E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M23
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	17
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.63V
Data Converters	A/D 5x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	24-SSOP (0.209", 5.30mm Width)
Supplier Device Package	24-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsaml11d14a-yft

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

SAM L10/L11 Family

DSU - Device Service Unit

Offset	Name	Bit Pos.								
		7:0	CCLA	SS[3:0]		PREAMBLE[3:0]				
0.1554	CID1	15:8								
UXIFF4	CIDT	23:16								
		31:24								
		7:0	PREAMBLEB2[7:0]							
0.1559	CID2	15:8								
UXIFFO	CIDZ	23:16								
		31:24								
		7:0		:	PREAMB	LEB3[7:0]				
	CID3	15:8								
UNIFFC	CIDS	23:16								
		31:24								

16.12 Register Description

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Some registers are optionally write-protected by the Peripheral Access Controller (PAC). Optional PAC write-protection is denoted by the "PAC Write-Protection" property in each individual register description. For details, refer to 16.5.7 Register Access Protection.

On **SAM L11** devices, this peripheral has different access permissions depending on PAC Security Attribution (Secure or Non-Secure):

- If the peripheral is configured as Non-Secure in the PAC:
 - Secure access and Non-Secure access are granted
- If the peripheral is configured as Secure in the PAC:
 - Secure access is granted
 - Non-Secure access is discarded (Write is ignored, read 0x0) and a PAC error is triggered

Refer to Peripherals Security Attribution for more information.

21.8.1 Reset Cause

Name:RCAUSEOffset:0x00Property:-

When a Reset occurs, the bit corresponding to the Reset source is set to '1' and all other bits are written to '0'.

Bit	7	6	5	4	3	2	1	0
		SYST	WDT	EXT		BOD33	BOD12	POR
Access		R	R	R		R	R	R
Reset		х	х	х		х	х	х

Bit 6 - SYST System Reset Request

This bit is set if a System Reset Request has occurred. Refer to the Cortex processor documentation for more details.

Bit 5 – WDT Watchdog Reset This bit is set if a Watchdog Timer Reset has occurred.

Bit 4 – EXT External Reset

This bit is set if an external Reset has occurred.

Bit 2 – BOD33 Brown Out 33 Detector Reset This bit is set if a BOD33 Reset has occurred.

Bit 1 – BOD12 Brown Out 12 Detector Reset This bit is set if a BOD12 Reset has occurred.

Bit 0 – POR Power On Reset This bit is set if a POR has occurred.

27.7 Register Summary - Mode 0 - 32-Bit Counter

Offset	Name	Bit Pos.								
0×00	CTDLA	7:0	MATCHCLR				MOD	E[1:0]	ENABLE	SWRST
0000	CIRLA	15:8	COUNTSYNC	COUNTSYNC GPTRST				PRESCALER[3:0]		
000		7:0	DMAEN	RTCOUT	DEBASYNC	DEBMAJ				GP0EN
0x02	CIRLB	15:8	SEPTO		ACTF[2:0]				DEBF[2:0]	
		7:0	PEREO7	PEREO6	PEREO5	PEREO4	PEREO3	PEREO2	PEREO1	PEREO0
004	EVCTRL	15:8	OVFEO	TAMPEREO						CMPEO0
0x04		23:16								TAMPEVEI
		31:24								PERDEO
000		7:0	PER7	PER6	PER5	PER4	PER3	PER2	PER1	PER0
0x08	INTENCLR	15:8	OVF	TAMPER						CMP0
0.00	INTENOET	7:0	PER7	PER6	PER5	PER4	PER3	PER2	PER1	PER0
UXUA	INTENSET	15:8	OVF	TAMPER						CMP0
0.00		7:0	PER7	PER6	PER5	PER4	PER3	PER2	PER1	PER0
UXUC	INTELAG	15:8	OVF	TAMPER						CMP0
0x0E	DBGCTRL	7:0								DBGRUN
0x0F	Reserved									
		7:0			COMP0		COUNT	FREQCORR	ENABLE	SWRST
	0.4.0.0.10.4	15:8	COUNTSYNC							
0x10	UX10 SYNCBUSY								GPr	n[1:0]
		31:24								
0x14	FREQCORR	7:0	SIGN				VALUE[6:0]			
0x15										
	Reserved									
0x17										
		7:0				COUN	IT[7:0]			
0v18	COUNT	15:8				COUN	T[15:8]			
0.10	COONT	23:16				COUNT	Г[23:16]			
		31:24				COUNT	[31:24]			
0x1C										
	Reserved									
0x1F										
		7:0				COM	P[7:0]			
0x20	COMP	15:8				COMF	P[15:8]			
0,20	COMP	23:16				COMP	[23:16]			
		31:24				COMP	[31:24]			
0x24										
	Reserved									
0x3F										
		7:0				GP	[7:0]			
0x40	GPO	15:8				GP[15:8]			
0,40		23:16				GP[2	3:16]			
		31:24				GP[3	1:24]			
0x44	GP1	7:0	GP[7:0]							

