

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

·XF

Product Status	Active
Core Processor	ARM® Cortex®-M23
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	17
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.63V
Data Converters	A/D 5x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	24-VFQFN Exposed Pad
Supplier Device Package	24-VQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsaml11d15a-mft

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Memories

Bit Pos.	Name	Usage	Factory Setting	Related Peripheral Register
25	WDT_RUNSTDBY	WDT Runstdby at power-on	0x0	WDT.CTRLA
26	WDT_ENABLE	WDT Enable at power-on	0x0	WDT.CTRLA
27	WDT_ALWAYSON	WDT Always-On at power-on	0x0	WDT.CTRLA
31:28	WDT_PER	WDT Period at power-on	0xB	WDT.CONFIG
35:32	WDT_WINDOW	WDT Window mode time-out at power-on	0xB	WDT.CONFIG
39:36	WDT_EWOFFSET	WDT Early Warning Interrupt Time Offset at power-on	0xB	WDT.EWCTRL
40	WDT_WEN	WDT Timer Window Mode Enable at power-on	0x0	WDT.CTRLA
41	BOD33_HYST	BOD33 Hysteresis configuration at power-on	0x0	SUPC.BOD33
42	Reserved	Reserved	Reserved	Reserved
43	RXN	RAM is eXecute Never	0x1	IDAU.SECCTRL
44	DXN	Data Flash is eXecute Never	0x1	NVMCTRL.SECCTRL
63:45	Reserved	Reserved	Reserved	Reserved
71:64	AS	Flash Application Secure Size = AS*0x100	0xFF	IDAU.SCFGA
77:72	ANSC	Flash Application Non-Secure Callable Size = ANSC*0x20	0x0	IDAU.SCFGA
79:78	Reserved	Reserved	Reserved	Reserved
83:80	DS	Data Flash Secure Size = DS*0x100	0x8	IDAU.SCFGA
87:84	Reserved	Reserved	Reserved	Reserved
94:88	RS	RAM Secure Size = RS*0x80	0x7F	IDAU.SCFGR
95	Reserved	Reserved	Reserved	Reserved
96	URWEN	User Row Write Enable	0x1	NVMCTRL.SCFGAD
127:97	Reserved	Reserved	Reserved	Reserved
159:128	NONSECA ⁽¹⁾	Peripherals Non-Secure Status Fuses for Bridge A	0x0000_0000	PAC.NONSECA
191:160	NONSECB ^(2, 3)	Peripherals Non-Secure Status Fuses for Bridge B	0x0000_0000	PAC.NONSECB
223:192	NONSECC	Peripherals Non-Secure Status Fuses for Bridge C	0x0000_0000	PAC.NONSECC
255:224	USERCRC	CRC of NVM User Row bits 223:64	0x8433651E	Boot ROM

Note:

- 1. The PAC Peripheral is always secured regardless of its bit value
- 2. The IDAU and NVMCTRL peripherals are always secured regardless of their bit values.
- 3. The DSU peripheral is always non-secured regardless of its bit value.

1. BOD12 is calibrated in production and its calibration parameters must not be changed to ensure the correct device behavior.

Table 10-11.	SAM L11	UROW	Mapping
--------------	---------	------	---------

Offset	Bit Pos.	Name				
0x00	7:0	BOD33 Level	-	NSULCK SULCK		SULCK
0x01	15:8	BOD33 Action		BOD33 Disable		BOD33 Level
0x02	23:16	BOD12 Calibration Parameters				

Processor and Architecture

The priority order for concurrent accesses are decided by two factors:

- As first priority, the QoS level for the master.
- As a second priority, a static priority given by the port ID. The lowest port ID has the highest static priority.

See the tables below for more details.

