E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

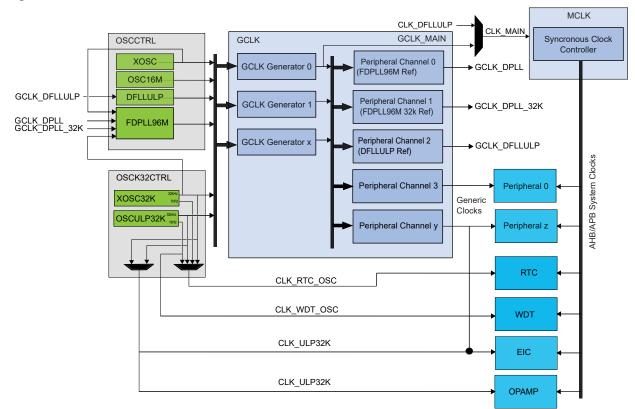
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M23
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.63V
Data Converters	A/D 10x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-VQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsaml10e15a-mf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


22.4.	Signal Description	
22.5.	Product Dependencies	
22.6.	Functional Description	245
22.7.	Register Summary	
22.8.	Register Description	
	CCTRL – Oscillators Controller	
23.1.	Overview	271
23.2.	Features	
23.3.	Block Diagram	272
23.4.	Signal Description	272
23.5.	Product Dependencies	272
23.6.	Functional Description	
23.7.	Register Summary	
23.8.	Register Description	
24 050	C32KCTRL – 32KHz Oscillators Controller	210
	Overview	
	Features	
	Block Diagram	
	Signal Description	
	Product Dependencies	
	Functional Description	
	Register Summary	
24.8.	Register Description	
25 SUF	PC – Supply Controller	339
	Overview	
	Features	
	Block Diagram	
	Product Dependencies	
	Functional Description	
	Register Summary	
25.8.	Register Description	
26. WD	T – Watchdog Timer	
26.1.	Overview	366
	Features	
	Block Diagram	
	Signal Description	
	Product Dependencies	
	Functional Description	
	Register Summary	
	Register Description	
20.0.		
27. RTC	c – Real-Time Counter	
27.1	Overview	

17. Clock System

This chapter summarizes the clock distribution and terminology in the SAM L10/L11 device. This document will not explain every detail of its configuration, hence for in-depth details, refer to the respective peripherals descriptions and the *Generic Clock* documentation.

17.1 Clock Distribution

Figure 17-1. Clock Distribution

The SAM L10/L11 clock system consists of these features:

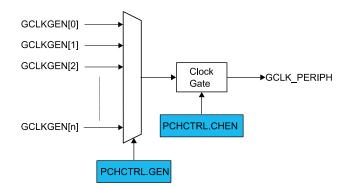
- Clock sources, that is oscillators controlled by OSCCTRL and OSC32KCTRL
 - A clock source provides a time base that is used by other components, such as Generic Clock Generators. Example clock sources are the internal 16MHz oscillator (OSC16M), external crystal oscillator (XOSC) and the Fractional Digital Phase Locked Loop (FDPLL96M).
- *Generic Clock Controller (GCLK),* which generates, controls and distributes the asynchronous clock consisting of:
 - Generic Clock Generators: These are programmable prescalers that can use any of the system clock sources as a time base. The Generic Clock Generator 0 generates the clock signal GCLK_MAIN, which is used by the Power Manager and the Main Clock (MCLK) module, which in turn generates synchronous clocks.
 - Generic Clocks: These are clock signals generated by Generic Clock Generators and output by the Peripheral Channels, and serve as clocks for the peripherals of the system. Multiple instances of a peripheral will typically have a separate Generic Clock for each instance.

If the Output Enable bit in the Generator Control register is set (GENCTRLn.OE = 1) and the generator is enabled (GENCTRLn.GENEN=1), the Generator requests its clock source and the GCLK_GEN clock is output to an I/O pin.

Note: The I/O pin (GCLK/IO[n]) must first be configured as output by writing the corresponding PORT registers.

If GENCTRLn.OE is 0, the according I/O pin is set to an Output Off Value, which is selected by GENCTRLn.OOV: If GENCTRLn.OOV is '0', the output clock will be low. If this bit is '1', the output clock will be high.