RTC – Real-Time Counter

	Name: Offset: Reset: Property:	SYNCBUSY 0x10 0x00000000 -						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Dit	00	22	24	20	10	10	47	10
BIL	23	22	21	20	19	18	17	10
							GPn	[1:0]
Access							R	R
Reset							0	0
Bit	15	14	13	12	11	10	9	8
	COUNTSYNC							
Access	R							
Reset	0							
Bit	7	6	5	4	3	2	1	0
			COMP0		COUNT	FREQCORR	ENABLE	SWRST
Access			R		R	R	R	R
Reset			0		0	0	0	0

27.8.8 Synchronization Busy in COUNT32 mode (CTRLA.MODE=0)

Bits 17:16 - GPn[1:0] General Purpose n Synchronization Busy Status

Value	Description
0	Write synchronization for GPn register is complete.
1	Write synchronization for GPn register is ongoing.

Bit 15 – COUNTSYNC Count Read Sync Enable Synchronization Busy Status

Value	Description
0	Write synchronization for CTRLA.COUNTSYNC bit is complete.
1	Write synchronization for CTRLA.COUNTSYNC bit is ongoing.

Bit 5 – COMP0 Compare 0 Synchronization Busy Status

Value	Description
0	Write synchronization for COMP0 register is complete.
1	Write synchronization for COMP0 register is ongoing.

Bit 3 – COUNT Count Value Synchronization Busy Status

Value	Description
0	Read/write synchronization for COUNT register is complete.
1	Read/write synchronization for COUNT register is ongoing.

30.8.8 Status

Name:	STATUS
Offset:	0x18
Reset:	0x0X00
Property:	Write-Secure

Important: For **SAM L11 Non-Secure** accesses, write accesses (W*) are allowed only if Non-Secure Write is set in NONSEC register.

Bits 4:3 - DALFUSE[1:0] DAL Fuse Value

This field is the current debugger access level fuse value.

Value	Description
0	DAL = 0 : Access to very limited features.
1	DAL = 1 (SAM L11 only): Access to all non-secure memory. Can debug non-secure CPU code.
2	DAL = 2 : Access to all memory. Can debug Secure and non-secure CPU code.
3	Reserved

Bit 2 - READY NVM Ready

Value	Description
0	The NVM controller is busy programming or erasing.
1	The NVM controller is ready to accept a new command.

Bit 1 - LOAD NVM Page Buffer Active Loading

This bit indicates that the NVM page buffer has been loaded with one or more words. Immediately after an NVM load has been performed, this flag is set. It remains set until a page write or a page buffer clear (PBC) command is given.

Bit 0 – PRM Power Reduction Mode

This bit indicates the current NVM power reduction state. The NVM block can be set in power reduction mode in two ways: through the command interface or automatically when entering sleep with SLEEPPRM set accordingly.

30.8.13 Data Scramble Control

Name:	DSCC
Offset:	0x30
Reset:	0x0000000
Property:	PAC Write-Protection, Secure, Enable-Protected

Important: This register is only available for SAM L11 and has no effect for SAM L10.

