction (DIR) register for group 0 (PA00 to PA31) is 0x00, and the register address offset for the DIR register for group 1 (PB00 to PB31) is 0x80.

This write-only register is used to configure several pins simultaneously with the same configuration and/or peripheral multiplexing.

In order to avoid side effect of non-atomic access, 8-bit or 16-bit writes to this register will have no effect. Reading this register always returns zero.

Bit	31	30	29	28	27	26	25	24
	HWSEL	WRPINCFG		WRPMUX		PMUX[3:0]		
Access	W/W*/W	W/W*/W	•	W/W*/W	W/W*/W	W/W*/W	W/W*/W	W/W*/W
Reset	0	0		0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
		DRVSTR				PULLEN	INEN	PMUXEN
Access		W/W*/W				W/W*/W	W/W*/W	W/W*/W
Reset		0				0	0	0
Bit	15	14	13	12	11	10	9	8
		PINMASK[15:8]			SK[15:8]			
Access	W/W*/W	W/W*/W	W/W*/W	W/W*/W	W/W*/W	W/W*/W	W/W*/W	W/W*/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				PINMASK[7:0]				
Access	W/W*/W	W/W*/W	W/W*/W	W/W*/W	W/W*/W	W/W*/W	W/W*/W	W/W*/W
Reset	0	0	0	0	0	0	0	0

Bit 31 – HWSEL Half-Word Select

This bit selects the half-word field of a 32-PORT group to be reconfigured in the atomic write operation.

EVSYS – Event System

Value	Event Generator	Description
0x19-0x1C	DMAC_CH	DMAC channel
0x1D	TC0_OVF	TC0 overflow
0x1E-0x1F	TC0_MCX	TC0 match/compare
0x20	TC1_OVF	TC1 overflow
0x21-0x22	TC1_MCX	TC1 match/compare
0x23	TC2_OVF	TC2 overflow
0x24-0x25	TC2_MCX	TC2 match/compare
0x26	ADC_RESRDY	ADC resolution ready
0x27	ADC_WINMON	ADC window monitor
0x28-0x29	AC_COMP	AC comparator
0x2A	AC_WIN	AC window
0x2B	DAC_EMPTY	DAC empty
0x2C	PTC_EOC	PTC end of conversion
0x2D	PTC_WCOMP	PTC window comparator
0x2E	TRNG_READY	Data ready
0x2F-0x30	CCL_LUTOUT	CCL output
0x31	PAC_ERR	PAC access error

35.8.2 Control B

Name:	CTRLB
Offset:	0x04
Reset:	0x0000000
Property:	PAC Write-Protection, Enable-Protected, Write-Synchronized

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
							RXEN	TXEN
Access							R/W	R/W
Reset							0	0
Bit	15	14	13	12	11	10	9	8
			PMODE			ENC	SFDE	COLDEN
Access			R/W			R/W	R/W	R/W
Reset			0			0	0	0
Bit	7	6	5	4	3	2	1	0
		SBMODE					CHSIZE[2:0]	
Access	-	R/W	·			R/W	R/W	R/W
Reset		0				0	0	0

Bit 17 - RXEN Receiver Enable

Writing '0' to this bit will disable the USART receiver. Disabling the receiver will flush the receive buffer and clear the FERR, PERR and BUFOVF bits in the STATUS register.

Writing '1' to CTRLB.RXEN when the USART is disabled will set CTRLB.RXEN immediately. When the USART is enabled, CTRLB.RXEN will be cleared, and SYNCBUSY.CTRLB will be set and remain set until the receiver is enabled. When the receiver is enabled, CTRLB.RXEN will read back as '1'.

Writing '1' to CTRLB.RXEN when the USART is enabled will set SYNCBUSY.CTRLB, which will remain set until the receiver is enabled, and CTRLB.RXEN will read back as '1'.

This bit is not enable-protected.