In Standby mode, if the clock is output (GENCTRLn.OE=1), the clock on the I/O pin is frozen to the OOV value if the Run In Standby bit of the Generic Control register (GENCTRLn.RUNSTDBY) is zero. **Note:** With GENCTRLn.OE=1 and RUNSTDBY=0, entering the Standby mode can take longer due to a clock source dependent delay between turning off Power Domain PDSW. The maximum delay can be equal to the clock source period multiplied by the division factor.


If GENCTRLn.RUNSTDBY is '1', the GCLKGEN clock is kept running and output to the I/O pin.

Related Links

22.6.3.5 Power Domain Controller

18.6.3 Peripheral Clock

Figure 18-4. Peripheral Clock

18.6.3.1 Enabling a Peripheral Clock

Before a Peripheral Clock is enabled, one of the Generators must be enabled (GENCTRLn.GENEN) and selected as source for the Peripheral Channel by setting the Generator Selection bits in the Peripheral Channel Control register (PCHCTRL.GEN). Any available Generator can be selected as clock source for each Peripheral Channel.

When a Generator has been selected, the peripheral clock is enabled by setting the Channel Enable bit in the Peripheral Channel Control register, PCHCTRLm.CHEN = 1. The PCHCTRLm.CHEN bit must be synchronized to the generic clock domain. PCHCTRLm.CHEN will continue to read as its previous state until the synchronization is complete.

18.6.3.2 Disabling a Peripheral Clock

A Peripheral Clock is disabled by writing PCHCTRLm.CHEN=0. The PCHCTRLm.CHEN bit must be synchronized to the Generic Clock domain. PCHCTRLm.CHEN will stay in its previous state until the synchronization is complete. The Peripheral Clock is gated when disabled.

Related Links

18.8.4 PCHCTRLm

27.8.11 Compare 0 Value in COUNT32 mode (CTRLA.MODE=0)

Name:	COMP
Offset:	0x20
Reset:	0x0000000
Property:	PAC Write-Protection, Write-Synchronized

Bit	31	30	29	28	27	26	25	24
				COMP	[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				COMP	[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				COMF	P[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				COM	P[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Reset	0	0	0	0	0	0	0	0

Bits 31:0 - COMP[31:0] Compare Value

The 32-bit value of COMP0 is continuously compared with the 32-bit COUNT value. When a match occurs, the Compare 0 interrupt flag in the Interrupt Flag Status and Clear register (INTFLAG.CMP0) is set on the next counter cycle, and the counter value is cleared if CTRLA.MATCHCLR is '1'.

SAM L10/L11 Family

RTC – Real-Time Counter

Offset	Name	Bit Pos.								
		7:0			l	GP	P [7:0]		I	
	0.54	15:8		GP[15:8]						
0x44	GP1	23:16				GP[2	23:16]			
		31:24				GP[31:24]			
0x48 0x5F	Reserved									
		7:0	IN3AC	CT[1:0]	IN2A0	CT[1:0]	IN1AC	CT[1:0]	IN0A0	CT[1:0]
0x60	TAMPCTRL	15:8								
0,000	IAMPCTRE	23:16					TAMLVL3	TAMLVL2	TAMLVL1	TAMLVL0
		31:24					DEBNC3	DEBNC2	DEBNC1	DEBNC0
		7:0	MINU	FE[1:0]	E[1:0] SECOND[5:0]					
0x64	TIMESTAMP	15:8	HOUR[3:0]				MINU	TE[5:2]		
0704	TIMEOTAW	23:16	MONTH[1:0] DAY[4:0]					HOUR[4:4]		
		31:24		YEAR[5:0]			MONTH[3:2]			
		7:0					TAMPID3	TAMPID2	TAMPID1	TAMPID0
0x68	TAMPID	15:8								
0,00		23:16								
		31:24	TAMPEVT							
		7:0					ALSI3	ALSI2	ALSI1	ALSI0
0x6C	TAMPCTRLB	15:8								
0.00		23:16								
		31:24								

27.12 Register Description - Mode 2 - Clock/Calendar

This Register Description section is valid if the RTC is in Clock/Calendar mode (CTRLA.MODE=2).

