E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M23
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	17
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.63V
Data Converters	A/D 5x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	24-SSOP (0.209", 5.30mm Width)
Supplier Device Package	24-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsaml11d15a-yft

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

SAM L10/L11 Family

SAM L11 Security Features

Mix-Secure	Secure Master Access		Non-Secure Master Access		
Peripheral Register	Secure Alias	Non-Secure Alias	Secure Alias	Non-Secure Alias	
Non-Secure				Read / Write	
Secure			Discarded (Write ignored / Read 0x0) PAC Error is generated	Discarded (Write ignored / Read 0x0) No Error is generated	
Write-Secure		Discarded		Read-only (Write ignored) No Error is generated	
Mix-Secure	Read / Write (Write ignore No Error is g	(Write ignored / Read 0x0) No Error is generated		Read/Write if the resource is available for the Non- Secure Application Discarded if not (Write ignored / Read 0x0) and no error is generated	
Write-Mix-Secure				Read /Write if the resource is available for the Non- Secure Application Read-only if not (Write ignored) and no error is generated	

Table 13-11. SAM L11 Mix-Secure Peripheral Registers Access

13.3 Crypto Acceleration

13.3.1 Overview

The SAM L11 product embeds a hardware/software cryptographic accelerator (CRYA) which supports Advanced Encryption Standard (AES) encryption and decryption, Secure Hash Algorithm 2 (SHA-256) authentication, and Galois Counter Mode (GCM) encryption and authentication through a set of APIs, which are only accessible once the Boot ROM has completed.

Note: The CRYA cryptographic accelerator is mapped as a slave on the IOBUS port and is driven by the CPU using assembly code (located in ROM).

The Advanced Encryption Standard (AES) is compliant with the American FIPS (Federal Information Processing Standard) Publication 197 specification. The AES operates on a 128-bit block of input data. The key size used for an AES cipher specifies the number of repetitions of transformation rounds that convert the input plaintext, into the final output, called the ciphertext. The AES works on a symmetric-key algorithm, meaning the same key is used for both encrypting and decrypting the data.

The SHA-256 is a cryptographic hash function that creates a 256-bit hash of a data block. The data block is processed in chunks of 512 bits.

The GCM is a mode of operation for AES that combines the CTR (Counter) mode of operation with an authentication hash function.

For detail algorithm specification, refer to following standards and specification:

- AES: FIPS Publication 197, Advanced Encryption Standard (AES)
- SHA: FIPS Pub 180-4, The Secure Hash Standard
- GCM: NIST Special Publication 800-38D Recommendation

13.3.2 Features

- Advanced Encryption Standard (AES), compliant with FIPS Publication 197
 - Encryption with 128-bit cryptographic key
 - Decryption with 128-bit cryptographic key

14.4.5.6.4 CMD_CRC

Figure 14-12. CMD_CRC Flow diagram

In this mode, the MBIST algorithm is paused when an error is detected. In such a situation, only STATUSA.FAIL is asserted. The state machine waits for user to clear STATUSA.FAIL by writing a '1' in STATUSA.FAIL to resume. Prior to resuming, user can read the DATA and ADDR registers to locate the fault.

4. Locating Faults

If the test stops with STATUSA.FAIL set, one or more bits failed the test. The test stops at the first detected error. The position of the failing bit can be found by reading the following registers:

- ADDR: Address of the word containing the failing bit
- DATA: contains data to identify which bit failed, and during which phase of the test it failed.
 The DATA register will in this case contains the following bit groups:

• bit_index: contains the bit number of the failing bit

• phase: indicates which phase of the test failed and the cause of the error, as listed in the following table.

Table 16-5. MBIST Operation Phases

Phase	Test actions
0	Write all bits to zero. This phase cannot fail.
1	Read '0', write '1', increment address
2	Read '1', write '0'
3	Read '0', write '1', decrement address
4	Read '1', write '0', decrement address
5	Read '0', write '1'
6	Read '1', write '0', decrement address
7	Read all zeros. bit_index is not used

REGC (16-bit access) can be written without affecting REGA or REGB. If REGC is written to in two consecutive 8-bit accesses without waiting for synchronization, the second write attempt will be discarded and an error is generated through the PAC.

A 32-bit access to offset 0x00 will write all three registers. Note that REGA, REGB and REGC can be updated at different times because of independent write synchronization.

17.3.3 General Read Synchronization

Read-synchronized registers are synchronized each time the register value is updated but the corresponding SYNCBUSY bits are not set. Reading a read-synchronized register does not start a new synchronization, it returns the last synchronized value.

Note: The corresponding bits in SYNCBUSY will automatically be set when the device wakes up from sleep because read-synchronized registers need to be synchronized. Therefore reading a read-synchronized register before its corresponding SYNCBUSY bit is cleared will return the last synchronized value before sleep mode.

Moreover, if a register is also write-synchronized, any write access while the SYNCBUSY bit is set will be discarded and generate an error.