Bit	31	30	29	28	27	26	25	24
					DSCKE	Y[29:24]		
Access			W/-/W	W/-/W	W/-/W	W/-/W	W/-/W	W/-/W
Reset			0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				DSCKE	Y[23:16]			
Access	W/-/W	W/-/W	W/-/W	W/-/W	W/-/W	W/-/W	W/-/W	W/-/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
51	10	17	10		V[15·9]	10		
1								
Access	VV/-/VV	VV/-/VV	VV/-/VV	VV/-/VV	VV/-/VV	VV/-/VV	VV/-/VV	VV/-/VV
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
[DSCK	EY[7:0]			
Access	W/-/W	W/-/W	W/-/W	W/-/W	W/-/W	W/-/W	W/-/W	W/-/W
Reset	0	0	0	0	0	0	0	0

Bits 29:0 – DSCKEY[29:0] Data Scramble Key

This key value is used for data scrambling of the Secure Data Flash. After reset the key is 0. When written, the new value in the register is an XOR of the value written and the previous value of DSCC.DSCKEY.

This register is write only and will always read back as zero.

This register is Enable-Protected with SECCTRL.DSCEN meaning that it can't be modified when DSCEN=1 otherwise a PAC error is generated.

Updated DSCC.DSCKEY contents <- DSCC.DSCKEY XOR value written.

31.8.2 Interrupt Enable Clear

Name:	INTENCLR
Offset:	0x004
Reset:	0x00
Property:	PAC Write-Protection

Bit	7	6	5	4	3	2	1	0
							DRP	ERR
Access							R/W	R/W
Reset							0	0

Bit 1 – DRP Data Remanence Prevention Complete Interrupt Enable Writing a zero to this bit has no effect.

Writing a one to this bit will clear the Data Remanence Prevention Complete Interrupt Enable bit, which disables the data remanence prevention complete interrupt.

Value	Description
0	Data remanence prevention complete interrupt is disabled.
1	Data remanence prevention complete interrupt is enabled.

Bit 0 – ERR TrustRAM Read Error Interrupt Enable

Writing a zero to this bit has no effect.

Writing a one to this bit will clear the TrustRAM Read Error Interrupt Enable bit, which disables the TrustRAM read error interrupt.

Value	Description
0	TrustRAM read error interrupt is disabled.
1	TrustRAM read error interrupt is enabled.

35.8.12 Data

	Name: Offset: Reset: Property:	DATA 0x28 0x0000 -						
Bit	15	14	13	12	11	10	٩	8
Dit	15	14	15	12	11	10	3	
								DATA[8:8]
Access								R/W
Reset								0
Bit	7	6	5	4	3	2	1	0
				DAT	4[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 8:0 - DATA[8:0] Data

Reading these bits will return the contents of the Receive Data register. The register should be read only when the Receive Complete Interrupt Flag bit in the Interrupt Flag Status and Clear register (INTFLAG.RXC) is set. The status bits in STATUS should be read before reading the DATA value in order to get any corresponding error.

Writing these bits will write the Transmit Data register. This register should be written only when the Data Register Empty Interrupt Flag bit in the Interrupt Flag Status and Clear register (INTFLAG.DRE) is set.

Each interrupt source has its own interrupt flag. The interrupt flag in the Interrupt Flag Status and Clear register (INTFLAG) will be set when the interrupt condition is met. Each interrupt can be individually enabled by writing '1' to the corresponding bit in the Interrupt Enable Set register (INTENSET), and disabled by writing '1' to the corresponding bit in the Interrupt Enable Clear register (INTENCLR).

An interrupt request is generated when the interrupt flag is set and if the corresponding interrupt is enabled. The interrupt request remains active until either the interrupt flag is cleared, the interrupt is disabled, or the SPI is reset. For details on clearing interrupt flags, refer to the INTFLAG register description.

The value of INTFLAG indicates which interrupt is executed. Note that interrupts must be globally enabled for interrupt requests. Refer to *Nested Vector Interrupt Controller* for details.

36.6.4.3 Events

Not applicable.

36.6.5 Sleep Mode Operation

The behavior in Sleep mode is depending on the master/slave configuration and the Run In Standby bit in the Control A register (CTRLA.RUNSTDBY):

- Master operation, CTRLA.RUNSTDBY=1: The peripheral clock GCLK_SERCOM_CORE will continue to run in idle sleep mode and in Standby Sleep mode. Any interrupt can wake up the device.
- Master operation, CTRLA.RUNSTDBY=0: GLK_SERCOMx_CORE will be disabled after the ongoing transaction is finished. Any interrupt can wake up the device.
- Slave operation, CTRLA.RUNSTDBY=1: The Receive Complete interrupt can wake up the device.
- Slave operation, CTRLA.RUNSTDBY=0: All reception will be dropped, including the ongoing transaction.