Table 11-8. HS SRAM Port Connections QoS

HS SRAM Port Connection	Port ID	Connection Type	QoS	default QoS
DMAC - Direct Memory Access Controller - Write-Back 1 Access	6	Direct	DMAC QOSCTRL.WRBQOS	0x2
DMAC - Direct Memory Access Controller - Write-Back 0 Access	5	Direct	DMAC QOSCTRL.WRBQOS	0x2
DMAC - Direct Memory Access Controller - Fetch 1 Access	4	Direct	DMAC QOSCTRL.FQOS	0x2
DMAC - Direct Memory Access Controller - Fetch 0 Access	3	Direct	DMAC QOSCTRL.FQOS	0x2
DMAC - Direct Memory Access Controller - Data Access	2	Bus Matrix	DMAC QOSCTRL.DQOS	0x2
DSU - Device Service Unit	1	Bus Matrix	DSU CFG.LQOS	0x2
CM23 - Cortex M23 Processor	0	Bus Matrix	0x41008114, bits[1:0] ⁽¹⁾	0x3

Note:

1. The CPU QoS level can be written/read, using 32-bit access only.

22. PM - Power Manager

19.5.3 Clocks

The MCLK bus clock (CLK_MCLK_APB) can be enabled and disabled in the Main Clock module, and the default state of CLK_MCLK_APB can be found in the Peripheral Clock Masking section. If this clock is disabled, it can only be re-enabled by a reset.

The Generic Clock GCLK_MAIN or the DFLLULP Clock CLK_DFLLULP is required to generate the Main Clocks. GCLK_MAIN is configured in the Generic Clock Controller, and can be re-configured by the user if needed. CLK_DFLLULP is configured in the Oscillators Controller (OSCCTRL).

Related Links

18. GCLK - Generic Clock Controller19.6.2.6 Peripheral Clock Masking

19.5.3.1 Main Clock

The main clock CLK_MAIN is the common source for the synchronous clocks. This is fed into the common 8-bit prescaler that is used to generate synchronous clocks to the CPU, AHBx, and APBx modules.

19.5.3.2 CPU Clock

The CPU clock (CLK_CPU) is routed to the CPU. Halting the CPU clock inhibits the CPU from executing instructions.

19.5.3.3 APBx and AHBx Clock

The APBx clocks (CLK_APBx) and the AHBx clocks (CLK_AHBx) are the root clock source used by modules requiring a clock on the APBx and the AHBx bus. These clocks are always synchronous to the CPU clock, and can run even when the CPU clock is turned off in sleep mode. A clock gater is inserted after the common APB clock to gate any APBx clock of a module on APBx bus, as well as the AHBx clock.

19.5.3.4 Clock Domains

The device has these synchronous clock domains:

• CPU synchronous clock domain (CPU Clock Domain). Frequency is f_{CPU}.

See also the related links for the clock domain partitioning.

Related Links

19.6.2.6 Peripheral Clock Masking

19.5.4 DMA

Not applicable.

19.5.5 Interrupts

The interrupt request line is connected to the Interrupt Controller. Using the MCLK interrupt requires the Interrupt Controller to be configured first.

19.5.6 Events

Not applicable.

19.7 Register Summary

Offset	Name	Bit Pos.								
0x00	CTRLA	7:0						CKSEL		
0x01	INTENCLR	7:0								CKRDY
0x02	INTENSET	7:0								CKRDY
0x03	INTFLAG	7:0								CKRDY
0x04	Reserved									
0x05	CPUDIV	7:0				CPUD	IV[7:0]	1		
0x06										
 0x0F	Reserved									
		7:0	NVMCTRL	PAC	Reserved	DSU	DMAC	APBC	APBB	APBA
0x10	AHBMASK	15:8				TRAM	Reserved	Reserved	Reserved	Reserved
0.00	AHBMASK	23:16								
		31:24								
	7	7:0	GCLK	SUPC	OSC32KCTR L	OSCCTRL	RSTC	MCLK	PM	PAC
0x14	APBAMASK	15:8		Reserved	AC	PORT	FREQM	EIC	RTC	WDT
		23:16								
		31:24								
		7:0				HMATRIXHS		NVMCTRL	DSU	IDAU
0x18	APBBMASK	15:8								
0,10	AI DEMAOR	23:16								
		31:24								
		7:0	ADC	TC2	TC1	TC0	SERCOM2	SERCOM1	SERCOM0	EVSYS
0x1C	APBCMASK	15:8				OPAMP	CCL	TRNG	PTC	DAC
		23:16								
		31:24								

19.8 Register Description

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16-, and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Some registers can be write-protected optionally by the Peripheral Access Controller (PAC). This is denoted by the property "PAC Write-Protection" in each individual register description. Refer to the 19.5.8 Register Access Protection for details.