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16-, and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Some registers require synchronization when read and/or written. Synchronization is denoted by the "Read-Synchronized" and/or "Write-Synchronized" property in each individual register description.

Optional write-protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write-Protection" property in each individual register description.

Some registers are enable-protected, meaning they can only be written when the module is disabled. Enable-protection is denoted by the "Enable-Protected" property in each individual register description.

On **SAM L11** devices, this peripheral has different access permissions depending on PAC Security Attribution (Secure or Non-Secure):

- If the peripheral is configured as Non-Secure in the PAC:
 - Secure access and Non-Secure access are granted
- If the peripheral is configured as Secure in the PAC:
 - Secure access is granted
 - Non-Secure access is discarded (Write is ignored, read 0x0) and a PAC error is triggered

27.12.2 Control B in Clock/Calendar mode (CTRLA.MODE=2)

Name:	CTRLB
Offset:	0x2
Reset:	0x0000
Property:	PAC Write-Protection, Enable-Protected

Bit	15	14	13	12	11	10	9	8
ĺ	SEPTO		ACTF[2:0]				DEBF[2:0]	
Access	R/W	R/W	R/W	R/W		R/W	R/W	R/W
Reset	0	0	0	0		0	0	0
Bit	7	6	5	4	3	2	1	0
	DMAEN	RTCOUT	DEBASYNC	DEBMAJ				GP0EN
Access	R/W	R/W	R/W	R/W				R/W
Reset	0	0	0	0				0

Bit 15 – SEPTO Separate Tamper Outputs

Value	Description
0	IN[n] is compared tp OUT[0] (backward-compatible).
1	IN[n] is compared tp OUT[n].

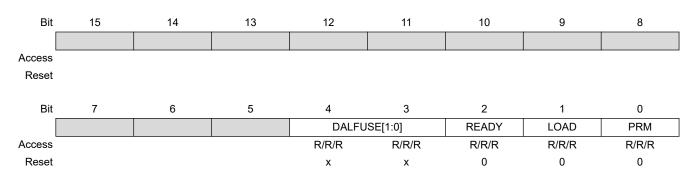
Bits 14:12 – ACTF[2:0] Active Layer Frequency

These bits define the prescaling factor for the RTC clock output (OUT) used during active layer protection in terms of the CLK_RTC.

Value	Name	Description
0x0	DIV2	CLK_RTC_OUT = CLK_RTC / 2
0x1	DIV4	CLK_RTC_OUT = CLK_RTC / 4
0x2	DIV8	CLK_RTC_OUT = CLK_RTC / 8
0x3	DIV16	CLK_RTC_OUT = CLK_RTC / 16
0x4	DIV32	CLK_RTC_OUT = CLK_RTC / 32
0x5	DIV64	CLK_RTC_OUT = CLK_RTC / 64
0x6	DIV128	CLK_RTC_OUT = CLK_RTC / 128
0x7	DIV256	CLK_RTC_OUT = CLK_RTC / 256

Bits 10:8 – DEBF[2:0] Debounce Frequency

These bits define the prescaling factor for the input debouncers in terms of the CLK_RTC.


Value	Name	Description
0x0	DIV2	CLK_RTC_DEB = CLK_RTC / 2
0x1	DIV4	CLK_RTC_DEB = CLK_RTC / 4
0x2	DIV8	CLK_RTC_DEB = CLK_RTC / 8
0x3	DIV16	CLK_RTC_DEB = CLK_RTC / 16
0x4	DIV32	CLK_RTC_DEB = CLK_RTC / 32
0x5	DIV64	CLK_RTC_DEB = CLK_RTC / 64
0x6	DIV128	CLK_RTC_DEB = CLK_RTC / 128
0x7	DIV256	CLK_RTC_DEB = CLK_RTC / 256

30.8.8 Status

Name:	STATUS
Offset:	0x18
Reset:	0x0X00
Property:	Write-Secure

Important: For **SAM L11 Non-Secure** accesses, write accesses (W*) are allowed only if Non-Secure Write is set in NONSEC register.

Bits 4:3 - DALFUSE[1:0] DAL Fuse Value

This field is the current debugger access level fuse value.