17.3.4 Completion of Synchronization

In order to check if synchronization is complete, the user can either poll the relevant bits in SYNCBUSY or use the Synchronisation Ready interrupt (if available). The Synchronization Ready interrupt flag will be set when all ongoing synchronizations are complete, i.e. when all bits in SYNCBUSY are '0'.

17.3.5 Write Synchronization for CTRLA.ENABLE

Setting the Enable bit in a module's Control A register (CTRLA.ENABLE) will trigger write-synchronization and set SYNCBUSY.ENABLE.

CTRLA.ENABLE will read its new value immediately after being written.

SYNCBUSY.ENABLE will be cleared by hardware when the operation is complete.

The Synchronization Ready interrupt (if available) cannot be used to enable write-synchronization.

17.3.6 Write-Synchronization for Software Reset Bit

Setting the Software Reset bit in CTRLA (CTRLA.SWRST=1) will trigger write-synchronization and set SYNCBUSY.SWRST. When writing a '1' to the CTRLA.SWRST bit it will immediately read as '1'.

CTRL.SWRST and SYNCBUSY.SWRST will be cleared by hardware when the peripheral has been reset.

Writing a '0' to the CTRL.SWRST bit has no effect.

The Ready interrupt (if available) cannot be used for Software Reset write-synchronization.

Note: Not all peripherals have the SWRST bit in the respective CTRLA register.

17.3.7 Synchronization Delay

The synchronization will delay write and read accesses by a certain amount. This delay *D* is within the range of:

 $5 \times P_{GCLK} + 2 \times P_{APB} < D < 6 \times P_{GCLK} + 3 \times P_{APB}$

Where P_{GCLK} is the period of the generic clock and P_{APB} is the period of the peripheral bus clock. A normal peripheral bus register access duration is $2 \times P_{APB}$.

21. RSTC – Reset Controller

21.1 Overview

The Reset Controller (RSTC) manages the reset of the microcontroller. It issues a microcontroller reset, sets the device to its initial state and allows the reset source to be identified by software.

21.2 Features

- Reset the microcontroller and set it to an initial state according to the reset source
- Reset cause register for reading the reset source from the application code
- Multiple reset sources
 - Power supply reset sources: POR, BOD12, BOD33
 - User reset sources: External reset (RESET), Watchdog reset, and System Reset Request

21.3 Block Diagram

Figure 21-1. Reset System

21.4 Signal Description

Signal Name	Туре	Description
RESET	Digital input	External reset

One signal can be mapped on several pins.

21.5 **Product Dependencies**

In order to use this peripheral, other parts of the system must be configured correctly, as described below.

interrupt flag bit in the Interrupt Flag register (INTFLAG.CLKFAIL) are set. If the CLKFAIL bit in the Interrupt Enable Set register (INTENSET.CLKFAIL) is set, an interrupt is generated as well. If the Event Output enable bit in the Event Control register (EVCTRL.CFDEO) is set, an output event is generated, too.

After a clock failure was issued the monitoring of the XOSC clock is continued, and the Clock Failure Detector status bit in the Status register (STATUS.CLKFAIL) reflects the current XOSC activity.

Clock Switch

When a clock failure is detected, the XOSC clock is replaced by the safe clock in order to maintain an active clock during the XOSC clock failure. The safe clock source is the OSC16M oscillator clock. The safe clock source can be scaled down by a configurable prescaler to ensure that the safe clock frequency does not exceed the operating conditions selected by the application. When the XOSC clock is switched to the safe clock, the Clock Switch bit in the Status register (STATUS.CLKSW) is set.

When the CFD has switched to the safe clock, the XOSC is not disabled. If desired, the application must take the necessary actions to disable the oscillator. The application must also take the necessary actions to configure the system clocks to continue normal operations.

If the application can recover the XOSC, the application can switch back to the XOSC clock by writing a '1' to Switch Back Enable bit in the Clock Failure Control register (XOSCCTRL.SWBACK). Once the XOSC clock is switched back, the Switch Back bit (XOSCCTRL.SWBACK) is cleared by hardware.

Prescaler

The CFD has an internal configurable prescaler to generate the safe clock from the OSC16M oscillator. The prescaler size allows to scale down the OSC16M oscillator so the safe clock frequency is not higher than the XOSC clock frequency monitored by the CFD. The division factor is 2^P, with P being the value of the CFD Prescaler bits in the CFD Prescaler Register (CFDPRESC.CFDPRESC).

Example 23-1.

For an external crystal oscillator at 0.4 MHz and the OSC16M frequency at 16 MHz, the CFDPRESC.CFDPRESC value should be set scale down by more than factor 16/0.4=80, for example 128, for a safe clock of adequate frequency.

Event

If the Event Output Enable bit in the Event Control register (EVCTRL.CFDEO) is set, the CFD clock failure will be output on the Event Output. When the CFD is switched to the safe clock, the CFD clock failure will not be output on the Event Output.