Value	Description
0	The receiver is disabled or being enabled.
1	The receiver is enabled or will be enabled when the USART is enabled.

Bit 16 – TXEN Transmitter Enable

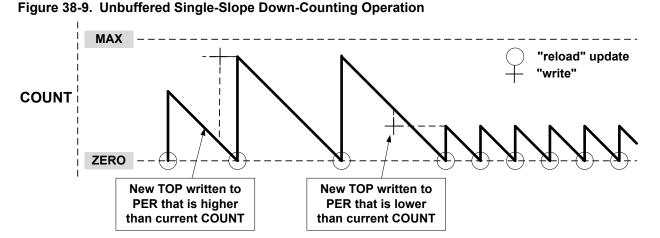
Writing '0' to this bit will disable the USART transmitter. Disabling the transmitter will not become effective until ongoing and pending transmissions are completed.

Writing '1' to CTRLB.TXEN when the USART is disabled will set CTRLB.TXEN immediately. When the USART is enabled, CTRLB.TXEN will be cleared, and SYNCBUSY.CTRLB will be set and remain set until the transmitter is enabled. When the transmitter is enabled, CTRLB.TXEN will read back as '1'.

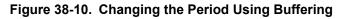
© 2018 Microchip Technology Inc.

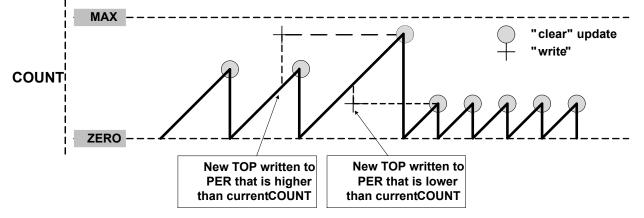
35.8.11 Receive Error Count

Name:	RXERRCNT
Offset:	0x20
Reset:	0x00
Property:	Read-Synchronized


Bit	7	6	5	4	3	2	1	0
				RXERR	CNT[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bits 7:0 - RXERRCNT[7:0] Receive Error Count


This register records the total number of parity errors and NACK errors combined in ISO7816 mode (CTRLA.FORM=0x7).


This register is automatically cleared on read.

TC – Timer/Counter

When double buffering is used, the buffer can be written at any time and the counter will still maintain correct operation. The period register is always updated on the update condition, as shown in Figure 38-10. This prevents wraparound and the generation of odd waveforms.

38.6.2.8 Capture Operations

To enable and use capture operations, the corresponding Capture Channel x Enable bit in the Control A register (CTRLA.CAPTENx) must be written to '1'.

A capture trigger can be provided by input event line TC_EV or by asynchronous IO pin WO[x] for each capture channel or by a TC event. To enable the capture from input event line, Event Input Enable bit in the Event Control register (EVCTRL.TCEI) must be written to '1'. To enable the capture from the IO pin, the Capture On Pin x Enable bit in CTRLA register (CTRLA.COPENx) must be written to '1'.

Note:

- 1. The RETRIGGER, COUNT and START event actions are available only on an event from the Event System.
- 2. Event system channels must be configured to operate in asynchronous mode of operation when used for capture operations.

By default, a capture operation is done when a rising edge is detected on the input signal. Capture on falling edge is available, its activation is depending on the input source:

• When the channel is used with a IO pin, write a '1' to the corresponding Invert Enable bit in the Drive Control register (DRVCTRL.INVENx).

38.7.1.3 Control B Set

Name:CTRLBSETOffset:0x05Reset:0x00Property:PAC Write-Protection, Read-synchronized, Write-Synchronized

This register allows the user to set bits in the CTRLB register without doing a read-modify-write operation. Changes in this register will also be reflected in the Control B Clear register (CTRLBCLR).

Bit	7	6	5	4	3	2	1	0
		CMD[2:0]				ONESHOT	LUPD	DIR
Access	R/W	R/W	R/W			R/W	R/W	R/W
Reset	0	0	0			0	0	0

Bits 7:5 – CMD[2:0] Command

These bits are used for software control of the TC. The commands are executed on the next prescaled GCLK_TC clock cycle. When a command has been executed, the CMD bit group will be read back as zero.

