E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M23
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.63V
Data Converters	A/D 10x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-VQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsaml10e16a-mf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

17.5.	On Demand Clock Requests	177
17.6.	Power Consumption vs. Speed	178
17.7.	Clocks after Reset	178
18. GCL	K - Generic Clock Controller	179
18.1.	Overview	
18.2.	Features	
18.3.	Block Diagram.	
18.4.	Signal Description	
18.5.	Product Dependencies	
18.6.	Functional Description	181
18.7.	Register Summary	187
18.8.	Register Description	
19. MCL	K – Main Clock	
19 1	Overview	199
19.2.	Features	
19.3.	Block Diagram.	
19.4.	Signal Description	
19.5.	Product Dependencies	
19.6.	Functional Description	201
19.7.	Register Summary	206
19.8.	Register Description	
20 ERE	OM – Frequency Meter	222
20.11(
20.1	Overview	222
20.1.	Overview	222
20.1. 20.2. 20.3	Overview Features Block Diagram	
20.1. 20.2. 20.3. 20.4	Overview Features Block Diagram Signal Description	
20.1. 20.2. 20.3. 20.4. 20.5	Overview Features Block Diagram Signal Description Product Dependencies	
20.1. 20.2. 20.3. 20.4. 20.5. 20.6	Overview Features Block Diagram Signal Description Product Dependencies Functional Description	
20.1. 20.2. 20.3. 20.4. 20.5. 20.6. 20.7	Overview Features Block Diagram Signal Description Product Dependencies Functional Description Register Summary	
20.1. 20.2. 20.3. 20.4. 20.5. 20.6. 20.7. 20.8.	Overview Features Block Diagram Signal Description Product Dependencies Functional Description Register Summary Redister Description	
20.1. 20.2. 20.3. 20.4. 20.5. 20.6. 20.7. 20.8.	Overview Features Block Diagram Signal Description Product Dependencies Functional Description Register Summary Register Description	
20.1. 20.2. 20.3. 20.4. 20.5. 20.6. 20.7. 20.8. 21. RST	Overview Features. Block Diagram Signal Description Product Dependencies Functional Description Register Summary Register Description C – Reset Controller	
20.1. 20.2. 20.3. 20.4. 20.5. 20.6. 20.7. 20.8. 21. RST 21.1.	Overview	
20.1. 20.2. 20.3. 20.4. 20.5. 20.6. 20.7. 20.8. 21. RST 21.1. 21.2.	Overview	
20.1. 20.2. 20.3. 20.4. 20.5. 20.6. 20.7. 20.8. 21. RST 21.1. 21.1. 21.2. 21.3.	Overview	
20.1. 20.2. 20.3. 20.4. 20.5. 20.6. 20.7. 20.8. 21. RST 21.1. 21.2. 21.3. 21.4.	Overview	
20.1. 20.2. 20.3. 20.4. 20.5. 20.6. 20.7. 20.8. 21. RST 21.1. 21.2. 21.3. 21.4. 21.5.	Overview	
20.1. 20.2. 20.3. 20.4. 20.5. 20.6. 20.7. 20.8. 21. RST 21.1. 21.2. 21.3. 21.4. 21.5. 21.6.	Overview	
20.1. 20.2. 20.3. 20.4. 20.5. 20.6. 20.7. 20.8. 21. RST 21.1. 21.2. 21.3. 21.4. 21.5. 21.6. 21.7.	Overview	
20.1. 20.2. 20.3. 20.4. 20.5. 20.6. 20.7. 20.8. 21. RST 21.1. 21.2. 21.3. 21.4. 21.5. 21.6. 21.7. 21.8.	Overview	
20.1. 20.2. 20.3. 20.4. 20.5. 20.6. 20.7. 20.8. 21. RST 21.1. 21.2. 21.3. 21.4. 21.5. 21.6. 21.7. 21.8. 22. PM -	Overview	
20.1. 20.2. 20.3. 20.4. 20.5. 20.6. 20.7. 20.8. 21. RST 21.1. 21.2. 21.3. 21.4. 21.5. 21.6. 21.7. 21.8. 22. PM - 22.1.	Overview	
20.1. 20.2. 20.3. 20.4. 20.5. 20.6. 20.7. 20.8. 21. RST 21.1. 21.2. 21.3. 21.4. 21.5. 21.6. 21.7. 21.8. 22. PM - 22.1. 22.2.	Overview	

Important: The SAU is absent from SAM L10 and SAM L11 devices.