Value	Description
0	DAL = 0 : Access to very limited features.
1	DAL = 1 (SAM L11 only): Access to all non-secure memory. Can debug non-secure CPU code.
2	DAL = 2 : Access to all memory. Can debug Secure and non-secure CPU code.
3	Reserved

Bit 2 - READY NVM Ready

Value	Description
0	The NVM controller is busy programming or erasing.
1	The NVM controller is ready to accept a new command.

Bit 1 - LOAD NVM Page Buffer Active Loading

This bit indicates that the NVM page buffer has been loaded with one or more words. Immediately after an NVM load has been performed, this flag is set. It remains set until a page write or a page buffer clear (PBC) command is given.

Bit 0 – PRM Power Reduction Mode

This bit indicates the current NVM power reduction state. The NVM block can be set in power reduction mode in two ways: through the command interface or automatically when entering sleep with SLEEPPRM set accordingly.

SAM L10/L11 Family TRAM - TrustRAM

Offset	Name	Bit Pos.								
		7:0		DATA[7:0]						
0.0150	RAM63	15:8	DATA[15:8]							
0x01FC		23:16				DATA	[23:16]			
		31:24				DATA	[31:24]			

31.8 Register Description

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16-, and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Some registers require synchronization when read and/or written. Synchronization is denoted by the "Read-Synchronized" and/or "Write-Synchronized" property in each individual register description.

Optional write-protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write-Protection" property in each individual register description.

Some registers are enable-protected, meaning they can only be written when the module is disabled. Enable-protection is denoted by the "Enable-Protected" property in each individual register description.

Refer to PAC - Peripheral Access Controller and 39.6.6 Synchronization for details.

On **SAM L11** devices, this peripheral has different access permissions depending on PAC Security Attribution (Secure or Non-Secure):

- If the peripheral is configured as Non-Secure in the PAC:
 - Secure access and Non-Secure access are granted
- If the peripheral is configured as Secure in the PAC:
 - Secure access is granted
 - Non-Secure access is discarded (Write is ignored, read 0x0) and a PAC error is triggered

Refer to Peripherals Security Attribution for more information.

SAM L10/L11 Family

EVSYS – Event System

_									
Offset	Name	Bit Pos.							
0x26	CHINTFLAG0	7:0						EVD	OVR
0x27	CHSTATUS0	7:0						BUSYCH	RDYUSR
		7:0				EVG	EN[5:0]		
0x28	CHANNEL1	15:8	ONDEMAND	RUNSTDBY		EDG	SEL[1:0]	PATH	H[1:0]
UNEO OF MINIEL	23:16								
		31:24							
0x2C	CHINTENCLR1	7:0						EVD	OVR
0x2D	CHINTENSET1	7:0						EVD	OVR
0x2E	CHINTFLAG1	7:0						EVD	OVR
0x2F	CHSTATUS1	7:0						BUSYCH	RDYUSR
		7:0				EVG	EN[5:0]		
0x30	CHANNEL2	15:8	ONDEMAND	RUNSTDBY		EDG	SEL[1:0]	PATH	H[1:0]
0,00	CHANNELZ	23:16							
		31:24							
0x34	CHINTENCLR2	7:0						EVD	OVR
0x35	CHINTENSET2	7:0						EVD	OVR
0x36	CHINTFLAG2	7:0						EVD	OVR
0x37	CHSTATUS2	7:0						BUSYCH	RDYUSR
	CHANNEL3	7:0				EVG	EN[5:0]		
0x38		15:8	ONDEMAND	RUNSTDBY		EDG	SEL[1:0]	PATH	H[1:0]
		23:16							
		31:24							
0x3C	CHINTENCLR3	7:0						EVD	OVR
0x3D	CHINTENSET3	7:0						EVD	OVR
0x3E	CHINTFLAG3	7:0						EVD	OVR
0x3F	CHSTATUS3	7:0						BUSYCH	RDYUSR
		7:0				EVG	EN[5:0]		1
040		15:8	ONDEMAND	RUNSTDBY		EDG	SEL[1:0]	PATH	H[1:0]
0x40	CHANNEL4	23:16							
		31:24							
0x44	CHINTENCLR4	7:0						EVD	OVR
0x45	CHINTENSET4	7:0						EVD	OVR
0x46	CHINTFLAG4	7:0						EVD	OVR
0x47	CHSTATUS4	7:0						BUSYCH	RDYUSR
		7:0				EVG	EN[5:0]		
010		15:8	ONDEMAND	RUNSTDBY		EDG	SEL[1:0]	PATI	H[1:0]
0x48	CHANNEL5	23:16							
		31:24							
0x4C	CHINTENCLR5	7:0						EVD	OVR
0x4D	CHINTENSET5	7:0						EVD	OVR
0x4E	CHINTFLAG5	7:0						EVD	OVR
0x4F	CHSTATUS5	7:0						BUSYCH	RDYUSR
		7:0				EVG	EN[5:0]		1
a ==		15:8	ONDEMAND	RUNSTDBY			SEL[1:0]	PATH	H[1:0]
0x50	CHANNEL6	00.40							
		23:16							