Writing 0x0 to these bits has no effect.

Writing a value different from 0x0 to these bits will issue a command for execution.

Value	Name	Description
0x0	NONE	No action
0x1	RETRIGGER	Force a start, restart or retrigger
0x2	STOP	Force a stop
0x3	UPDATE	Force update of double buffered registers
0x4	READSYNC	Force a read synchronization of COUNT

Bit 2 - ONESHOT One-Shot on Counter

This bit controls one-shot operation of the TC.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will enable one-shot operation.

Value	Description
0	The TC will wrap around and continue counting on an overflow/underflow condition.
1	The TC will wrap around and stop on the next underflow/overflow condition.

Bit 1 – LUPD Lock Update

This bit controls the update operation of the TC buffered registers.

When CTRLB.LUPD is set, no any update of the registers with value of its buffered register is performed on hardware UPDATE condition. Locking the update ensures that all buffer registers are valid before an hardware update is performed. After all the buffer registers are loaded correctly, the buffered registers can be unlocked.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will set the LUPD bit.

38.7.1.8 Status

Name:	STATUS
Offset:	0x0B
Reset:	0x01
Property:	Read-Synchronized

Bit	7	6	5	4	3	2	1	0
ĺ				CCBUFVx	PERBUFV		SLAVE	STOP
Access				R/W	R/W		R	R
Reset				0	0		0	1

Bit 4 – CCBUFVx Channel x Compare or Capture Buffer Valid

For a compare channel x, the bit x is set when a new value is written to the corresponding CCBUFx register.

The bit x is cleared by writing a '1' to it when CTRLB.LUPD is set, or it is cleared automatically by hardware on UPDATE condition.

For a capture channel x, the bit x is set when a valid capture value is stored in the CCBUFx register. The bit x is cleared automatically when the CCx register is read.

Bit 3 – PERBUFV Period Buffer Valid

This bit is set when a new value is written to the PERBUF register. The bit is cleared by writing '1' to the corresponding location when CTRLB.LUPD is set, or automatically cleared by hardware on UPDATE condition. This bit is available only in 8-bit mode and will always read zero in 16- and 32-bit modes.

Bit 1 – SLAVE Slave Status Flag

This bit is only available in 32-bit mode on the slave TC (i.e., TC1 and/or TC3). The bit is set when the associated master TC (TC0 and TC2, respectively) is set to run in 32-bit mode.

Bit 0 – STOP Stop Status Flag

This bit is set when the TC is disabled, on a Stop command, or on an overflow/underflow condition when the One-Shot bit in the Control B Set register (CTRLBSET.ONESHOT) is '1'.

Value	Description
0	Counter is running.
1	Counter is stopped.

41.8.12 Sampling Time Control

Name:	SAMPCTRL
Offset:	0x0D
Reset:	0x00
Property:	PAC Write-Protection, Write-Synchronized

Bit	7	6	5	4	3	2	1	0
	OFFCOMP				SAMPL	EN[5:0]		
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0

Bit 7 – OFFCOMP Comparator Offset Compensation Enable

Setting this bit enables the offset compensation for each sampling period to ensure low offset and immunity to temperature or voltage drift. This compensation increases the sampling time by three clock cycles.

This bit must be set to zero to validate the SAMPLEN value. It's not possible to use OFFCOMP=1 and SAMPLEN>0.