On **SAM L11** devices, this peripheral has different access permissions depending on PAC Security Attribution (Secure or Non-Secure):

- If the peripheral is configured as Non-Secure in the PAC:
 - Secure access and Non-Secure access are granted
- If the peripheral is configured as Secure in the PAC:
 - Secure access is granted
 - Non-Secure access is discarded (Write is ignored, read 0x0) and a PAC error is triggered

OSCCTRL – Oscillators Controller

Value	Description
0	The oscillator is disabled.
1	The oscillator is enabled.

OSCCTRL – Oscillators Controller

Value	Name	Description	
0x4	8MS	Time-out if no lock within 8ms	
0x5	9MS	Time-out if no lock within 9ms	
0x6	10MS	Time-out if no lock within 10ms	
0x7	11MS	Time-out if no lock within 11ms	

Bits 5:4 – REFCLK[1:0] Reference Clock Selection Write these bits to select the DPLL clock reference:

Value	Name	Description
0x0	XOSC32K	XOSC32K clock reference
0x1	XOSC	XOSC clock reference
0x2	GCLK	GCLK_DPLL clock reference
0x3	Reserved	-

Bit 3 - WUF Wake Up Fast

Value	Description
0	DPLL clock is output after startup and lock time.
1	DPLL clock is output after startup time.

Bit 2 – LPEN Low-Power Enable

Value	Description
0	The low-power mode is disabled. Time to Digital Converter is enabled.
1	The low-power mode is enabled. Time to Digital Converter is disabled. This will improve
	power consumption but increase the output jitter.

Bits 1:0 – FILTER[1:0] Proportional Integral Filter Selection

These bits select the DPLL filter type:

Value	Name	Description
0x0	DEFAULT	Default filter mode
0x1	LBFILT	Low bandwidth filter
0x2	HBFILT	High bandwidth filter
0x3	HDFILT	High damping filter

SUPC – Supply Controller

Value	Name	Description
0xA	DIV2048	Divide clock by 2048
0xB	DIV4096	Divide clock by 4096
0xC	DIV8192	Divide clock by 8192
0xD	DIV16384	Divide clock by 16384
0xE	DIV32768	Divide clock by 32768
0xF	DIV65536	Divide clock by 65536

Bit 11 – VREFSEL BOD33 Voltage Reference Selection This bit is not synchronized.

ſ	Value	Description
Γ	0	Selects VREF for the BOD33.
	1	Selects ULPVREF for the BOD33.

Bit 8 – ACTCFG BOD33 Configuration in Active Sleep Mode

This bit is not synchronized.

Value	Description
0	In active mode, the BOD33 operates in continuous mode.
1	In active mode, the BOD33 operates in sampling mode.

Bit 6 – RUNSTDBY Run in Standby

This bit is not synchronized.

Value	Description
0	In standby sleep mode, the BOD33 is disabled.
1	In standby sleep mode, the BOD33 is enabled.

Bit 5 – STDBYCFG BOD33 Configuration in Standby Sleep Mode

If the RUNSTDBY bit is set to '1', the STDBYCFG bit sets the BOD33 configuration in standby sleep mode.

This bit is not synchronized.

Value	Description
0	In standby sleep mode, the BOD33 is enabled and configured in continuous mode.
1	In standby sleep mode, the BOD33 is enabled and configured in sampling mode.

Bits 4:3 – ACTION[1:0] BOD33 Action

These bits are used to select the BOD33 action when the supply voltage crosses below the BOD33 threshold.

These bits are loaded from NVM User Row at start-up.

This bit field is not synchronized.

Value	Name	Description
0x0	NONE	No action
0x1	RESET	The BOD33 generates a reset

27.10.14 Tamper Control

Name:	TAMPCTRL
Offset:	0x60
Reset:	0x0000000
Property:	PAC Write-Protection, Enable-Protected

Bit	31	30	29	28	27	26	25	24
					DEBNC3	DEBNC2	DEBNC1	DEBNC0
Access			·	•				
Reset					0	0	0	0
Bit	23	22	21	20	19	18	17	16
					TAMLVL3	TAMLVL2	TAMLVL1	TAMLVL0
Access		•	•	•				
Reset					0	0	0	0
Bit	15	14	13	12	11	10	9	8
Access		•	•					
Reset								
Bit	7	6	5	4	3	2	1	0
	IN3ACT[1:0]		IN2ACT[1:0]		IN1ACT[1:0]		IN0ACT[1:0]	
Access								
Reset	0	0	0	0	0	0	0	0