This bit is not synchronized.

Value	Description
0	Asynchronous communication.
1	Synchronous communication.

Bits 27:24 – FORM[3:0] Frame Format

These bits define the frame format.

These bits are not synchronized.

FORM[3:0]	Description
0x0	USART frame
0x1	USART frame with parity
0x2-0x3	Reserved
0x4	Auto-baud (LIN Slave) - break detection and auto-baud.
0x5	Auto-baud - break detection and auto-baud with parity
0x6	Reserved
0x7	ISO 7816
0x8-0xF	Reserved

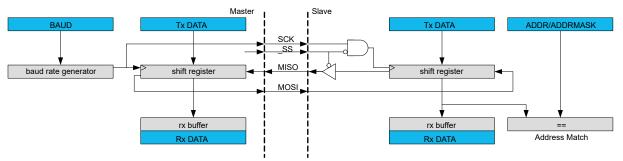
Bits 23:22 – SAMPA[1:0] Sample Adjustment

These bits define the sample adjustment.

These bits are not synchronized.

SAMPA[1:0]	16x Over-sampling (CTRLA.SAMPR=0 or 1)	8x Over-sampling (CTRLA.SAMPR=2 or 3)
0x0	7-8-9	3-4-5
0x1	9-10-11	4-5-6
0x2	11-12-13	5-6-7
0x3	13-14-15	6-7-8

Bits 21:20 - RXPO[1:0] Receive Data Pinout


These bits define the receive data (RxD) pin configuration.

These bits are not synchronized.

RXPO[1:0]	Name	Description
0x0	PAD[0]	SERCOM PAD[0] is used for data reception
0x1	PAD[1]	SERCOM PAD[1] is used for data reception
0x2	PAD[2]	SERCOM PAD[2] is used for data reception
0x3	PAD[3]	SERCOM PAD[3] is used for data reception

36.3 Block Diagram

Figure 36-1. Full-Duplex SPI Master Slave Interconnection

36.4 Signal Description

Table 36-1. SERCOM SPI Signals

Signal Name	Туре	Description
PAD[3:0]	Digital I/O	General SERCOM pins

One signal can be mapped to one of several pins.

36.5 **Product Dependencies**

In order to use this peripheral, other parts of the system must be configured correctly, as described below.

36.5.1 I/O Lines

In order to use the SERCOM's I/O lines, the I/O pins must be configured using the IO Pin Controller (PORT).

When the SERCOM is configured for SPI operation, the SERCOM controls the direction and value of the I/O pins according to the table below. Both PORT control bits PINCFGn.PULLEN and PINCFGn.DRVSTR are still effective. If the receiver is disabled, the data input pin can be used for other purposes. In master mode, the slave select line (\overline{SS}) is hardware controlled when the Master Slave Select Enable bit in the Control B register (CTRLB.MSSEN) is '1'.

Table 36-2. SPI Pin Configuration

Pin	Master SPI	Slave SPI
MOSI	Output	Input
MISO	Input	Output
SCK	Output	Input
SS	Output (CTRLB.MSSEN=1)	Input

The combined configuration of PORT, the Data In Pinout and the Data Out Pinout bit groups in the Control A register (CTRLA.DIPO and CTRLA.DOPO) define the physical position of the SPI signals in the table above.