For more details, refer to the ARM Cortex-M23 Processor Technical Reference Manual (http://www.arm.com).

Table 11-2. Cortex-M23 Core Peripherals Address Map

Core Peripherals	Base Address (SAM L10 and SAM L11)	(Non-Secure) Alias Base Address (SAM L11 only)
System Timer (SysTick)	0xE000E010	0xE002E010
Nested Vectored Interrupt Controller (NVIC)	0xE000E100	0xE002E100
System Control Block (SCB)	0xE000ED00	0xE002ED00
Memory Protection Unit (MPU)	0xE000ED90	0xE002ED90

11.1.3 Single Cycle I/O Port

The device allows direct access to PORT registers. Accesses to the AMBA[®] AHB-Lite[™] and the single cycle I/O interface can be made concurrently, so the Cortex-M23 processor can fetch the next instructions while accessing the I/Os. This enables single cycle I/O access to be sustained for as long as necessary. **Note:** The Crypto Accelerator peripheral also benefits from this port. Refer to the 13.3 Crypto Acceleration section for more information.

11.2 Nested Vector Interrupt Controller

11.2.1 Overview

The Nested Vectored Interrupt Controller (NVIC) in the SAM L10/L11 supports up to 45 interrupt lines with four different priority levels + 1 Non Maskable Interrupt (NMI) line.

For more details, refer to the Cortex-M23 Technical Reference Manual (http://www.arm.com).

11.2.2 Interrupt Line Mapping

Each interrupt line is connected to one peripheral instance, as shown in the table below. Each peripheral can have one or more interrupt flags, located in the peripheral's Interrupt Flag Status and Clear (INTFLAG) register.

An interrupt flag is set when the interrupt condition occurs. Each interrupt in the peripheral can be individually enabled by writing a 1 to the corresponding bit in the peripheral's Interrupt Enable Set (INTENSET) register, and disabled by writing 1 to the corresponding bit in the peripheral's Interrupt Enable Clear (INTENCLR) register.

An interrupt request is generated from the peripheral when the interrupt flag is set and the corresponding interrupt is enabled.

The interrupt requests for one peripheral are ORed together on system level, generating one interrupt request for each peripheral. An interrupt request will set the corresponding interrupt pending bit in the NVIC interrupt pending registers (SETPEND/CLRPEND bits in ISPR/ICPR).

For the NVIC to activate the interrupt, it must be enabled in the NVIC interrupt enable register (SETENA/ CLRENA bits in ISER/ICER). The NVIC interrupt priority registers IPR0-IPR7 provide a priority field for each interrupt.

15.5.2.5 Write Access Protection Management

Peripheral access control can be enabled or disabled by writing to the WRCTRL register.

The data written to the WRCTRL register is composed of two fields; WRCTRL.PERID and WRCTRL.KEY. The WRCTRL.PERID is an unique identifier corresponding to a peripheral. The WRCTRL.KEY is a key value that defines the operation to be done on the control access bit. These operations can be "clear protection", "set protection" and "set and lock protection bit".

The "clear protection" operation will remove the write access protection for the peripheral selected by WRCTRL.PERID. Write accesses are allowed for the registers in this peripheral.

The "set protection" operation will set the write access protection for the peripheral selected by WRCTRL.PERID. Write accesses are not allowed for the registers with write protection property in this peripheral.

The "set and lock protection" operation will set the write access protection for the peripheral selected by WRCTRL.PERID and locks the access rights of the selected peripheral registers. The write access protection will only be cleared by a hardware reset.

The peripheral access control status can be read from the corresponding STATUSn register.

15.5.2.6 Write Access Protection Management Errors

Only word-wise writes to the WRCTRL register will effectively change the access protection. Other type of accesses will have no effect and will cause a PAC write access error. This error is reported in the INTFLAGn.PAC bit corresponding to the PAC module.

PAC also offers an additional safety feature for correct program execution with an interrupt generated on double write clear protection or double write set protection. If a peripheral is write protected and a subsequent set protection operation is detected then the PAC returns an error, and similarly for a double clear protection operation.