36.6.6 Synchronization

Due to asynchronicity between the main clock domain and the peripheral clock domains, some registers need to be synchronized when written or read.

The following bits are synchronized when written:

- Software Reset bit in the CTRLA register (CTRLA.SWRST)
- Enable bit in the CTRLA register (CTRLA.ENABLE)
- Receiver Enable bit in the CTRLB register (CTRLB.RXEN)

Note: CTRLB.RXEN is write-synchronized somewhat differently. See also *CTRLB* register for details.

Required write-synchronization is denoted by the "Write-Synchronized" property in the register description.

37.6.2.4.4 Receiving Data Packets (SCLSM=0)

When INTFLAG.SB is set, the I²C master will already have received one data packet. The I²C master must respond by sending either an ACK or NACK. Sending a NACK may be unsuccessful when arbitration is lost during the transmission. In this case, a lost arbitration will prevent setting INTFLAG.SB. Instead, INTFLAG.MB will indicate a change in arbitration. Handling of lost arbitration is the same as for data bit transmission.

37.6.2.4.5 Receiving Data Packets (SCLSM=1)

When INTFLAG.SB is set, the I²C master will already have received one data packet and transmitted an ACK or NACK, depending on CTRLB.ACKACT. At this point, CTRLB.ACKACT must be set to the correct value for the next ACK bit, and the transaction can continue by reading DATA and issuing a command if not in the smart mode.

37.6.2.4.6 High-Speed Mode

High-speed transfers are a multi-step process, see High Speed Transfer.

First, a master code (0b00001nnn, where 'nnn' is a unique master code) is transmitted in Full-speed mode, followed by a NACK since no slaveshould acknowledge. Arbitration is performed only during the Full-speed Master Code phase. The master code is transmitted by writing the master code to the address register (ADDR.ADDR) and writing the high-speed bit (ADDR.HS) to '0'.

After the master code and NACK have been transmitted, the master write interrupt will be asserted. In the meanwhile, the slave address can be written to the ADDR.ADDR register together with ADDR.HS=1. Now in High-speed mode, the master will generate a repeated start, followed by the slave address with RW-direction. The bus will remain in High-speed mode until a stop is generated. If a repeated start is desired, the ADDR.HS bit must again be written to '1', along with the new address ADDR.ADDR to be transmitted.

Figure 37-8. High Speed Transfer

Transmitting in High-speed mode requires the I²C master to be configured in High-speed mode (CTRLA.SPEED=0x2) and the SCL clock stretch mode (CTRLA.SCLSM) bit set to '1'.

37.6.2.4.7 10-Bit Addressing

When 10-bit addressing is enabled by the Ten Bit Addressing Enable bit in the Address register (ADDR.TENBITEN=1) and the Address bit field ADDR.ADDR is written, the two address bytes will be transmitted, see 10-bit Address Transmission for a Read Transaction. The addressed slave acknowledges the two address bytes, and the transaction continues. Regardless of whether the transaction is a read or write, the master must start by sending the 10-bit address with the direction bit (ADDR.ADDR[0]) being zero.

If the master receives a NACK after the first byte, the write interrupt flag will be raised and the STATUS.RXNACK bit will be set. If the first byte is acknowledged by one or more slaves, then the master will proceed to transmit the second address byte and the master will first see the write interrupt flag after the second byte is transmitted. If the transaction direction is read-from-slave, the 10-bit address transmission must be followed by a repeated start and the first 7 bits of the address with the read/write bit equal to '1'.

© 2018 Microchip Technology Inc.

Note that this status will not trigger any interrupt, and should be checked by software to verify that the data were sent correctly. This bit is cleared automatically if responding to an address match with an ACK or a NACK (writing 0x3 to CTRLB.CMD), or INTFLAG.AMATCH is cleared.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the status.

Value	Description
0	No collision detected on last data byte sent.
1	Collision detected on last data byte sent.

Bit 0 - BUSERR Bus Error

The Bus Error bit (STATUS.BUSERR) indicates that an illegal bus condition has occurred on the bus, regardless of bus ownership. An illegal bus condition is detected if a protocol violating start, repeated start or stop is detected on the I2C bus lines. A start condition directly followed by a stop condition is one example of a protocol violation. If a time-out occurs during a frame, this is also considered a protocol violation, and will set STATUS.BUSERR.

