E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M23
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.63V
Data Converters	A/D 10x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-VQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsaml10e15a-mu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Processor and Architecture

The priority order for concurrent accesses are decided by two factors:

- As first priority, the QoS level for the master.
- As a second priority, a static priority given by the port ID. The lowest port ID has the highest static priority.

See the tables below for more details.

Table 11-8. HS SRAM Port Connections QoS

HS SRAM Port Connection	Port ID	Connection Type	QoS	default QoS
DMAC - Direct Memory Access Controller - Write-Back 1 Access	6	Direct	DMAC QOSCTRL.WRBQOS	0x2
DMAC - Direct Memory Access Controller - Write-Back 0 Access	5	Direct	DMAC QOSCTRL.WRBQOS	0x2
DMAC - Direct Memory Access Controller - Fetch 1 Access	4	Direct	DMAC QOSCTRL.FQOS	0x2
DMAC - Direct Memory Access Controller - Fetch 0 Access	3	Direct	DMAC QOSCTRL.FQOS	0x2
DMAC - Direct Memory Access Controller - Data Access	2	Bus Matrix	DMAC QOSCTRL.DQOS	0x2
DSU - Device Service Unit	1	Bus Matrix	DSU CFG.LQOS	0x2
CM23 - Cortex M23 Processor	0	Bus Matrix	0x41008114, bits[1:0] ⁽¹⁾	0x3

Note:

1. The CPU QoS level can be written/read, using 32-bit access only.

14.4.5.3 System Reset Request (CMD_RESET)

This command allows resetting the system using a system reset request. Since the reset is executed immediately after receiving the command, no reply is sent to the debugger.

After reset, the CPU executes the Boot ROM code from the beginning

14.4.5.4 Chip Erase (CMD_CHIPERASE) - SAM L10 only

CMD_CHIPERASE command erases the entire device except BOOT area, and reverts to Debug Access Level 2.

PAC - Peripheral Access Controller

15.7.5 AHB Slave Bus Interrupt Flag Status and Clear

Name:	INTFLAGAHB
Offset:	0x10
Reset:	0x000000
Property:	Secure

This flag is cleared by writing a '1' to the flag.

This flag is set when an access error is detected by the SLAVE n, and will generate an interrupt request if INTENCLR/SET.ERR is '1'.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the corresponding INTFLAGAHB interrupt flag.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Dit	22	22	01	20	10	10	17	16
DIL	23	22	21	20	19	10	17	10
, I								
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
	BROM	HSRAMDSU	HSRAMDMAC	HSRAMCPU	HPB2	HPB1	HPB0	FLASH
Access	RW/-/RW	RW/-/RW	RW/-/RW	RW/-/RW	RW/-/RW	RW/-/RW	RW/-/RW	RW/-/RW
Reset	0	0	0	0	0	0	0	0

Bit 7 – BROM Interrupt Flag for Boot ROM

Bit 6 – HSRAMDSU Interrupt Flag for SLAVE HS SRAM Port 2 - DSU Access

Bit 5 – HSRAMDMAC Interrupt Flag for SLAVE HS SRAM Port 1 - DMAC Access

- Bit 4 HSRAMCPU Interrupt Flag for SLAVE HS SRAM Port 0 CPU Access
- Bit 3 HPB2 Interrupt Flag for SLAVE AHB-APB Bridge C
- Bit 2 HPB1 Interrupt Flag for SLAVE AHB-APB Bridge B
- Bit 1 HPB0 Interrupt Flag for SLAVE AHB-APB Bridge A
- Bit 0 FLASH Interrupt Flag for SLAVE FLASH