In addition, an error is generated when writing a "set and lock" protection to a write-protected peripheral or when a write access is done to a locked set protection. This can be used to ensure that the application follows the intended program flow by always following a write protect with an unprotect and conversely. However in applications where a write protected peripheral is used in several contexts, e.g. interrupt, care should be taken so that either the interrupt can not happen while the main application or other interrupt levels manipulates the write protection status or when the interrupt handler needs to unprotect the peripheral based on the current protection status by reading the STATUS register.

The errors generated while accessing the PAC module registers (eg. key error, double protect error...) will set the INTFLAGn.PAC flag.

15.5.2.7 SAM L11 Security Attribution Management

The peripheral security attribution status can be read from the corresponding NONSECn register.

15.5.2.8 SAM L11 Security Attribution Management Errors

The errors generated while accessing the PAC module registers (e.g., key error, double protect error...) will set the INTFLAGn.PAC flag.

15.5.2.9 AHB Slave Bus Errors

The PAC module reports errors occurring at the AHB Slave bus level. These errors are generated when an access is performed at an address where no slave (bridge or peripheral) is mapped or where non-secure accesses are prohibited. These errors are reported in the corresponding bits of the INTFLAGAHB register.

If the Output Enable bit in the Generator Control register is set (GENCTRLn.OE = 1) and the generator is enabled (GENCTRLn.GENEN=1), the Generator requests its clock source and the GCLK_GEN clock is output to an I/O pin.

Note: The I/O pin (GCLK/IO[n]) must first be configured as output by writing the corresponding PORT registers.

If GENCTRLn.OE is 0, the according I/O pin is set to an Output Off Value, which is selected by GENCTRLn.OOV: If GENCTRLn.OOV is '0', the output clock will be low. If this bit is '1', the output clock will be high.

In Standby mode, if the clock is output (GENCTRLn.OE=1), the clock on the I/O pin is frozen to the OOV value if the Run In Standby bit of the Generic Control register (GENCTRLn.RUNSTDBY) is zero. **Note:** With GENCTRLn.OE=1 and RUNSTDBY=0, entering the Standby mode can take longer due to a clock source dependent delay between turning off Power Domain PDSW. The maximum delay can be equal to the clock source period multiplied by the division factor.

If GENCTRLn.RUNSTDBY is '1', the GCLKGEN clock is kept running and output to the I/O pin.

Related Links

22.6.3.5 Power Domain Controller

18.6.3 Peripheral Clock

Figure 18-4. Peripheral Clock

18.6.3.1 Enabling a Peripheral Clock

Before a Peripheral Clock is enabled, one of the Generators must be enabled (GENCTRLn.GENEN) and selected as source for the Peripheral Channel by setting the Generator Selection bits in the Peripheral Channel Control register (PCHCTRL.GEN). Any available Generator can be selected as clock source for each Peripheral Channel.

When a Generator has been selected, the peripheral clock is enabled by setting the Channel Enable bit in the Peripheral Channel Control register, PCHCTRLm.CHEN = 1. The PCHCTRLm.CHEN bit must be synchronized to the generic clock domain. PCHCTRLm.CHEN will continue to read as its previous state until the synchronization is complete.

18.6.3.2 Disabling a Peripheral Clock

A Peripheral Clock is disabled by writing PCHCTRLm.CHEN=0. The PCHCTRLm.CHEN bit must be synchronized to the Generic Clock domain. PCHCTRLm.CHEN will stay in its previous state until the synchronization is complete. The Peripheral Clock is gated when disabled.

Related Links

18.8.4 PCHCTRLm

24.6.6 Real-Time Counter Clock Selection

Before enabling the RTC module, the RTC clock must be selected first. All oscillator outputs are valid as RTC clock. The selection is done in the RTC Control register (RTCCTRL). To ensure a proper operation, it is highly recommended to disable the RTC module first, before the RTC clock source selection is changed.

Related Links

27. RTC - Real-Time Counter

24.6.7 Interrupts

The OSC32KCTRL has the following interrupt sources:

- XOSC32KRDY 32KHz Crystal Oscillator Ready: A 0-to-1 transition on the STATUS.XOSC32KRDY bit is detected
- CLKFAIL Clock Failure Detector: A 0-to-1 transition on the STATUS.CLKFAIL bit is detected

All these interrupts are synchronous wake-up source.