This bit is cleared automatically if responding to an address match with an ACK or a NACK (writing 0x3 to CTRLB.CMD) or INTFLAG.AMATCH is cleared.

Writing a '1' to this bit will clear the status.

Writing a '0' to this bit has no effect.

Value	Description
0	No bus error detected.
1	Bus error detected.

SAM L10/L11 Family SERCOM I2C – SERCOM Inter-Integrated Circ...

Name: SYNCBUSY Offset: 0x1C Reset: 0x00000000 Bit 31 30 29 28 27 26 25 24 Access Reset Bit 23 22 21 20 19 18 17 16 Access Reset Bit 15 14 13 12 11 10 9 8 Access Reset Bit 7 6 5 4 3 2 1 0 SYSOP ENABLE SWRST Access R R R 0 0 0 Reset

Bit 2 – SYSOP System Operation Synchronization Busy

Writing CTRLB.CMD, STATUS.BUSSTATE, ADDR, or DATA when the SERCOM is enabled requires synchronization. When written, the SYNCBUSY.SYSOP bit will be set until synchronization is complete.

Value	Description
0	System operation synchronization is not busy.
1	System operation synchronization is busy.

Bit 1 – ENABLE SERCOM Enable Synchronization Busy

Enabling and disabling the SERCOM (CTRLA.ENABLE) requires synchronization. When written, the SYNCBUSY.ENABLE bit will be set until synchronization is complete.

Value	Description
0	Enable synchronization is not busy.
1	Enable synchronization is busy.

Bit 0 – SWRST Software Reset Synchronization Busy

Resetting the SERCOM (CTRLA.SWRST) requires synchronization. When written, the SYNCBUSY.SWRST bit will be set until synchronization is complete.

Value	Description
0	SWRST synchronization is not busy.
1	SWRST synchronization is busy.

37.10.8 Synchronization Busy

38.7.2.6 Interrupt Enable Set

Name:INTENSETOffset:0x09Reset:0x00Property:PAC Write-Protection

This register allows the user to enable an interrupt without doing a read-modify-write operation. Changes in this register will also be reflected in the Interrupt Enable Clear register (INTENCLR).

Bit	7	6	5	4	3	2	1	0
				MCx			ERR	OVF
Access				R/W			R/W	R/W
Reset				0			0	0

Bit 4 – MCx Match or Capture Channel x Interrupt Enable Writing a '0' to these bits has no effect.

Writing a '1' to MCx will set the corresponding Match or Capture Channel x Interrupt Enable bit, which enables the Match or Capture Channel x interrupt.

Value	Description
0	The Match or Capture Channel x interrupt is disabled.
1	The Match or Capture Channel x interrupt is enabled.

Bit 1 – ERR Error Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will set the Error Interrupt Enable bit, which enables the Error interrupt.

Value	Description
0	The Error interrupt is disabled.
1	The Error interrupt is enabled.

Bit 0 – OVF Overflow Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will set the Overflow Interrupt Enable bit, which enables the Overflow interrupt request.

Value	Description
0	The Overflow interrupt is disabled.
1	The Overflow interrupt is enabled.

38.7.3.12 Synchronization Busy

Bit 31 30 29 28 27 26 25 24 Access Reset Image: Strategy of the strate		Name: Offset: Reset: Property:	SYNCBUSY 0x10 0x00000000 -						
Access Reset Image: Constraint of the set of the	Bit	31	30	29	28	27	26	25	24
Access Reset Bit 23 22 21 20 19 18 17 16 Access Reset Image: state									
Reset Bit 23 22 21 20 19 18 17 16 Access Reset Access Ac	Access								
Bit 23 22 21 20 19 18 17 16 Access Reset Image: Comparison of the status Bit 7 6 5 4 3 2 1 0	Reset								
Bit 23 22 21 20 19 18 17 16 Access Reset Image: Constraint of the state of th									
Access Reset Bit 15 14 13 12 11 10 9 8 Access Reset Bit 7 6 5 4 3 2 1 0	Bit	23	22	21	20	19	18	17	16
Access Reset Bit 15 14 13 12 11 10 9 8 Access Reset Bit 7 6 5 4 3 2 1 0 EVENTS									
Reset Bit 15 14 13 12 11 10 9 8 Access Reset Image: Complex state of the sta	Access								
Bit 15 14 13 12 11 10 9 8 Access Reset Image: State of the state	Reset								
Bit 15 14 13 12 11 10 9 8 Access Reset Bit 7 6 5 4 3 2 1 0					10				
Access Reset Bit 7 6 5 4 3 2 1 0	Bit	15	14	13	12	11	10	9	8
Access Reset Bit 7 6 5 4 3 2 1 0									
Reset Bit 7 6 5 4 3 2 1 0	Access								
Bit 7 6 5 4 3 2 1 0	Reset								
	Bit	7	6	5	4	3	2	1	0
	Dit		CCx	PFR	COUNT	STATUS	CTRI B	ENABLE	SWRST
Access R R R R R R R R R	Access		R	R		R	R	R	R
	Poset		0	0	0	0	0	0	0