GCLK - Generic Clock Controller

Offset	Name	Bit Pos.						
		15:8						
		23:16						
		31:24						
		7:0	WRTLOCK	CHEN			GEN[2:0]	
0.480		15:8						
0,000	FONCTIVES	23:16						
		31:24						
		7:0	WRTLOCK	CHEN			GEN[2:0]	
0x90	PCHCTRI 4	15:8						
0,00	T ONOTICE T	23:16						
		31:24						
		7:0	WRTLOCK	CHEN			GEN[2:0]	
0x94	PCHCTRI 5	15:8						
07.0-4	T ONOTINED	23:16						
		31:24						
		7:0	WRTLOCK	CHEN			GEN[2:0]	
0x98	PCHCTRI 6	15:8						
0,00	T ONOTINEO	23:16						
		31:24						
		7:0	WRTLOCK	CHEN			GEN[2:0]	
0x9C	PCHCTRI 7	15:8						
0,00	T ONOTINE/	23:16						
		31:24						
		7:0	WRTLOCK	CHEN			GEN[2:0]	
0xA0	PCHCTRI 8	15:8						
0,010		23:16						
		31:24						
		7:0	WRTLOCK	CHEN			GEN[2:0]	
0xA4	PCHCTRL9	15:8						
0,011		23:16						
		31:24						
		7:0	WRTLOCK	CHEN			GEN[2:0]	
0xA8	PCHCTRL10	15:8						
		23:16						
		31:24						
		7:0	WRTLOCK	CHEN			GEN[2:0]	
0xAC	PCHCTRL11	15:8						
		23:16						
		31:24						
		7:0	WRTLOCK	CHEN			GEN[2:0]	
0xB0	PCHCTRL12	15:8						
		23:16						
		31:24						
		7:0	WRTLOCK	CHEN			GEN[2:0]	
0xB4	PCHCTRL13	15:8						
		23:16						

18.8.3 Generator Control

Name:	GENCTRLn
Offset:	0x20 + n*0x04 [n=04]
Reset:	0x0000105
Property:	PAC Write-Protection, Write-Synchronized

GENCTRLn controls the settings of Generic Generator n (n=0..4). The reset value is 0x00000105 for Generator n=0, else 0x00000000

Bit	31	30	29	28	27	26	25	24
				DIV[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				DIV	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
			RUNSTDBY	DIVSEL	OE	OOV	IDC	GENEN
Access								
Reset			0	0	0	0	0	1
Bit	7	6	5	4	3	2	1	0
						SRC[4:0]		
Access		•		R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0

Bits 31:16 - DIV[15:0] Division Factor

These bits represent a division value for the corresponding Generator. The actual division factor is dependent on the state of DIVSEL. The number of relevant DIV bits for each Generator can be seen in this table. Written bits outside of the specified range will be ignored.

Table 18-3. Division Factor Bits

Generic Clock Generator	Division Factor Bits
Generator 0	8 division factor bits - DIV[7:0]
Generator 1	16 division factor bits - DIV[15:0]
Generator 2 - 4	8 division factor bits - DIV[7:0]

Bit 13 – RUNSTDBY Run in Standby

This bit is used to keep the Generator running in Standby as long as it is configured to output to a dedicated GCLK_IO pin. If GENCTRLn.OE is zero, this bit has no effect and the generator will only be running if a peripheral requires the clock.

22.7 Register Summary

Offset	Name	Bit Pos.						
0x01	SLEEPCFG	7:0				S	LEEPMODE[2:	0]
0x02	PLCFG	7:0	PLDIS				PLSE	L[1:0]
0x03	PWCFG	7:0					RAMPS	WC[1:0]
0x04	INTENCLR	7:0						PLRDY
0x05	INTENSET	7:0						PLRDY
0x06	INTFLAG	7:0						PLRDY
0x07	Reserved							
0,209	STORVOEC	7:0	VREGS	MOD[1:0]	DPGPDSW			PDCFG
0,00	STUDICEG	15:8			BBIASTR	BBIASHS		

22.8 Register Description

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Some registers are optionally write-protected by the Peripheral Access Controller (PAC). Optional PAC write-protection is denoted by the "PAC Write-Protection" property in each individual register description. For details, refer to 22.5.7 Register Access Protection.

On **SAM L11** devices, this peripheral has different access permissions depending on PAC Security Attribution (Secure or Non-Secure):

- If the peripheral is configured as Non-Secure in the PAC:
 - Secure access and Non-Secure access are granted
- If the peripheral is configured as Secure in the PAC:
 - Secure access is granted
 - Non-Secure access is discarded (Write is ignored, read 0x0) and a PAC error is triggered

Refer to Peripherals Security Attribution for more information.