Bits 24, 25, 26, 27 - DEBNC Debounce Enable of Tamper Input INn

Value	Description
0	Debouncing is disabled for Tamper input INn
1	Debouncing is enabled for Tamper input INn

Bits 16, 17, 18, 19 - TAMLVL Tamper Level Select of Tamper Input INn

Value	Description
0	A falling edge condition will be detected on Tamper input INn.
1	A rising edge condition will be detected on Tamper input INn.

Bits 0:1, 2:3, 4:5, 6:7 - INACT Tamper Channel n Action

These bits determine the action taken by Tamper Channel n.

Value	Name	Description
0x0	OFF	Off (Disabled)
0x1	WAKE	Wake and set Tamper flag
0x2	CAPTURE	Capture timestamp and set Tamper flag
0x3	ACTL	Compare RTC signal routed between INn and OUT pins . When a mismatch
		occurs, capture timestamp and set Tamper flag

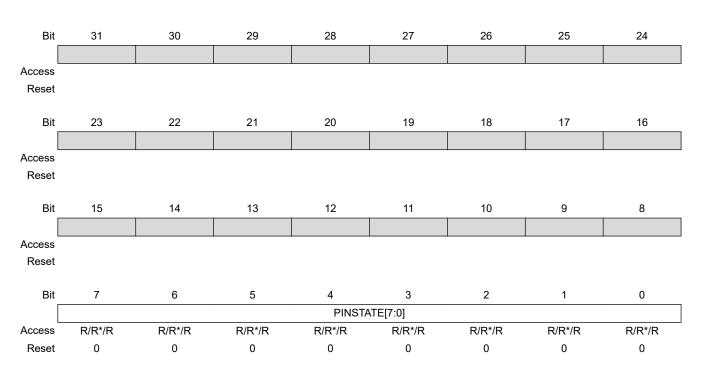
28.10.5 Next Descriptor Address

Reset

Name:DESCADDROffset:0x0CProperty:-

The DESCADDR register offset is relative to (BASEADDR or WRBADDR) + Channel Number * 0x10

Bit	31	30	29	28	27	26	25	24
				DESCAD	DR[31:24]			
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
				DESCAD	DR[23:16]			
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
				DESCAL	DDR[15:8]			
Access	L							
Reset								
Bit	7	6	5	4	3	2	1	0
				DESCA	DDR[7:0]			
Access	L							


Bits 31:0 – DESCADDR[31:0] Next Descriptor Address

This bit group holds the SRAM address of the next descriptor. The value must be 128-bit aligned. If the value of this SRAM register is 0x00000000, the transaction will be terminated when the DMAC tries to load the next transfer descriptor.

29.8.13 Pin State

Name:	PINSTATE
Offset:	0x38
Reset:	0x00000000
Property:	PAC Mix-Secure

Important: For **SAM L11 Non-Secure** accesses, read accesses (R*) are allowed only if the external interrupt x (EXTINTx) is set as Non-Secure in the NONSEC register (NONSEC.EXTINTx bit).

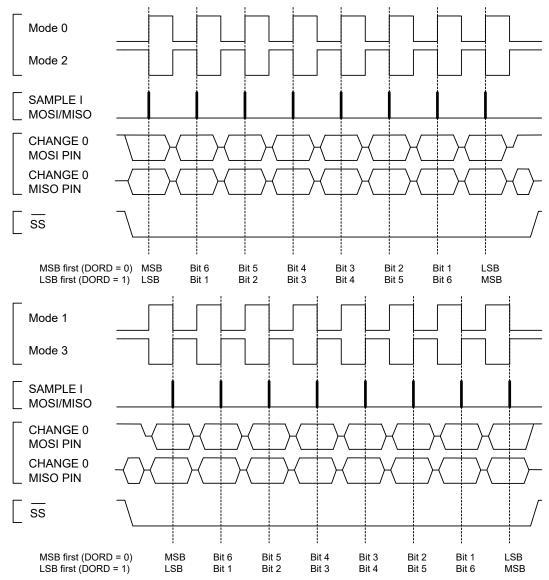
Bits 7:0 - PINSTATE[7:0] Pin State

These bits return the valid pin state of the debounced external interrupt pin EXTINTx.