Related Links

37.5.2 Power Management

This peripheral can continue to operate in any sleep mode where its source clock is running. The interrupts can wake up the device from sleep modes.

Related Links

22. PM - Power Manager

37.5.3 Clocks

The SERCOM bus clock (CLK_SERCOMx_APB) can be enabled and disabled in the Main Clock Controller. Refer to *Peripheral Clock Masking* for details and default status of this clock.

Two generic clocks are used by SERCOM, GCLK_SERCOMx_CORE and GCLK_SERCOM_SLOW. The core clock (GCLK_SERCOMx_CORE) can clock the I²C when working as a master. The slow clock (GCLK_SERCOM_SLOW) is required only for certain functions, e.g. SMBus timing. These two clocks must be configured and enabled in the Generic Clock Controller (GCLK) before using the I²C.

These generic clocks are asynchronous to the bus clock (CLK_SERCOMx_APB). Due to this asynchronicity, writes to certain registers will require synchronization between the clock domains. Refer to 37.6.6 Synchronization for further details.

Related Links

GCLK - Generic Clock Controller
 19.6.2.6 Peripheral Clock Masking
 PM – Power Manager

37.5.4 DMA

The DMA request lines are connected to the DMA Controller (DMAC). In order to use DMA requests with this peripheral the DMAC must be configured first. Refer to *DMAC – Direct Memory Access Controller* for details.

Related Links

28. DMAC - Direct Memory Access Controller

37.5.5 Interrupts

The interrupt request line is connected to the Interrupt Controller. In order to use interrupt requests of this peripheral, the Interrupt Controller (NVIC) must be configured first. Refer to *Nested Vector Interrupt Controller* for details.

37.5.6 Events

Not applicable.

37.5.7 Debug Operation

When the CPU is halted in debug mode, this peripheral will continue normal operation. If the peripheral is configured to require periodical service by the CPU through interrupts or similar, improper operation or data loss may result during debugging. This peripheral can be forced to halt operation during debugging - refer to the Debug Control (DBGCTRL) register for details.

37.5.8 Register Access Protection

Registers with write-access can be write-protected optionally by the peripheral access controller (PAC).

PAC Write-Protection is not available for the following registers:

38.7.1.4 Event Control

Name:	EVCTRL
Offset:	0x06
Reset:	0x0000
Property:	PAC Write-Protection, Enable-Protected

Bit	15	14	13	12	11	10	9	8
			MCEOx	MCEOx				OVFEO
Access			R/W	R/W				R/W
Reset			0	0				0
Bit	7	6	5	4	3	2	1	0
			TCEI	TCINV			EVACT[2:0]	
Access			R/W	R/W		R/W	R/W	R/W
Reset			0	0		0	0	0

Bits 13,12 – MCEOx Match or Capture Channel x Event Output Enable [x = 1..0] These bits enable the generation of an event for every match or capture on channel x.

Value	Description
0	Match/Capture event on channel x is disabled and will not be generated.
1	Match/Capture event on channel x is enabled and will be generated for every compare/
	capture.

Bit 8 - OVFEO Overflow/Underflow Event Output Enable

This bit enables the Overflow/Underflow event. When enabled, an event will be generated when the counter overflows/underflows.

Value	Description
0	Overflow/Underflow event is disabled and will not be generated.
1	Overflow/Underflow event is enabled and will be generated for every counter overflow/ underflow.

Bit 5 - TCEI TC Event Enable

This bit is used to enable asynchronous input events to the TC.

Value	Description
0	Incoming events are disabled.
1	Incoming events are enabled.

Bit 4 – TCINV TC Inverted Event Input Polarity

This bit inverts the asynchronous input event source.

Value	Description
0	Input event source is not inverted.
1	Input event source is inverted.

Bits 2:0 – EVACT[2:0] Event Action

These bits define the event action the TC will perform on an event.