Each interrupt source has an interrupt flag associated with it. The interrupt flag in the Interrupt Flag Status and Clear register (INTFLAG) is set when the interrupt condition occurs. Each interrupt can be enabled individually by setting the corresponding bit in the Interrupt Enable Set register (INTENSET), and disabled by setting the corresponding bit in the Interrupt Enable Clear register (INTENCLR). An interrupt request is generated when the interrupt flag is set and the corresponding interrupt is enabled. The interrupt request remains active until the interrupt flag is cleared, the interrupt is disabled or the OSC32KCTRL is reset. See the INTFLAG register for details on how to clear interrupt flags.

The OSC32KCTRL has one common interrupt request line for all the interrupt sources. The user must read the INTFLAG register to determine which interrupt condition is present. Refer to the INTFLAG register for details.

Note: Interrupts must be globally enabled for interrupt requests to be generated.

Related Links

22. PM - Power Manager

24.6.8 Events

The CFD can generate the following output event:

 Clock Failure Detector (CLKFAIL): Generated when the Clock Failure Detector status bit is set in the Status register (STATUS.CLKFAIL). The CFD event is not generated when the Clock Switch bit (STATUS.SWBACK) in the Status register is set.

Writing a '1' to an Event Output bit in the Event Control register (EVCTRL.CFDEO) enables the CFD output event. Writing a '0' to this bit disables the CFD output event. Refer to the Event System chapter for details on configuring the event system.

SAM L10/L11 Family

SUPC – Supply Controller

Value	Description
0	The voltage regulator in Low power mode has the default efficiency and supports the whole
	VDD range (1.62V to 3.63V).
1	The voltage regulator in Low power mode has the highest efficiency and supports a limited
	VDD range (2.5V to 3.63V).

Bit 6 – RUNSTDBY Run in Standby

Value	Description
0	The voltage regulator is in low power mode in Standby sleep mode.
1	The voltage regulator is in normal mode in Standby sleep mode.

Bit 5 – STDBYPL0 Standby in PL0

This bit selects the performance level (PL) of the main voltage regulator for the Standby sleep mode. This bit is only considered when RUNSTDBY=1.

Value	Description
0	In Standby sleep mode, the voltage regulator remains in the current performance level.
1	In Standby sleep mode, the voltage regulator is used in PL0.

Bit 2 – SEL Voltage Regulator Selection

Value	Description
0	The voltage regulator in active mode is a LDO voltage regulator.
1	The voltage regulator in active mode is a buck converter.

Bit 1 – ENABLE Enable

Value	Description
0	The voltage regulator is disabled.
1	The voltage regulator is enabled.

The GP registers share internal resources with the COMPARE/ALARM features. Each COMPARE/ ALARM register have a separate read buffer and write buffer. When the general purpose feature is enabled the even GP uses the read buffer while the odd GP uses the write buffer.

When the COMPARE/ALARM register is written, the write buffer hold temporarily the COMPARE/ALARM value until the synchronisation is complete (bit SYNCBUSY.COMPn going to 0). After the write is completed the write buffer can be used as a odd general purpose register whithout affecting the COMPARE/ALARM function.

If the COMPARE/ALARM function is not used, the read buffer can be used as an even general purpose register. In this case writing the even GP will temporarirely use the write buffer until the synchronisation is complete (bit SYNCBUSY.GPn going to 0). Thus an even GP must be written before writing the odd GP. Changing or writing an even GP needs to temporarily save the value of the odd GP.

Before using an even GP, the associated COMPARE/ALARM feature must be disabled by writing a '1' to the General Purpose Enable bit in the Control B register (CTRLB.GPnEN). To re-enable the compare/ alarm, CTRLB.GPnEN must be written to zero and the associated COMPn/ALARMn must be written with the correct value.

An example procedure to write the general purpose registers GP0 and GP1 is:

- Wait for any ongoing write to COMP0 to complete (SYNCBUSY.COMP0 = 0). If the RTC is operating in Mode 1, wait for any ongoing write to COMP1 to complete as well (SYNCBUSY.COMP1 = 0).
- 2. Write CTRLB.GP0EN = 1 if GP0 is needed.
- 3. Write GP0 if needed.
- 4. Wait for any ongoing write to GP0 to complete (SYNCBUSY.GP0 = 0). Note that GP1 will also show as busy when GP0 is busy.
- 5. Write GP1 if needed.