SAM L10/L11 Family PORT - I/O Pin Controller

055										
Offset	Name	Bit Pos.								
0x51	PINCFG17	7:0		DRVSTR				PULLEN	INEN	PMUXEN
0x52	PINCFG18	7:0		DRVSTR				PULLEN	INEN	PMUXEN
0x53	PINCFG19	7:0		DRVSTR				PULLEN	INEN	PMUXEN
0x54	PINCFG20	7:0		DRVSTR				PULLEN	INEN	PMUXEN
0x55	PINCFG21	7:0		DRVSTR				PULLEN	INEN	PMUXEN
0x56	PINCFG22	7:0		DRVSTR				PULLEN	INEN	PMUXEN
0x57	PINCFG23	7:0		DRVSTR				PULLEN	INEN	PMUXEN
0x58	PINCFG24	7:0		DRVSTR				PULLEN	INEN	PMUXEN
0x59	PINCFG25	7:0		DRVSTR				PULLEN	INEN	PMUXEN
0x5A	PINCFG26	7:0		DRVSTR				PULLEN	INEN	PMUXEN
0x5B	PINCFG27	7:0		DRVSTR				PULLEN	INEN	PMUXEN
0x5C	PINCFG28	7:0		DRVSTR				PULLEN	INEN	PMUXEN
0x5D	PINCFG29	7:0		DRVSTR				PULLEN	INEN	PMUXEN
0x5E	PINCFG30	7:0		DRVSTR				PULLEN	INEN	PMUXEN
0x5F	PINCFG31	7:0		DRVSTR				PULLEN	INEN	PMUXEN
		7:0								NSCHK
0x60	INTENCLR	15:8								
0,00	INTENCER	23:16								
		31:24								
		7:0								NSCHK
0x64	INTENSET	15:8								
0,04	INTENSET	23:16								
		31:24								
		7:0								NSCHK
0x68	INTFLAG	15:8								
0,00		23:16								
		31:24								
		7:0				NONS	EC[7:0]			
0x6C	NONSEC	15:8				NONSE	C[15:8]			
	NONOLU	23:16				NONSE	C[23:16]			
		31:24	4 NONSEC[31:24]							
		7:0				NSCH	IK[7:0]			
0x70	NSCHK	15:8					K[15:8]			
0.10	NOOTIN	23:16				NSCH	([23:16]			
		31:24				NSCH	([31:24]			

32.8 Register Description


Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Some registers are optionally write-protected by the Peripheral Access Controller (PAC). Optional PAC write-protection is denoted by the "PAC Write-Protection" property in each individual register description. For details, refer to 32.5.8 Register Access Protection.

On SAM L11 devices, the Mix-Secure peripheral has different types of registers (Non-Secure, Secure, Write-Secure, Mix-Secure, and Write-Mix-Secure) with different access permissions for each bitfield.

© 2018 Microchip Technology Inc.

Figure 36-3. SPI Transfer Modes

36.6.2.6 Transferring Data

36.6.2.6.1 Master

In master mode (CTRLA.MODE=0x3), when Master Slave Enable Select (CTRLB.MSSEN) is '1', hardware will control the \overline{SS} line.

When Master Slave Select Enable (CTRLB.MSSEN) is '0', the \overline{SS} line must be configured as an output. \overline{SS} can be assigned to any general purpose I/O pin. When the SPI is ready for a data transaction, software must pull the \overline{SS} line low.

When writing a character to the Data register (DATA), the character will be transferred to the shift register. Once the content of TxDATA has been transferred to the shift register, the Data Register Empty flag in the Interrupt Flag Status and Clear register (INTFLAG.DRE) will be set. And a new character can be written to DATA.

Each time one character is shifted out from the master, another character will be shifted in from the slave simultaneously. If the receiver is enabled (CTRLA.RXEN=1), the contents of the shift register will be

© 2018 Microchip Technology Inc.