SAM L10/L11 Family

TC – Timer/Counter

Value	Name	Description
0x0	OFF	Event action disabled
0x1	RETRIGGER	Start, restart or retrigger TC on event
0x2	COUNT	Count on event
0x3	START	Start TC on event
0x4	STAMP	Time stamp capture
0x5	PPW	Period captured in CC0, pulse width in CC1
0x6	PWP	Period captured in CC1, pulse width in CC0
0x7	PW	Pulse width capture

- Gain Correction (GAINCORR)
- Offset Correction (OFFSETCORR)

When one of these registers is written, the data is stored in the corresponding buffer as long as the current conversion is not impacted, and the corresponding busy status will be set in the Synchronization Busy register (SYNCBUSY). When a new RESULT is available, data stored in the buffer registers will be transfered to the ADC and a new conversion can start.

41.6.3.2 Device Temperature Measurement

Principle

The device has an integrated temperature sensor which is part of the Supply Controller (SUPC). The analog signal of that sensor can be converted into a digital value by the ADC. The digital value can be converted into a temperature in °C by following the steps in this section.

Configuration and Conditions

In order to conduct temperature measurements, configure the device according to these steps.

- 1. Configure the clocks and device frequencies according to the Electrical Characteristics chapters.
- 2. Configure the Voltage References System of the Supply Controller (SUPC):
 - 2.1. Enable the temperature sensor by writing a '1' to the Temperature Sensor Enable bit in the VREF Control register (SUPC.VREF.TSEN).
 - 2.2. Select the required voltage for the internal voltage reference INTREF by writing to the Voltage Reference Selection bits (SUPC.VREF.SEL). The required value can be found in the Electrical Characteristics chapters.
 - 2.3. Enable routing INTREF to the ADC by writing a '1' to the Voltage Reference Output Enable bit (SUPC.VREF.VREFOE).
- 3. Configure the ADC:
 - 3.1. Select the internal voltage reference INTREF as ADC reference voltage by writing to the Reference Control register (ADC.REFCTRL.REFSEL).
 - 3.2. Select the temperature sensor vs. internal GND as input by writing TEMP and GND to the positive and negative MUX Input Selection bit fields (ADC.INPUTCTRL.MUXNEG and .MUXPOS, respectively).
 - 3.3. Configure the remaining ADC parameters according to the Electrical Characteristics chapters.
 - 3.4. Enable the ADC and acquire a value, ADC_m.

Calculation Parameter Values

The temperature sensor behavior is linear, but it is sensitive to several parameters such as the internal voltage reference - which itself depends on the temperature. To take this into account, each device contains a Temperature Log row with individual calibration data measured and written during the production tests. These calibration values are read by software to infer the most accurate temperature readings possible.

The Temperature Log Row basically contains the following parameter set for two different temperatures ("ROOM" and "HOT"):

- Calibration temperatures in °C. One at room temperature *temp*_R, one at a higher temperature *temp*_H:
 - ROOM_TEMP_VAL_INT and ROOM_TEMP_VAL_DEC contain the measured temperature at room insertion, *temp*_R, in °C, separated in integer and decimal value.

41.8.16 Offset Correction

Name:	OFFSETCORR
Offset:	0x14
Reset:	0x0000
Property:	PAC Write-Protection, Write-Synchronized

Bit	15	14	13	12	11	10	9	8
						OFFSETC	ORR[11:8]	
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0
Bit	7	6	5	4	3	2	1	0
	OFFSETCORR[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 11:0 - OFFSETCORR[11:0] Offset Correction Value

If CTRLC.CORREN=1, these bits define how the ADC conversion result is compensated for offset error before being written to the Result register. This OFFSETCORR value is in two's complement format.

43.8.3 Event Control

Name:	EVCTRL
Offset:	0x02
Reset:	0x00
Property:	PAC Write-Protection

Bit	7	6	5	4	3	2	1	0
						INVEI	EMPTYEO	STARTEI
Access						R/W	R/W	R/W
Reset						0	0	0

Bit 2 – INVEI Enable Inversion Data Buffer Empty Event Output This bit defines the edge detection of the input event for STARTEI.

Value	Description
0	Rising edge.
1	Falling edge.

Bit 1 – EMPTYEO Data Buffer Empty Event Output

This bit indicates whether or not the Data Buffer Empty event is enabled and will be generated when the Data Buffer register is empty.

Value	Description
0	Data Buffer Empty event is disabled and will not be generated.
1	Data Buffer Empty event is enabled and will be generated.