Bits 5:0 - SAMPLEN[5:0] Sampling Time Length

These bits control the ADC sampling time in number of CLK_ADC cycles, depending of the prescaler value, thus controlling the ADC input impedance. Sampling time is set according to the equation:

Sampling time = $(SAMPLEN+1) \cdot (CLK_{ADC})$

41.8.19 Synchronization Busy

Name:	SYNCBUSY
Offset:	0x20
Reset:	0x0000
Property:	-

Bit	15	14	13	12	11	10	9	8
						SWTRIG	OFFSETCORR	GAINCORR
Access						R	R	R
Reset						0	0	0
Bit	7	6	5	4	3	2	1	0
	WINUT	WINLT	SAMPCTRL	AVGCTRL	CTRLC	INPUTCTRL	ENABLE	SWRST
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bit 10 – SWTRIG Software Trigger Synchronization Busy

This bit is cleared when the synchronization of SWTRIG register between the clock domains is complete.

This bit is set when the synchronization of SWTRIG register between clock domains is started.

Bit 9 - OFFSETCORR Offset Correction Synchronization Busy

This bit is cleared when the synchronization of OFFSETCORR register between the clock domains is complete.

This bit is set when the synchronization of OFFSETCORR register between clock domains is started.

Bit 8 – GAINCORR Gain Correction Synchronization Busy

This bit is cleared when the synchronization of GAINCORR register between the clock domains is complete.

This bit is set when the synchronization of GAINCORR register between clock domains is started.

Bit 7 – WINUT Window Monitor Lower Threshold Synchronization Busy This bit is cleared when the synchronization of WINUT register between the clock domains is complete.

This bit is set when the synchronization of WINUT register between clock domains is started.

Bit 6 - WINLT Window Monitor Upper Threshold Synchronization Busy

This bit is cleared when the synchronization of WINLT register between the clock domains is complete.

This bit is set when the synchronization of WINLT register between clock domains is started.

Bit 5 – SAMPCTRL Sampling Time Control Synchronization Busy

This bit is cleared when the synchronization of SAMPCTRL register between the clock domains is complete.

This bit is set when the synchronization of SAMPCTRL register between clock domains is started.

Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
		F _{OUT} = 12MHz	-	0.13	0.28	
		F _{OUT} = 16MHz	-	0.13	0.27	
T _{STARTUP} ⁽²⁾ S	Startup time	F _{OUT} = 4MHz	-	1.16	2.96	μs
		F _{OUT} = 8MHz	-	1.29	2.74	
		F _{OUT} = 12MHz	-	1.34	2.95	
		F _{OUT} = 16MHz	-	1.39	3.11	
Duty ⁽¹⁾	Duty Cycle	-	45	50	55	%

Note:

- 1. These values are based on simulation. They are not covered by production test limits or characterization.
- 2. These are based on characterization.

Table 46-51. Power Consumption

Symbol	Parameter	Conditions	Та	Min.	Тур.	Max.	Units
I _{DD} Current consumption	Current consumption	F _{out} =4MHz, V _{CC} =3.3V	Max.85°C Typ.25°C	-	73	139	μA
		F _{out} =8MHz, V _{CC} =3.3V		-	106	169	
	F _{out} =12MHz, V _{CC} =3.3V		-	135	195		
	F _{out} =16MHz, V _{CC} =3.3V		-	166	225		

46.13.5 Digital Frequency Locked Loop (DFLLULP) Characteristics Table 46-52. Digital Frequency Locked Loop Characteristics⁽²⁾

Symbol	Parameter		Min	Тур	Max	Unit
FIN	Input Clock Frequency		32	-	33	kHz
FOUT	Output Clock Frequency	PL2	-	32	-	MHz
		PL0	-	8	-	
Jp	Period jitter	PL0, Fin= 32 kHz 50 ppm, Fout = 8MHz	-4	-	4	%
		PL2, Fin= 32 kHz 50 ppm, Fout = 32 MHz	-4.3	-	4.3	
tLOCK	Lock Time	After startup, time to get lock signal Fin = 32768 Hz, Fout = 8MHz, PL0 Binary Search mode enabled	-	362	-	μs
	After startup, time to get lock signal Fin = 32768 Hz, Fout = 32 MHz, PL2	-	362	-	μs	