36.7 Register Summary

Offset	Name	Bit Pos.								
		7:0	RUNSTDBY				MODE[2:0]		ENABLE	SWRST
0.00		15:8								IBON
0x00	CTRLA	23:16			DIPC	D[1:0]			DOPO	D[1:0]
		31:24		DORD	CPOL	CPHA		FOR	V[3:0]	
		7:0		PLOADEN					CHSIZE[2:0]	
004		15:8	AMOD	E[1:0]	MSSEN				SSDE	
0x04	CTRLB	23:16							RXEN	
		31:24								
0x08 0x0B	Reserved									
0x0C	BAUD	7:0				BAU	D[7:0]			
0x0D										
 0x13	Reserved									
0x14	INTENCLR	7:0	ERROR				SSL	RXC	TXC	DRE
0x15	Reserved									
0x16	INTENSET	7:0	ERROR				SSL	RXC	TXC	DRE
0x17	Reserved									
0x18	INTFLAG	7:0	ERROR				SSL	RXC	TXC	DRE
0x19	Reserved									
0x1A	STATUS	7:0						BUFOVF		
UXIA	51A105	15:8								
		7:0						CTRLB	ENABLE	SWRST
0x1C	SYNCBUSY	15:8								
0,10	STREBUET	23:16								
		31:24								
0x20 0x23	Reserved									
		7:0				ADD	R[7:0]			
0.04	4000	15:8								
0x24	ADDR	23:16				ADDRM	1ASK[7:0]			
		31:24								
0.00	DATA	7:0				DAT	A[7:0]			
0x28	DATA	15:8								DATA[8:8]
0x2A										
	Reserved									
0x2F										
0x30	DBGCTRL	7:0								DBGSTOP

37.10.9 Address

Name:	ADDR
Offset:	0x24
Reset:	0x0000
Property:	Write-Synchronized

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
				LEN	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	TENBITEN	HS	LENEN				ADDR[10:8]	
Access	R/W	R/W	R/W			R/W	R/W	R/W
Reset	0	0	0			0	0	0
Bit	7	6	5	4	3	2	1	0
				ADDI	R[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 23:16 – LEN[7:0] Transaction Length

These bits define the transaction length of a DMA transaction from 0 to 255 bytes. The Transfer Length Enable (LENEN) bit must be written to '1' in order to use DMA.

Bit 15 – TENBITEN Ten Bit Addressing Enable

This bit enables 10-bit addressing. This bit can be written simultaneously with ADDR to indicate a 10-bit or 7-bit address transmission.

Value	Description
0	10-bit addressing disabled.
1	10-bit addressing enabled.

Bit 14 – HS High Speed

This bit enables High-speed mode for the current transfer from repeated START to STOP. This bit can be written simultaneously with ADDR for a high speed transfer.

Value	Description
0	High-speed transfer disabled.
1	High-speed transfer enabled.

Bit 13 – LENEN Transfer Length Enable

Bits 3:2 – MODE[1:0] Timer Counter Mode These bits select the counter mode.

These bits are not synchronized.

Value	Name	Description
0x0	COUNT16	Counter in 16-bit mode
0x1	COUNT8	Counter in 8-bit mode
0x2	COUNT32	Counter in 32-bit mode
0x3	-	Reserved

Bit 1 – ENABLE Enable

Due to synchronization, there is delay from writing CTRLA.ENABLE until the peripheral is enabled/ disabled. The value written to CTRLA.ENABLE will read back immediately, and the ENABLE Synchronization Busy bit in the SYNCBUSY register (SYNCBUSY.ENABLE) will be set. SYNCBUSY.ENABLE will be cleared when the operation is complete.

This bit is not enable protected.

Value	Description
0	The peripheral is disabled.
1	The peripheral is enabled.

Bit 0 – SWRST Software Reset

Writing a '0' to this bit has no effect.

Writing a '1' to this bit resets all registers in the TC, except DBGCTRL, to their initial state, and the TC will be disabled.

Writing a '1' to CTRLA.SWRST will always take precedence; all other writes in the same write-operation will be discarded.

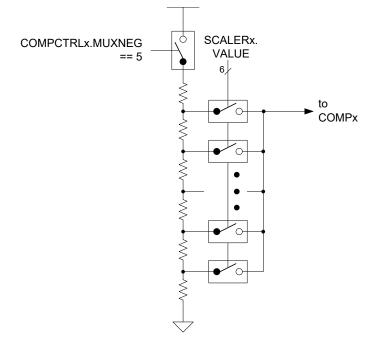
ADC – Analog-to-Digital Converter

CTRLA.RUNSTDBY	CTRLA.ONDEMAND	CTRLA.ENABLE	Description
1	0	1	Run in all sleep modes.
1	1	1	Run in all sleep modes on request.