The following table provides the correspondence of General Purpose Registers and the COMPARE/ ALARM read or write buffer in all RTC modes.

Table 27-2. General Purpose Registers Versus Compare/Alarm Registers: n in 0, 2, 4, 6...

Register	Mode 0	Mode 1	Mode 2	Write Before
GPn	COMPn/2 write buffer	(COMPn , COMPn +1) write buffer	ALARMn/2 write buffer	GPn+1
GPn+1	COMPn/2 read buffer	(COMPn , COMPn +1) read buffer	ALARMn/2 read buffer	-

27.6.8.4 Tamper Detection

The RTC provides four tamper channels that can be used for tamper detection.

The action of each tamper channel is configured using the Input n Action bits in the Tamper Control register (TAMPCTRL.INnACT):

- Off: Detection for tamper channel n is disabled.
- Wake: A transition on INn input (tamper channel n) matching TAMPCTRL.TAMPLVLn will be detected and the tamper interrupt flag (INTFLAG.TAMPER) will be set. The RTC value will not be captured in the TIMESTAMP register.
- Capture: A transition on INn input (tamper channel n) matching TAMPCTRL.TAMPLVLn will be detected and the tamper interrupt flag (INTFLAG.TAMPER) will be set. The RTC value will be captured in the TIMESTAMP register.

27.10.13 General Purpose n

Name:	GP
Offset:	0x40 + n*0x04 [n=01]
Reset:	0x00000000
Property:	-

Bit	31	30	29	28	27	26	25	24
[GP[3	1:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
[GP[2	3:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				GP[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
[GP	7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 31:0 - GP[31:0] General Purpose

These bits are for user-defined general purpose use, see 27.6.8.3 General Purpose Registers.

27.12.2 Control B in Clock/Calendar mode (CTRLA.MODE=2)

Name:	CTRLB
Offset:	0x2
Reset:	0x0000
Property:	PAC Write-Protection, Enable-Protected

Bit	15	14	13	12	11	10	9	8
	SEPTO		ACTF[2:0]				DEBF[2:0]	
Access	R/W	R/W	R/W	R/W		R/W	R/W	R/W
Reset	0	0	0	0		0	0	0
Bit	7	6	5	4	3	2	1	0
	DMAEN	RTCOUT	DEBASYNC	DEBMAJ				GP0EN
Access	R/W	R/W	R/W	R/W				R/W
Reset	0	0	0	0				0

Bit 15 – SEPTO Separate Tamper Outputs

Value	Description
0	IN[n] is compared tp OUT[0] (backward-compatible).
1	IN[n] is compared tp OUT[n].

Bits 14:12 – ACTF[2:0] Active Layer Frequency

These bits define the prescaling factor for the RTC clock output (OUT) used during active layer protection in terms of the CLK_RTC.

Value	Name	Description
0x0	DIV2	CLK_RTC_OUT = CLK_RTC / 2
0x1	DIV4	CLK_RTC_OUT = CLK_RTC / 4
0x2	DIV8	CLK_RTC_OUT = CLK_RTC / 8
0x3	DIV16	CLK_RTC_OUT = CLK_RTC / 16
0x4	DIV32	CLK_RTC_OUT = CLK_RTC / 32
0x5	DIV64	CLK_RTC_OUT = CLK_RTC / 64
0x6	DIV128	CLK_RTC_OUT = CLK_RTC / 128
0x7	DIV256	CLK_RTC_OUT = CLK_RTC / 256

Bits 10:8 – DEBF[2:0] Debounce Frequency

These bits define the prescaling factor for the input debouncers in terms of the CLK_RTC.