Bit 0 – STARTEI Start Conversion Event Input

This bit indicates whether or not the Start Conversion event is enabled and data are loaded from the Data Buffer register to the Data register upon event reception.

Value	Description
0	A new conversion will not be triggered on any incoming event.
1	A new conversion will be triggered on any incoming event.

43.8.9 Data Buffer

Name:	DATABUF
Offset:	0x0C
Reset:	0x0000
Property:	Write-Synchronized

15	14	13	12	11	10	9	8
DATABUF[15:8]							
W	W	W	W	W	W	W	W
0	0	0	0	0	0	0	0
7	6	5	4	3	2	1	0
DATABUF[7:0]							
W	W	W	W	W	W	W	W
0	0	0	0	0	0	0	0
	W 0 7	W W 0 0 7 6	W W W 0 0 0 7 6 5	DATABI W W W W O O O O O O O DATABI DATABIA DATABIA	W W W W W W O	DATABUF[15:8] W W W W W 0 0 0 0 0 0 7 6 5 4 3 2 DATABUF[7:0]	DATABUF[15:8] W W W W W W 0 0 0 0 0 0 0 0 7 6 5 4 3 2 1 DATABUF[7:0]

Bits 15:0 - DATABUF[15:0] Data Buffer

DATABUF contains the value to be transferred into DATA register.

44.6 Functional Description

44.6.1 Principle of Operation

Each OPAMP has one positive and one negative input. Each input may be chosen from either a selection of analog input pins, or internal inputs such as the DAC, the resistor ladder, and the ground and output of another OPAMP.

Each OPAMP can be configured with built-in feedback to support various functions with programmable or unity gain.

I/O pins are externally accessible so that the operational amplifier can be configured with external feedback.

All OPAMPs can be cascaded to support circuits such as differential amplifiers.

44.6.2 Basic Operation

Each operational amplifier can be configured in different modes, selected by the OPAMP Control x register (OPAMPCTRLx):

- Standalone operational amplifier
- Operational amplifier with built-in feedback

After being enabled, a start-up delay is added before the output of the operational amplifier is available. This start-up time is measured internally to account for environmental changes such as temperature or voltage supply level.

When the OPAMP is ready, the respective Ready x bit in the Status register is set (STATUS.READYx=1).

If the supply voltage is below 2.5V, the start-up time is also dependent on the voltage doubler. If the supply voltage is always above 2.5V, the voltage doubler can be disabled by setting the Low-Power Mux bit in the Control A Register (CTRLA.LPMUX).

44.6.2.1 Initialization

The OPAMP must be configured with the desired properties and inputs before it is enabled.

The asynchronous clocks CLK_ULP32K must be configured in the OSC32KCTRL module before enabling individual OPAMPs. See OSC32KCTRL – 32KHz Oscillators Controller for further details.

Related Links

24. OSC32KCTRL - 32KHz Oscillators Controller

44.6.2.2 Enabling, Disabling, and Resetting

The OPAMP is enabled by writing a '1' to the Enable bit in the Control A register (CTRLA.ENABLE). The OPAMP is disabled by writing a '0' to CTRLA.ENABLE.

Each OPAMP sub-module is enabled by writing a '1' to the Enable bit in the OPAMP Control x register (OPAMPCTRLx.ENABLE). Each OPAMP sub-module is disabled by writing a '0' to OPAMPCTRLx.ENABLE.

The OPAMP module is reset by writing a '1' to the Software Reset bit in the Control A register (CTRLA.SWRST). All registers in the OPAMP will be reset to their initial state, and the OPAMP will be disabled. Refer to 44.8.1 CTRLA for details.

44.6.3 DMA Operation

Not applicable.

When enabling OPAMPs, additional start-up time is required for the voltage doubler to settle. Disabling the voltage doubler saves power and reduces the startup time.

44.6.15 Performance vs. Power Consumption

It is possible to tradeoff speed versus power efficiency to get the shortest possible propagation delay or the lowest power consumption.

The speed setting is configured for each amplifier individually by the Bias Control field in the Operational Amplifier x Control register (OPAMPCTRLx.BIAS). The BIAS bits select the amount of bias current provided to the operational amplifiers. This will also affect the start-up time.