24.5.9 Analog Connections

The external 32.768kHz crystal must be connected between the XIN32 and XOUT32 pins, along with any required load capacitors. For details on recommended oscillator characteristics and capacitor load, refer to the related links.

24.6 Functional Description

24.6.1 Principle of Operation

XOSC32K and OSCULP32K are configured via OSC32KCTRL control registers. Through this interface, the sub-peripherals are enabled, disabled, or have their calibration values updated.

The STATUS register gathers different status signals coming from the sub-peripherals of OSC32KCTRL. The status signals can be used to generate system interrupts, and in some cases wake up the system from standby mode, provided the corresponding interrupt is enabled.

24.6.2 32KHz External Crystal Oscillator (XOSC32K) Operation

The XOSC32K can operate in two different modes:

- External clock, with an external clock signal connected to XIN32
- Crystal oscillator, with an external 32.768kHz crystal connected between XIN32 and XOUT32

At reset, the XOSC32K is disabled, and the XIN32/XOUT32 pins can either be used as General Purpose I/O (GPIO) pins or by other peripherals in the system.

When XOSC32K is enabled, the operating mode determines the GPIO usage. When in crystal oscillator mode, the XIN32 and XOUT32 pins are controlled by the OSC32KCTRL, and GPIO functions are overridden on both pins. When in external clock mode, the only XIN32 pin will be overridden and controlled by the OSC32KCTRL, while the XOUT32 pin can still be used as a GPIO pin.

The XOSC32K is enabled by writing a '1' to the Enable bit in the 32KHz External Crystal Oscillator Control register (XOSC32K.ENABLE=1). The XOSC32K is disabled by writing a '0' to the Enable bit in the 32KHz External Crystal Oscillator Control register (XOSC32K.ENABLE=0).

To enable the XOSC32K as a crystal oscillator, the XTALEN bit in the 32KHz External Crystal Oscillator Control register must be set (XOSC32K.XTALEN=1). If XOSC32K.XTALEN is '0', the external clock input will be enabled.

The XOSC32K 32.768kHz output is enabled by setting the 32KHz Output Enable bit in the 32KHz External Crystal Oscillator Control register (XOSC32K.EN32K=1). The XOSC32K also has a 1.024kHz clock output, which can only be used by the RTC. This clock output is enabled by setting the 1KHz Output Enable bit in the 32KHz External Crystal Oscillator Control register (XOSC32K.EN1K=1).

It is also possible to lock the XOSC32K configuration by setting the Write Lock bit in the 32KHz External Crystal Oscillator Control register (XOSC32K.WRTLOCK=1). If set, the XOSC32K configuration is locked until a Power-On Reset (POR) is detected.

The XOSC32K will behave differently in different sleep modes based on the settings of XOSC32K.RUNSTDBY, XOSC32K.ONDEMAND, and XOSC32K.ENABLE. If XOSC32KCTRL.ENABLE=0, the XOSC32K will be always stopped. For XOS32KCTRL.ENABLE=1, this table is valid:

25.6.2.3 Selecting a Voltage Reference

The Voltage Reference Selection bit field in the VREF register (VREF.SEL) selects the voltage of INTREF to be applied to analog modules, e.g. the ADC.

25.6.2.4 Sleep Mode Operation

The Voltage Reference output and the Temperature Sensor output behavior during sleep mode can be configured using the Run in Standby bit and the On Demand bit in the Voltage Reference register (VREF.RUNSTDBY, VREF.ONDEMAND), see the following table:

VREF.ONDEMAND	VREF.RUNSTDBY	Voltage Reference Sleep behavior
-	-	Disable
0	0	Always run in all sleep modes <i>except</i> standby sleep mode
0	1	Always run in all sleep modes <i>including</i> standby sleep mode
1	0	Only run if requested by the ADC, in all sleep modes <i>except</i> standby sleep mode
1	1	Only run if requested by the ADC, in all sleep modes <i>including</i> standby sleep mode

Table 25-2. VREF Sleep Mode Operation

25.6.3 Brown-Out Detectors

25.6.3.1 Initialization

Before a Brown-Out Detector (BOD33) is enabled, it must be configured, as outlined by the following:

- Set the BOD threshold level (BOD33.LEVEL)
- Set the configuration in Active, Standby (BOD33.ACTION, BOD33.STDBYCFG)
- Set the prescaling value if the BOD will run in sampling mode (BOD33.PSEL)
- Set the action and hysteresis (BOD33.ACTION and BOD33.HYST)

The BOD33 register is Enable-Protected, meaning that they can only be written when the BOD is disabled (BOD33.ENABLE=0 and STATUS.B33SRDY=0). As long as the Enable bit is '1', any writes to Enable-Protected registers will be discarded, and an APB error will be generated. The Enable bits are not Enable-Protected.

25.6.3.2 Enabling, Disabling, and Resetting

After power or user reset, the BOD33 and BOD12 register values are loaded from the NVM User Page.

The BOD33 is enabled by writing a '1' to the Enable bit in the BOD control register (BOD33.ENABLE). The BOD33 is disabled by writing a '0' to the BOD33.ENABLE.

25.6.3.3 3.3V Brown-Out Detector (BOD33)

The 3.3V Brown-Out Detector (BOD33) is able to monitor the VDD supply and compares the voltage with the brown-out threshold level set in the BOD33 Level field (BOD33.LEVEL) in the BOD33 register.

When VDD crosses below the brown-out threshold level, the BOD33 can generate either an interrupt or a Reset, depending on the BOD33 Action bit field (BOD33.ACTION).

The BOD33 detection status can be read from the BOD33 Detection bit in the Status register (STATUS.BOD33DET).

At start-up or at Power-On Reset (POR), the BOD33 register values are loaded from the NVM User Row.

WDT – Watchdog Timer

WEN	Interrupt Enable	Mode
1	0	Always-on and window mode
1	1	Always-on and window mode with Early Warning interrupt

26.6.8.2 Early Warning

The Early Warning interrupt notifies that the WDT is approaching its time-out condition. The Early Warning interrupt behaves differently in Normal mode and in Window mode.

In Normal mode, the Early Warning interrupt generation is defined by the Early Warning Offset in the Early Warning Control register (EWCTRL.EWOFFSET). The Early Warning Offset bits define the number of CLK_WDT_OSC clocks before the interrupt is generated, relative to the start of the watchdog time-out period.

The user must take caution when programming the Early Warning Offset bits. If these bits define an Early Warning interrupt generation time greater than the watchdog time-out period, the watchdog time-out system reset is generated prior to the Early Warning interrupt. Consequently, the Early Warning interrupt will never be generated.

In window mode, the Early Warning interrupt is generated at the start of the open window period. In a typical application where the system is in sleep mode, the Early Warning interrupt can be used to wake up and clear the Watchdog Timer, after which the system can perform other tasks or return to sleep mode.

If the WDT is operating in Normal mode with CONFIG.PER = 0x2 and EWCTRL.EWOFFSET = 0x1, the Early Warning interrupt is generated 16 CLK_WDT_OSC clock cycles after the start of the time-out period. The time-out system reset is generated 32 CLK_WDT_OSC clock cycles after the start of the watchdog timeout period.

RTC – Real-Time Counter

Value	Description
0	There is not reset operation ongoing
1	The reset operation is ongoing

RTC – Real-Time Counter

	Name: Offset: Reset: Property:	INTFLAG 0x0C 0x0000 -						
Bit	15	14	13	12	11	10	9	8
	OVF	TAMPER						ALARM0
Access	R/W	R/W						R/W
Reset	0	0						0
Bit	7	6	5	4	3	2	1	0
	PER7	PER6	PER5	PER4	PER3	PER2	PER1	PER0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

27.12.6 Interrupt Flag Status and Clear in Clock/Calendar mode (CTRLA.MODE=2)

Bit 15 – OVF Overflow

This flag is cleared by writing a '1' to the flag.

This flag is set on the next CLK_RTC_CNT cycle after an overflow condition occurs, and an interrupt request will be generated if INTENCLR/SET.OVF is '1'.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit clears the Overflow interrupt flag.