41.6.8 Synchronization

Due to asynchronicity between the main clock domain and the peripheral clock domains, some registers need to be synchronized when written or read.

The following bits are synchronized when written:


- Software Reset bit in Control A register (CTRLA.SWRST)
- Enable bit in Control A register (CTRLA.ENABLE)

The following registers are synchronized when written:

- Input Control register (INPUTCTRL)
- Control C register (CTRLC)
- Average control register (AVGCTRL)
- Sampling time control register (SAMPCTRL)
- Window Monitor Lower Threshold register (WINLT)
- Window Monitor Upper Threshold register (WINUT)
- Gain correction register (GAINCORR)
- Offset Correction register (OFFSETCORR)
- Software Trigger register (SWTRIG)

Required write-synchronization is denoted by the "Write-Synchronized" property in the register description.

Figure 42-5. VDD Scaler

42.6.6 Input Hysteresis

Application software can selectively enable/disable hysteresis for the comparison. Applying hysteresis will help prevent constant toggling of the output, which can be caused by noise when the input signals are close to each other.

Hysteresis is enabled for each comparator individually by the Hysteresis Enable bit in the Comparator x Control register (COMPCTRLx.HYSTEN). Furthermore, when enabled, the level of hysteresis is programmable through the Hysteresis Level bits also in the Comparator x Control register (COMPCTRLx.HYST). Hysteresis is available only in continuous mode (COMPCTRLx.SINGLE=0).

42.6.7 Propagation Delay vs. Power Consumption

It is possible to trade off comparison speed for power efficiency to get the shortest possible propagation delay or the lowest power consumption. The speed setting is configured for each comparator individually by the Speed bit group in the Comparator x Control register (COMPCTRLx.SPEED). The Speed bits select the amount of bias current provided to the comparator, and as such will also affect the start-up time.

42.6.8 Filtering

The output of the comparators can be filtered digitally to reduce noise. The filtering is determined by the Filter Length bits in the Comparator Control x register (COMPCTRLx.FLEN), and is independent for each comparator. Filtering is selectable from none, 3-bit majority (N=3) or 5-bit majority (N=5) functions. Any change in the comparator output is considered valid only if N/2+1 out of the last N samples agree. The filter sampling rate is the GCLK_AC frequency.

Note that filtering creates an additional delay of N-1 sampling cycles from when a comparison is started until the comparator output is validated. For continuous mode, the first valid output will occur when the required number of filter samples is taken. Subsequent outputs will be generated every cycle based on the current sample plus the previous N-1 samples, as shown in Figure 42-6. For single-shot mode, the comparison completes after the Nth filter sample, as shown in Figure 42-7.

© 2018 Microchip Technology Inc.

43.8.2 Control B

Name:	CTRLB
Offset:	0x01
Reset:	0x00
Property:	PAC Write-Protection, Enable-Protected

Bit	7	6	5	4	3	2	1	0
	REFS	EL[1:0]	DITHER		VPD	LEFTADJ	IOEN	EOEN
Access	R/W	R/W	R/W		R/W	R/W	R/W	R/W
Reset	0	0	0		0	0	0	0

Bits 7:6 – REFSEL[1:0] Reference Selection

This bit field selects the Reference Voltage for the DAC.

Important: For the SAM L10/L11 devices, the 1.1V voltage reference typical value must be selected in case of an internal voltage reference (INTREF). Refer to the *Supply Controller VREF* register.

Value	Name	Description
0x0	INTREF	Internal voltage reference
0x1	VDDANA	Analog voltage supply
0x2	VREFA	External reference
0x3		Reserved

Bit 5 – DITHER Dithering Mode

This bit controls dithering operation according to 43.6.8.4 Dithering mode.

Value	Description
0	Dithering mode is disabled.
1	Dithering mode is enabled.

Bit 3 – VPD Voltage Pump Disabled

This bit controls the behavior of the voltage pump.

Value	Description
0	Voltage pump is turned on/off automatically
1	Voltage pump is disabled.