Bit 6 – CCx Compare/Capture Channel x Synchronization Busy For details on CC channels number, refer to each TC feature list.

This bit is set when the synchronization of CCx between clock domains is started.

This bit is also set when the CCBUFx is written, and cleared on update condition. The bit is automatically cleared when the STATUS.CCBUFx bit is cleared.

Bit 5 – PER PER Synchronization Busy

This bit is cleared when the synchronization of PER between the clock domains is complete.

This bit is set when the synchronization of PER between clock domains is started.

This bit is also set when the PER is written, and cleared on update condition. The bit is automatically cleared when the STATUS.PERBUF bit is cleared.

Bit 4 – COUNT COUNT Synchronization Busy

This bit is cleared when the synchronization of COUNT between the clock domains is complete.

This bit is set when the synchronization of COUNT between clock domains is started.

Bit 3 – STATUS STATUS Synchronization Busy

This bit is cleared when the synchronization of STATUS between the clock domains is complete.

© 2018 Microchip Technology Inc.

39.8.3 Interrupt Enable Clear

Name:INTENCLROffset:0x08Reset:0x00Property:PAC Write-Protection

This register allows the user to disable an interrupt without doing a read-modify-write operation. Changes in this register will also be reflected in the Interrupt Enable Set (INTENSET) register.

Bit	7	6	5	4	3	2	1	0
								DATARDY
Access								R/W
Reset								0

Bit 0 – DATARDY Data Ready Interrupt Enable

Writing a '1' to this bit will clear the Data Ready Interrupt Enable bit, which disables the corresponding interrupt request.

Value	Description
0	The DATARDY interrupt is disabled.
1	The DATARDY interrupt is enabled.

41.8.3 Reference Control

Name:	REFCTRL
Offset:	0x02
Reset:	0x00
Property:	PAC Write-Protection, Enable-Protected

Bit	7	6	5	4	3	2	1	0
	REFCOMP					REFSI	EL[3:0]	
Access	R/W				R/W	R/W	R/W	R/W
Reset	0				0	0	0	0

Bit 7 – REFCOMP Reference Buffer Offset Compensation Enable

The gain error can be reduced by enabling the reference buffer offset compensation. This will increase the start-up time of the reference.

Value	Description
0	Reference buffer offset compensation is disabled.
1	Reference buffer offset compensation is enabled.

Bits 3:0 - REFSEL[3:0] Reference Selection

These bits select the reference for the ADC.

Value	Name	Description
0x0	INTREF	Internal variable reference voltage, refer to the SUPC.VREF register for voltage
		reference value
x01	INTVCC0	1/1.6 VDDANA
0x2	INTVCC1	1/2 VDDANA (only for VDDANA > 2.0V)
0x3	VREFA	External reference
0x4	VREFB	External reference
0x5	INTVCC2	VDDANA
0x6 -		Reserved
0xF		

41.8.10 Control C

Name:	CTRLC
Offset:	0x0A
Reset:	0x0000
Property:	PAC Write-Protection, Write-Synchronized

Bit	15	14	13	12	11	10	9	8	
						WINMODE[2:0]			
Access						R/W	R/W	R/W	
Reset						0	0	0	
Bit	7	6	5	4	3	2	1	0	
			RESSEL[1:0]		CORREN	FREERUN	LEFTADJ	DIFFMODE	
Access			R/W	R/W	R/W	R/W	R/W	R/W	
Reset			0	0	0	0	0	0	

Bits 10:8 – WINMODE[2:0] Window Monitor Mode These bits enable and define the window monitor mode.