Bit 14 – TAMPER Tamper

This flag is set after a tamper condition occurs, and an interrupt request will be generated if INTENCLR.TAMPER/INTENSET.TAMPER is '1'. Writing a '0' to this bit has no effect. Writing a '1' to this bit clears the Tamper interrupt flag.

Bit 8 – ALARM0 Alarm 0

This flag is cleared by writing a '1' to the flag.

This flag is set on the next CLK_RTC_CNT cycle after a match with the compare condition, and an interrupt request will be generated if INTENCLR/SET.ALARM0 is one.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit clears the Alarm 0 interrupt flag.

Bits 0, 1, 2, 3, 4, 5, 6, 7 – PERn Periodic Interval n [n = 7..0]

This flag is cleared by writing a '1' to the flag.

This flag is set on the 0-to-1 transition of prescaler bit [n+2], and an interrupt request will be generated if INTENCLR/SET.PERx is '1'.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit clears the Periodic Interval n interrupt flag.

Bit 3 – CLOCK Clock Register Synchronization Busy Status

Value	Description
0	Read/write synchronization for CLOCK register is complete.
1	Read/write synchronization for CLOCK register is ongoing.

Bit 2 – FREQCORR Frequency Correction Synchronization Busy Status

Value	Description
0	Write synchronization for FREQCORR register is complete.
1	Write synchronization for FREQCORR register is ongoing.

Bit 1 – ENABLE Enable Synchronization Busy Status

Value	Description
0	Write synchronization for CTRLA.ENABLE bit is complete.
1	Write synchronization for CTRLA.ENABLE bit is ongoing.

Bit 0 – SWRST Software Reset Synchronization Busy Status

Value	Description
0	Write synchronization for CTRLA.SWRST bit is complete.
1	Write synchronization for CTRLA.SWRST bit is ongoing.

Value	Description
0	Static arbitration scheme for channels with level 2 priority.
1	Round-robin arbitration scheme for channels with level 2 priority.

Bits 19:16 – LVLPRI2[3:0] Level 2 Channel Priority Number

When round-robin arbitration is enabled (PRICTRL0.RRLVLEN2=1) for priority level 2, this register holds the channel number of the last DMA channel being granted access as the active channel with priority level 2.

When static arbitration is enabled (PRICTRL0.RRLVLEN2=0) for priority level 2, and the value of this bit group is non-zero, it will not affect the static priority scheme.

This bit group is not reset when round-robin arbitration gets disabled (PRICTRL0.RRLVLEN2 written to '0').

Bit 15 – RRLVLEN1 Level 1 Round-Robin Scheduling Enable

For details on arbitration schemes, refer to 28.6.2.4 Arbitration.

Value	Description
0	Static arbitration scheme for channels with level 1 priority.
1	Round-robin arbitration scheme for channels with level 1 priority.

Bits 11:8 – LVLPRI1[3:0] Level 1 Channel Priority Number

When round-robin arbitration is enabled (PRICTRL0.RRLVLEN1=1) for priority level 1, this register holds the channel number of the last DMA channel being granted access as the active channel with priority level 1.

When static arbitration is enabled (PRICTRL0.RRLVLEN1=0) for priority level 1, and the value of this bit group is non-zero, it will not affect the static priority scheme.

This bit group is not reset when round-robin arbitration gets disabled (PRICTRL0.RRLVLEN1 written to '0').

Bit 7 – RRLVLEN0 Level 0 Round-Robin Scheduling Enable

For details on arbitration schemes, refer to 28.6.2.4 Arbitration.

Value	Description
0	Static arbitration scheme for channels with level 0 priority.
1	Round-robin arbitration scheme for channels with level 0 priority.

Bits 3:0 – LVLPRI0[3:0] Level 0 Channel Priority Number

When round-robin arbitration is enabled (PRICTRL0.RRLVLEN0=1) for priority level 0, this register holds the channel number of the last DMA channel being granted access as the active channel with priority level 0.

When static arbitration is enabled (PRICTRL0.RRLVLEN0=0) for priority level 0, and the value of this bit group is non-zero, it will not affect the static priority scheme.

This bit group is not reset when round-robin arbitration gets disabled (PRICTRL0.RRLVLEN0 written to '0').