Value	Name	Description
0x0	DIV2	CLK_RTC_DEB = CLK_RTC / 2
0x1	DIV4	CLK_RTC_DEB = CLK_RTC / 4
0x2	DIV8	CLK_RTC_DEB = CLK_RTC / 8
0x3	DIV16	CLK_RTC_DEB = CLK_RTC / 16
0x4	DIV32	CLK_RTC_DEB = CLK_RTC / 32
0x5	DIV64	CLK_RTC_DEB = CLK_RTC / 64
0x6	DIV128	CLK_RTC_DEB = CLK_RTC / 128
0x7	DIV256	CLK_RTC_DEB = CLK_RTC / 256

27.12.13 General Purpose n

Name:	GP
Offset:	0x40 + n*0x04 [n=01]
Reset:	0x0000000
Property:	-

Bit	31	30	29	28	27	26	25	24
[GP[3	1:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
[GP[2	3:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				GP[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
[GP	7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 31:0 - GP[31:0] General Purpose

These bits are for user-defined general purpose use, see 27.6.8.3 General Purpose Registers.

28.8.17 Channel ID

	Name: Offset: Reset: Property:	CHID 0x3F 0x00 -						
Bit	7	6	5	4	3	2	1	0
						ID[3:0]	
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0

Bits 3:0 - ID[3:0] Channel ID

These bits define the channel number that will be affected by the channel registers (CH*). Before reading or writing a channel register, the channel ID bit group must be written first.

31.8.4 Interrupt Flag Status and Clear

Name:	INTFLAG
Offset:	0x006
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
							DRP	ERR
Access							R/W	R/W
Reset							0	0

Bit 1 – DRP Data Remanence Prevention Complete Interrupt

This flag is set when the data remanence prevention routine has completed, and an interrupt request will be generated if INTENCLR.DRP/INTENSET.DRP is one.

Writing a zero to this bit has no effect.

Writing a one to this bit clears the data remanence prevention complete interrupt flag.

Value	Description
0	Data remanence prevention complete interrupt is disabled.
1	Data remanence prevention complete interrupt is enabled.

Bit 0 – ERR TrustRAM Read Error Interrupt

This flag is set when an error is detected in the TrustRAM readout, and an interrupt request will be generated if INTENCLR.ERR/INTENSET.ERR is one.

Writing a zero to this bit has no effect.

Writing a one to this bit clears the TrustRAM read error interrupt flag.

Value	Description
0	TrustRAM read error interrupt is disabled.
1	TrustRAM read error interrupt is enabled.

SAM L10/L11 Family

PORT - I/O Pin Controller

Table 32-4. PORT Event x Action (x = [3..0])

Value	Name	Description
0x0	OUT	Output register of pin will be set to level of event.
0x1	SET	Set output register of pin on event.
0x2	CLR	Clear output register of pin on event.
0x3	TGL	Toggle output register of pin on event.

Table 32-5. PORT Event x Pin Identifier (x = [3..0])

Value	Name	Description
0x0	PIN0	Event action to be executed on PIN 0.
0x1	PIN1	Event action to be executed on PIN 1.
0x31	PIN31	Event action to be executed on PIN 31.

Important: Only EVSYS channel 0 to 3 can be configured as synchronous or resynchronized.

Related Links

19.6.2.6 Peripheral Clock Masking18. GCLK - Generic Clock Controller

33.4.4 DMA

Not applicable.

33.4.5 Interrupts

The interrupt request line is connected to the Interrupt Controller. Using the EVSYS interrupts requires the interrupt controller to be configured first. Refer to *Nested Vector Interrupt Controller* for details.

33.4.6 Events

Not applicable.

33.4.7 Debug Operation

When the CPU is halted in debug mode, this peripheral will continue normal operation. If the peripheral is configured to require periodical service by the CPU through interrupts or similar, improper operation or data loss may result during debugging. This peripheral can be forced to halt operation during debugging.

33.4.8 Register Access Protection

Registers with write-access can be optionally write-protected by the Peripheral Access Controller (PAC), except for the following:

- Channel Pending Interrupt (INTPEND)
- Channel n Interrupt Flag Status and Clear (CHINTFLAGn)

Note: Optional write-protection is indicated by the "PAC Write-Protection" property in the register description.

Write-protection does not apply for accesses through an external debugger.

33.4.9 SAM L11 TrustZone Specific Register Access Protection

When the EVSYS is not PAC secured, non-secure and secure code can both access all functionalities. When the EVSYS is PAC secured, all registers are by default available in the secure alias only.