Value	Name	Description
0x0	DISABLE	No window mode (default)
0x1	MODE1	RESULT > WINLT
0x2	MODE2	RESULT < WINUT
0x3	MODE3	WINLT < RESULT < WINUT
0x4	MODE4	WINUT < RESULT < WINLT
0x5 -		Reserved
0x7		

Bits 5:4 - RESSEL[1:0] Conversion Result Resolution

These bits define whether the ADC completes the conversion 12-, 10- or 8-bit result resolution.

Value	Name	Description
0x0	12BIT	12-bit result
0x1	16BIT	For averaging mode output
0x2	10BIT	10-bit result
0x3	8BIT	8-bit result

Bit 3 – CORREN Digital Correction Logic Enabled

Value	Description
0	Disable the digital result correction.
1	Enable the digital result correction. The ADC conversion result in the RESULT register is then corrected for gain and offset based on the values in the GAINCORR and OFFSETCORR registers. Conversion time will be increased by 13 cycles according to the value in the Offset Correction Value bit group in the Offset Correction register.

Bit 2 – FREERUN Free Running Mode

Related Links

15. PAC - Peripheral Access Controller

42.5.9 SAM L11 TrustZone Specific Register Access Protection

On **SAM L11** devices, this peripheral has different access permissions depending on PAC Security Attribution (Secure or Non-Secure):

- If the peripheral is configured as Non-Secure in the PAC:
 - Secure access and Non-Secure access are granted
- If the peripheral is configured as Secure in the PAC:
 - Secure access is granted
 - Non-Secure access is discarded (Write is ignored, read 0x0) and a PAC error is triggered

Refer to Peripherals Security Attribution for more information.

42.5.10 Analog Connections

Each comparator has up to four I/O pins that can be used as analog inputs. Each pair of comparators shares the same four pins. These pins must be configured for analog operation before using them as comparator inputs.

Any internal reference source, such as a bandgap voltage reference, OPAMP2,or DAC must be configured and enabled prior to its use as a comparator input.

The analog signals of AC, ADC, DAC and OPAMP can be interconnected. The AC and ADC peripheral can request the OPAMP using an analog ONDEMAND functionality.

See Analog Connections of Peripherals for details.

42.6 Functional Description

42.6.1 Principle of Operation

Each comparator has one positive input and one negative input. Each positive input may be chosen from a selection of analog input pins. Each negative input may be chosen from a selection of both analog input pins and internal inputs, such as a bandgap voltage reference.

The digital output from the comparator is '1' when the difference between the positive and the negative input voltage is positive, and '0' otherwise.

The individual comparators can be used independently (normal mode) or paired to form a window comparison (window mode).

42.6.2 Basic Operation

42.6.2.1 Initialization

Some registers are enable-protected, meaning they can only be written when the module is disabled.

The following register is enable-protected:

• Event Control register (EVCTRL)

Enable-protection is denoted by the "Enable-Protected" property in each individual register description.

42.6.2.2 Enabling, Disabling and Resetting

The AC is enabled by writing a '1' to the Enable bit in the Control A register (CTRLA.ENABLE). The AC is disabled writing a '0' to CTRLA.ENABLE.

If an operation that requires synchronization is executed while its busy bit is one, the operation is discarded and an error is generated.

The following bits need synchronization when written:

- Software Reset bit in the Control A register (CTRLA.SWRST)
- Enable bit in the Control A register (CTRLA.ENABLE)
- All bits in the Data register (DATA)
- All bits in the Data Buffer register (DATABUF)

Write-synchronization is denoted by the Write-Synchronized property in the register description.

No bits need synchronization when read.

43.6.8 Additional Features

43.6.8.1 DAC as an Internal Reference

The DAC output can be internally enabled as input to the analog comparator. This is enabled by writing a one to the Internal Output Enable bit in the Control B register (CTRLB.IOEN). It is possible to have the internal and external output enabled simultaneously.

The DAC output can also be enabled as input to the Analog-to-Digital Converter. In this case, the output buffer must be enabled.