Writing '1' to a bit will clear the corresponding bit in the OUT register. Pins configured as outputs via the Data Direction register (DIR) will be set to low output drive level. Pins configured as inputs via DIR and with pull enabled via the Pull Enable bit in the Pin Configuration register (PINCFG.PULLEN) will set the input pull direction to an internal pull-down.

Value	Description
0	The corresponding I/O pin in the PORT group will keep its configuration.
1	The corresponding I/O pin output is driven low, or the input is connected to an internal pull-
	down.

37.8.1 Control A

Name:	CTRLA
Offset:	0x00
Reset:	0x0000000
Property:	PAC Write-Protection, Enable-Protected

Bit	31	30	29	28	27	26	25	24
	LOWT				SCLSM		SPEED[1:0]	
Access		R/W			R/W		R/W	R/W
Reset		0			0		0	0
Bit	23	22	21	20	19	18	17	16
	SEXTTOEN		SDAHC	LD[1:0]				PINOUT
Access	R/W		R/W	R/W				R/W
Reset	0		0	0				0
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
	RUNSTDBY				MODE[2:0]		ENABLE	SWRST
Access	R/W			R/W	R/W	R/W	R/W	R/W
Reset	0			0	0	0	0	0

Bit 30 - LOWTOUT SCL Low Time-Out

This bit enables the SCL low time-out. If SCL is held low for 25ms-35ms, the slave will release its clock hold, if enabled, and reset the internal state machine. Any interrupt flags set at the time of time-out will remain set.

Value	Description
0	Time-out disabled.
1	Time-out enabled.

Bit 27 - SCLSM SCL Clock Stretch Mode

This bit controls when SCL will be stretched for software interaction.

This bit is not synchronized.

Value	Description
0	SCL stretch according to Figure 37-10
1	SCL stretch only after ACK bit according to Figure 37-11

Bits 25:24 – SPEED[1:0] Transfer Speed

These bits define bus speed.

These bits are not synchronized.

38.7.1.6 Interrupt Enable Set

Name:INTENSETOffset:0x09Reset:0x00Property:PAC Write-Protection

This register allows the user to enable an interrupt without doing a read-modify-write operation. Changes in this register will also be reflected in the Interrupt Enable Clear register (INTENCLR).

Bit	7	6	5	4	3	2	1	0
				MCx			ERR	OVF
Access				R/W			R/W	R/W
Reset				0			0	0

Bit 4 – MCx Match or Capture Channel x Interrupt Enable Writing a '0' to these bits has no effect.

Writing a '1' to MCx will set the corresponding Match or Capture Channel x Interrupt Enable bit, which enables the Match or Capture Channel x interrupt.

Value	Description
0	The Match or Capture Channel x interrupt is disabled.
1	The Match or Capture Channel x interrupt is enabled.

Bit 1 – ERR Error Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will set the Error Interrupt Enable bit, which enables the Error interrupt.

Value	Description
0	The Error interrupt is disabled.
1	The Error interrupt is enabled.

Bit 0 – OVF Overflow Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will set the Overflow Interrupt Enable bit, which enables the Overflow interrupt request.

Value	Description
0	The Overflow interrupt is disabled.
1	The Overflow interrupt is enabled.

ADC – Analog-to-Digital Converter

Value	Description
0	The ADC run in single conversion mode.
1	The ADC is in free running mode and a new conversion will be initiated when a previous
	conversion completes.

Bit 1 – LEFTADJ Left-Adjusted Result

Value	Description
0	The ADC conversion result is right-adjusted in the RESULT register.
1	The ADC conversion result is left-adjusted in the RESULT register. The high byte of the 12-
	bit result will be present in the upper part of the result register. Writing this bit to zero
	(default) will right-adjust the value in the RESULT register.

Bit 0 – DIFFMODE Differential Mode

Value	Description
0	The ADC is running in singled-ended mode.
1	The ADC is running in differential mode. In this mode, the voltage difference between the
	MUXPOS and MUXNEG inputs will be converted by the ADC.