A PAC secured EVSYS can open up individual event channels and event users for non-secure access. This is done using the NONSECCHAN and NONSECUSER registers. When a channel or event user has been configured as non-secure, it can be handled from non-secure code using the EVSYS module non-secure alias. Since only Secured code has the rights to modify the NONSECCHAN and NONSECUSER registers, an interrupt-based mechanism has been added to let Non Secured code know when these registers have been changed by Secured code. A single flag called NSCHK in the INTFLAG register will rise should changes, conditioned by the NSCHKCHAN and NSCHKUSER registers, occur in the NONSECCHAN and NONSECUSER registers.

Note: Refer to the Mix-Secure Peripherals section in the SAM L11 Security Features chapter.

33.4.10 Analog Connections

Not applicable.

35.8 Register Description

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16-, and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Some registers require synchronization when read and/or written. Synchronization is denoted by the "Read-Synchronized" and/or "Write-Synchronized" property in each individual register description.

Optional write-protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write-Protection" property in each individual register description.

Some registers are enable-protected, meaning they can only be written when the module is disabled. Enable-protection is denoted by the "Enable-Protected" property in each individual register description.

On **SAM L11** devices, this peripheral has different access permissions depending on PAC Security Attribution (Secure or Non-Secure):

- If the peripheral is configured as Non-Secure in the PAC:
 - Secure access and Non-Secure access are granted
- If the peripheral is configured as Secure in the PAC:
 - Secure access is granted
 - Non-Secure access is discarded (Write is ignored, read 0x0) and a PAC error is triggered

Refer to Peripherals Security Attribution for more information.

38.7.1.4 Event Control

Name:	EVCTRL
Offset:	0x06
Reset:	0x0000
Property:	PAC Write-Protection, Enable-Protected

Bit	15	14	13	12	11	10	9	8
			MCEOx	MCEOx				OVFEO
Access			R/W	R/W				R/W
Reset			0	0				0
Bit	7	6	5	4	3	2	1	0
			TCEI	TCINV			EVACT[2:0]	
Access			R/W	R/W		R/W	R/W	R/W
Reset			0	0		0	0	0

Bits 13,12 – MCEOx Match or Capture Channel x Event Output Enable [x = 1..0] These bits enable the generation of an event for every match or capture on channel x.

Value	Description
0	Match/Capture event on channel x is disabled and will not be generated.
1	Match/Capture event on channel x is enabled and will be generated for every compare/
	capture.

Bit 8 - OVFEO Overflow/Underflow Event Output Enable

This bit enables the Overflow/Underflow event. When enabled, an event will be generated when the counter overflows/underflows.

Value	Description
0	Overflow/Underflow event is disabled and will not be generated.
1	Overflow/Underflow event is enabled and will be generated for every counter overflow/
	underflow.

Bit 5 - TCEI TC Event Enable

This bit is used to enable asynchronous input events to the TC.

Value	Description
0	Incoming events are disabled.
1	Incoming events are enabled.

Bit 4 – TCINV TC Inverted Event Input Polarity

This bit inverts the asynchronous input event source.

Value	Description
0	Input event source is not inverted.
1	Input event source is inverted.

Bits 2:0 – EVACT[2:0] Event Action

These bits define the event action the TC will perform on an event.

SAM L10/L11 Family

TC – Timer/Counter

Value	Name	Description
0x0	OFF	Event action disabled
0x1	RETRIGGER	Start, restart or retrigger TC on event
0x2	COUNT	Count on event
0x3	START	Start TC on event
0x4	STAMP	Time stamp capture
0x5	PPW	Period captured in CC0, pulse width in CC1
0x6	PWP	Period captured in CC1, pulse width in CC0
0x7	PW	Pulse width capture

38.7.3.10 Driver Control

Name:	DRVCTRL
Offset:	0x0D
Reset:	0x00
Property:	PAC Write-Protection, Enable-Protected

Bit	7	6	5	4	3	2	1	0
								INVENx
Access								R/W
Reset								0

Bit 0 – INVENx Output Waveform x Invert Enable

Bit x of INVEN[1:0] selects inversion of the output or capture trigger input of channel x.

Value	Description
0	Disable inversion of the WO[x] output and IO input pin.
1	Enable inversion of the WO[x] output and IO input pin.

- If the peripheral is configured as Secure in the PAC:
 - Secure access is granted
 - Non-Secure access is discarded (Write is ignored, read 0x0) and a PAC error is triggered

Refer to Peripherals Security Attribution for more information.