Bit 2 - LEFTADJ Left-Adjusted Data

This bit controls how the 10-bit conversion data is adjusted in the Data and Data Buffer registers.

Value	Description
0	DATA and DATABUF registers are right-adjusted.
1	DATA and DATABUF registers are left-adjusted.

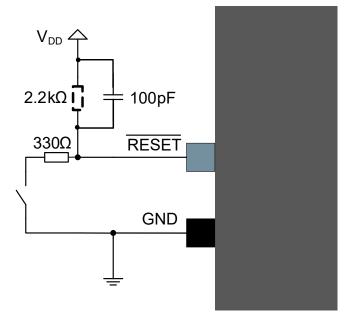
Bit 1 - IOEN Internal Output Enable

Electrical Characteristics

Mode	Conditions	Regulator	PL	CPU Clock	Vcc	Та	Тур.	Мах	Units
				DFLLULP at	1.8V		14.3	19	
				32MHz	3.3V		14.4	19	
		BUCK	PL0		1.8V		11.1	21	
			8MHz	3.3V		8.3	16		
			OSC 8MHz	1.8V		15.5	24		
					3.3V		15.2	21	
				OSC 4MHz	1.8V		21.3	39	
					3.3V		21.6	35	
			PL2	32MHz DFLLULP at	1.8V		14.9	19	
					3.3V		9.1	12	
					1.8V		10.6	14	
					3.3V		6.7	9	

Table 46-9. Standby and Off Mode Current Consumption

Mode	Conditions	Regulator Mode	Vcc	Та	Тур.	Max.	Units
STANDBY	All 16 kB RAM retained, PDSW domain in active state	LPVREG with LPEFF Disable	1.8V	25°C	1.3	3.5	μΑ
				85°C	18.4	66.0	
		LPVREG with LPEFF Enable	3.3V	25°C	1.1	3.0	
				85°C	14.2	41.8	
		BUCK in standby with	1.8V	25°C	1.2	2.9	
		MAINVREG in PL0 mode (VREG.RUNSTDBY=1 and VREG.STDBYPL0=1)		85°C	14.6	42.9	
			3.3V	25°C	1.1	2.2	
				85°C	9.6	28.6	
	All 16 kB RAM retained, PDSW domain in retention	LPVREG with LPEFF Disable	1.8V	25°C	0.6	1.1	
				85°C	5.1	14.9	
		LPVREG with LPEFF Enable	3.3V	25°C	0.5	1.0	
				85°C	4.3	12.1	
		BUCK in standby with MAINVREG in PL0 mode (VREG.RUNSTDBY=1 and VREG.STDBYPL0=1)	1.8V	25°C	0.8	1.1	
				85°C	4.3	11.9	
			3.3V	25°C	0.8	1.5	
				85°C	3.4	8.5	


2. Decoupling capacitor should be placed close to the device for each supply pin pair in the signal group.

50.4 External Reset Circuit

The external Reset circuit is connected to the RESET pin when the external Reset function is used. The circuit is not necessary when the RESET pin is not driven LOW externally by the application circuitry.

The reset switch can also be removed, if a manual reset is not desired. The RESET pin itself has an internal pull-up resistor, hence it is optional to add any external pull-up resistor.

Figure 50-5. External Reset Circuit Schematic

A pull-up resistor makes sure that the reset does not go low and unintentionally causing a device reset. An additional resistor has been added in series with the switch to safely discharge the filtering capacitor, i.e. preventing a current surge when shorting the filtering capacitor which again can cause a noise spike that can have a negative effect on the system.

	Table 50-3.	Reset	Circuit	Connections
--	-------------	-------	---------	-------------

Signal Name	Recommended Pin Connection	Description
RESET	Reset low level threshold voltage V_{DDIO} = 1.62V - 2.0V: Below 0.33 * V_{DDIO}	Reset pin
	V _{DDIO} = 2.7V - 3.63V: Below 0.36 * V _{DDIO}	
	Decoupling/filter capacitor 100pF ⁽¹⁾	
	Pull-up resistor 2.2k $\Omega^{(1,2)}$	
	Resistor in series with the switch $330\Omega^{(1)}$	

1. These values are only given as a typical example.

2. The SAM L10/L11 features an internal pull-up resistor on the RESET pin, hence an external pull-up is optional.