Figure 44-11. Inverting comparator with programmable hysteresis

To configure an OPAMP as a non-inverting comparator with programmable hysteresis, the OPAMPCTRLx register can be configured as follows:

Table 44-17. Configuration of Input Multiplexes for OPAMP0 and OPAMP1 (Example: Vth = 1/3*Vcc, Ref = Gnd)

	MUXPOS	MUXNEG	RES1MUX	ΡΟΤΜUΧ	RES2VCC	RES2OUT	RES1EN	ANAOUT
OPAMP0	0001	010	000	100	0	1	1	0
OPAMP1	0001	010	000	100	0	1	1	0
OPAMP2	0001	010	000	100	0	1	1	0

Table 44-18.	POTMUX	[2:0]: F	Potentiometer	Selection
--------------	--------	----------	---------------	-----------

Value	R1	R2	Threshold = Vcc * R1 / R2
0x0	14R	2R	Vcc * 7 (unused)
0x1	12R	4R	Vcc * 3 (unused)
0x2	8R	8R	Vcc (unused)
0x3	6R	10R	0.6* Vcc
0x4	4R	12R	1/3 * Vcc
0x5	3R	13R	3/13 *Vcc
0x6	2R	14R	1/7 * Vcc
0x7	R	15R	1/15 * Vcc

Figure 44-12. Non-Inverting comparator with programmable hysteresis

Electrical Characteristics

Mode	Conditions	Regulator Mode	Vcc	Та	Тур.	Max.	Units
OFF			1.8V	25°C	34.6	54.4	nA
				85°C	595.7	1197.3	
			3.3V	25°C	61.2	89.1	
				85°C	796.1	1622.8	

46.8 Wake-Up Time

Conditions:

- VDDIO/VDDANA = 3.3V
- LDO Regulation mode
- CPU clock = OSC16M @ 4 MHz
- One Wait-state
- Cache enabled
- Flash Fast Wake-up enabled (NVMCTRL.CTRLB.FWUP = 1)
- Flash in WAKEUPINSTANT mode (NVMCTRL.CTRLB.SLEEPPRM = 1)

Measurement Method:

For Idle and Standby, the CPU sets an I/O by writing PORT->IOBUS without jumping in an interrupt handler (Cortex M23 register PRIMASK = 1). The wake-up time is measured between the edge of the wake-up input signal and the edge of the GPIO pin.

For Off mode, the exit of the mode is done through the reset pin, the time is measured between the falling edge of the RESETN signal (with the minimum reset pulse length), and the set of the I/O which is done by the first executed instructions after Reset.

Table 46-10.	Wake-Up	Timing ⁽¹⁾
--------------	---------	-----------------------

Sleep Mode	Condition		Тур	Unit
Idle	PL2 or PL0		1.5	μs
StandbyPL0PL2 Voltage scal SUPC > VRE SUPC > VRE PL2 Voltage scal SUPC > VRE SUPC > V	PL0	PDSW domain in retention	5.3	
		PDSW domain in active	2.6	
	PL2	PDSW domain in retention	76	
	Voltage scaling at default values: SUPC >VREG.VSVSTEP=0 SUPC > VREG.VSPER=0	PDSW domain in active	75	
	PL2 Voltage scaling at fastest setting: SUPC > VREG.VSVSTEP=15 SUPC > VREG.VSPER=0	PDSW domain in retention	16	
		PDSW domain in active	15	
OFF	L10 with BOOTOPT=0		3.2	ms

Table 49-14. Package Characteristics				
Moisture Sensitivity Level	MSL1			
Table 49-15. Package Reference				
JEDEC Drawing Reference	N/A			
JESD97 Classification	E1			

49.3 Soldering Profile

The following table gives the recommended soldering profile from J-STD-20.

Table 49-16. Recommended Soldering Profile

Profile Feature	Green Package
Average Ramp-up Rate (217°C to peak)	3°C/s max.
Preheat Temperature 175°C ±25°C	150-200°C
Time Maintained Above 217°C	60-150s
Time within 5°C of Actual Peak Temperature	30s
Peak Temperature Range	260°C
Ramp-down Rate	6°C/s max.
Time 25°C to Peak Temperature	8 minutes max.

A maximum of three reflow passes is allowed per component.