40.5.10 Analog Connections

Not applicable.

40.6 Functional Description

40.6.1 Principle of Operation

Configurable Custom Logic (CCL) is a programmable logic block that can use the device port pins, internal peripherals, and the internal Event System as both input and output channels. The CCL can serve as glue logic between the device and external devices. The CCL can eliminate the need for external logic component and can also help the designer overcome challenging real-time constrains by combining core independent peripherals in clever ways to handle the most time critical parts of the application independent of the CPU.

40.6.2 Operation

40.6.2.1 Initialization

The following bits are enable-protected, meaning that they can only be written when the corresponding even LUT is disabled (LUTCTRLx.ENABLE=0):

• Sequential Selection bits in the Sequential Control x (SEQCTRLx.SEQSEL) register

The following registers are enable-protected, meaning that they can only be written when the corresponding LUT is disabled (LUTCTRLx.ENABLE=0):

• LUT Control x (LUTCTRLx) register, except the ENABLE bit

Enable-protected bits in the LUTCTRLx registers can be written at the same time as LUTCTRLx.ENABLE is written to '1', but not at the same time as LUTCTRLx.ENABLE is written to '0'.

Enable-protection is denoted by the Enable-Protected property in the register description.

40.6.2.2 Enabling, Disabling, and Resetting

The CCL is enabled by writing a '1' to the Enable bit in the Control register (CTRL.ENABLE). The CCL is disabled by writing a '0' to CTRL.ENABLE.

Each LUT is enabled by writing a '1' to the Enable bit in the LUT Control x register (LUTCTRLx.ENABLE). Each LUT is disabled by writing a '0' to LUTCTRLx.ENABLE.

The CCL is reset by writing a '1' to the Software Reset bit in the Control register (CTRL.SWRST). All registers in the CCL will be reset to their initial state, and the CCL will be disabled. Refer to 40.8.1 CTRL for details.

40.6.2.3 Lookup Table Logic

The lookup table in each LUT unit can generate any logic expression OUT as a function of three inputs (IN[2:0]), as shown in Figure 40-2. One or more inputs can be masked. The truth table for the expression is defined by TRUTH bits in LUT Control x register (LUTCTRLx.TRUTH).

- Interrupt Flag Status and Clear (INTFLAG) register
- Data Buffer (DATABUF) register

Optional write-protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write-Protection" property in each individual register description.

PAC write-protection does not apply to accesses through an external debugger

Related Links

15. PAC - Peripheral Access Controller

43.5.9 SAM L11 TrustZone Specific Register Access Protection

On **SAM L11** devices, this peripheral has different access permissions depending on PAC Security Attribution (Secure or Non-Secure):

- If the peripheral is configured as Non-Secure in the PAC:
 - Secure access and Non-Secure access are granted
- If the peripheral is configured as Secure in the PAC:
 - Secure access is granted
 - Non-Secure access is discarded (Write is ignored, read 0x0) and a PAC error is triggered

Refer to Peripherals Security Attribution for more information.

43.5.10 Analog Connections

The DAC has one output pin (VOUT) and one analog input pin (VREFA) that must be configured first.

When internal input is used, it must be enabled before DAC Controller is enabled.

43.6 Functional Description

43.6.1 Principle of Operation

The DAC converts the digital value located in the Data register (DATA) into an analog voltage on the DAC output (VOUT).

A conversion is started when new data is written to the Data register. The resulting voltage is available on the DAC output after the conversion time. A conversion can also be started by input events from the Event System.

43.6.2 Basic Operation

43.6.2.1 Initialization

The following registers are enable-protected, meaning they can only be written when the DAC is disabled (CTRLA.ENABLE is zero):

- Control B register (CTRLB)
- Event Control register (EVCTRL)

Enable-protection is denoted by the Enable-Protected property in the register description.

Before enabling the DAC, it must be configured by selecting the voltage reference using the Reference Selection bits in the Control B register (CTRLB.REFSEL).

43.6.2.2 Enabling, Disabling and Resetting

The DAC Controller is enabled by writing a '1' to the Enable bit in the Control A register (CTRLA.ENABLE). The DAC Controller is disabled by writing a '0' to CTRLA.ENABLE.