43.6.8.2 Data Buffer

The Data Buffer register (DATABUF) and the Data register (DATA) are linked together to form a two-stage FIFO. The DAC uses the Start Conversion event to load data from DATABUF into DATA and start a new conversion. The Start Conversion event is enabled by writing a one to the Start Event Input bit in the Event Control register (EVCTRL.STARTEI). If a Start Conversion event occurs when DATABUF is empty, an Underrun interrupt request is generated if the Underrun interrupt is enabled.

The DAC can generate a Data Buffer Empty event when DATABUF becomes empty and new data can be loaded to the buffer. The Data Buffer Empty event is enabled by writing a one to the Empty Event Output bit in the Event Control register (EVCTRL.EMPTYEO). A Data Buffer Empty interrupt request is generated if the Data Buffer Empty interrupt is enabled.

43.6.8.3 Voltage Pump

When the DAC is used at operating voltages lower than 2.5V, the voltage pump must be enabled. This enabling is done automatically, depending on operating voltage.

The voltage pump can be disabled by writing a one to the Voltage Pump Disable bit in the Control B register (CTRLB.VPD). This can be used to reduce power consumption when the operating voltage is above 2.5V.

The voltage pump uses the asynchronous GCLK_DAC clock, and requires that the clock frequency be at least four times higher than the sampling period.

43.6.8.4 Dithering mode

In dithering mode, DATA is a 14-bit signed value where DATA[13:4] is the 10-bit data converted by DAC and DATA[3:0] the dither bits, used to minimize the quantization error.

The principle is to make 16 sub-conversions of DATA[13:4] value or (DATA[13:4] + 1) value so that by averaging those 2 values, the 14-bit value (DATA[13:0]) conversion is accurate.

To operate, START event must be configured to generate 16 events for each DATA[15:0] conversion and DATABUF must be loaded every 16 DAC conversions. EMPTY event and DMA request are therefore generated every 16 DATABUF to DATA transfer.

SAM L10/L11 Family

125°C Electrical Characteristics

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Units
		VREF= INT1V	VDD = 1.62V	+/-0,4	+/-0,7	+/-4.2	
			VDD = 3.63V	+/-0,4	+/-0,8	+/-6	
DNL	Differential non-linearity	VREF= Ext 1.0V	VDD = 1.62V	+/-0,1	+/-0,3	+/-2	LSB
			VDD = 3.63V	+/-0,1	+/-0,3	+/-1.5	
		VREF= VDDANA	VDD = 1.62V	+/-0,1	+-0,2	+/-3.0	
			VDD = 3.63V	+/-0,1	+/-0,2	+/-1.6	
		VREF= INT1V	VDD = 1.62V	+/-0,3	+/-0,6	+/-4.3	
			VDD = 3.63V	+/-0,3	+/-0,8	+/-7	
	Gain error	VREF= Ext 1.0V		-	+/-4	+/-16	mV
		VREF= VDDANA		-	+/-12	+/-60	mV
		VREF= INT1V		-	+/-1	+/-23	mV
	Offset error	VREF= Ext 1.0V		-	+/-1	+/-13	mV
		VREF= VDDANA		-	+/-2.5	+/-32	mV
		VREF= INT1V		-	+/-1.5	+/-30	mV

Note:

1. All values measured using a conversion rate of 350ksps.

47.4.4 Analog Comparator Characteristics

Table 47-13. Electrical and Timing ⁽¹⁾

Symbol	Parameters	Conditions	Min.	Тур	Max.	Unit
PNIVR	Positive and Negative input range voltage		0	-	V _{DDANA}	V
ICMR	Input common mode range		0	-	V _{DDANA} -0.1	V
Off	Offset	COMPCTRLn.SPEED=0x0	-70	-4.5/+1.5	70	mV
		COMPCTRLn.SPEED=0x1	-55	-4.5/+1.5	55	
		COMPCTRLn.SPEED=0x2	-48	-4.5/+1.5	48	
		COMPCTRLn.SPEED=0x3	-42	-4.5/+1.5	42	
V _{Hys}	Hysteresis	COMPCTRLn.HYST=0x0	10	45	79	mV
		COMPCTRLn.HYST=0x1	22	70	115	
		COMPCTRLn.HYST=0x2	37	90	138	
		COMPCTRLn.HYST=0x3	49	105	159	