Sleep Mode

The CFD is halted depending on configuration of the XOSC and the peripheral clock request. For further details, refer to the Sleep Behavior table above. The CFD interrupt can be used to wake up the device from sleep modes.

23.6.4 16MHz Internal Oscillator (OSC16M) Operation

The OSC16M is an internal oscillator operating in open-loop mode and generating 4, 8, 12, or 16MHz frequency. The OSC16M frequency is selected by writing to the Frequency Select field in the OSC16M register (OSC16MCTRL.FSEL). OSC16M is enabled by writing '1' to the Oscillator Enable bit in the OSC16M Control register (OSC16MCTRL.ENABLE), and disabled by writing a '0' to this bit. Frequency selection must be done when OSC16M is disabled.

The RTC will be reset only at power-on (POR) or by setting the Software Reset bit in the Control A register (CTRLA.SWRST=1).

Related Links

22. PM - Power Manager

27.5.3 Clocks

The RTC bus clock (CLK_RTC_APB) can be enabled and disabled in the Main Clock module MCLK, and the default state of CLK_RTC_APB can be found in Peripheral Clock Masking section.

A 32KHz or 1KHz oscillator clock (CLK_RTC_OSC) is required to clock the RTC. This clock must be configured and enabled in the 32KHz oscillator controller (OSC32KCTRL) before using the RTC.

This oscillator clock is asynchronous to the bus clock (CLK_RTC_APB). Due to this asynchronicity, writing to certain registers will require synchronization between the clock domains. Refer to 27.6.7 Synchronization for further details.

Related Links

24. OSC32KCTRL – 32KHz Oscillators Controller 19.6.2.6 Peripheral Clock Masking

27.5.4 DMA

The DMA request lines (or line if only one request) are connected to the DMA Controller (DMAC). Using the RTC DMA requests requires the DMA Controller to be configured first.

Related Links

28. DMAC - Direct Memory Access Controller

27.5.5 Interrupts

The interrupt request line is connected to the Interrupt Controller. Using the RTC interrupt requires the Interrupt Controller to be configured first.

27.5.6 Events

The events are connected to the Event System.

Related Links

33. EVSYS – Event System

27.5.7 Debug Operation

When the CPU is halted in debug mode the RTC will halt normal operation. The RTC can be forced to continue operation during debugging. Refer to 27.8.7 DBGCTRL for details.

27.5.8 Register Access Protection

All registers with write-access are optionally write-protected by the peripheral access controller (PAC), except the following registers:

• Interrupt Flag Status and Clear (INTFLAG) register

Write-protection is denoted by the "PAC Write-Protection" property in the register description.

Write-protection does not apply to accesses through an external debugger. Refer to the PAC - Peripheral Access Controller for details.

Related Links

The counter value is continuously compared with the 16-bit Compare registers (COMPn, n=0..1). When a compare match occurs, the Compare n Interrupt flag in the Interrupt Flag Status and Clear register (INTFLAG.CMPn, n=0..1) is set on the next 0-to-1 transition of CLK_RTC_CNT.

27.6.2.5 Clock/Calendar (Mode 2)

When the RTC Operating Mode bits in the Control A register (CTRLA.MODE) are written to 0x2, the counter operates in Clock/Calendar mode, as shown in Figure 27-3. When the RTC is enabled, the counter will increment on every 0-to-1 transition of CLK_RTC_CNT. The selected clock source and RTC prescaler must be configured to provide a 1Hz clock to the counter for correct operation in this mode.

The time and date can be read from or written to the Clock Value register (CLOCK) in a 32-bit time/date format. Time is represented as:

- Seconds
- Minutes
- Hours

Hours can be represented in either 12- or 24-hour format, selected by the Clock Representation bit in the Control A register (CTRLA.CLKREP). This bit can be changed only while the RTC is disabled.

The date is represented in this form:

- Day as the numeric day of the month (starting at 1)
- Month as the numeric month of the year (1 = January, 2 = February, etc.)
- Year as a value from 0x00 to 0x3F. This value must be added to a user-defined reference year. The reference year must be a leap year (2016, 2020 etc). Example: the year value 0x2D, added to a reference year 2016, represents the year 2061.

The RTC will increment until it reaches the top value of 23:59:59 December 31 of year value 0x3F, and then wrap to 00:00:00 January 1 of year value 0x00. This will set the Overflow Interrupt flag in the Interrupt Flag Status and Clear registers (INTFLAG.OVF).

The clock value is continuously compared with the 32-bit Alarm register (ALARM0). When an alarm match occurs, the Alarm 0 Interrupt flag in the Interrupt Flag Status and Clear registers (INTFLAG.ALARM0) is set on the next 0-to-1 transition of CLK_RTC_CNT. E.g. For a 1Hz clock counter, it means the Alarm 0 Interrupt flag is set with a delay of 1s after the occurrence of alarm match.

A valid alarm match depends on the setting of the Alarm Mask Selection bits in the Alarm 0 Mask register (MASK0.SEL). These bits determine which time/date fields of the clock and alarm values are valid for comparison and which are ignored.

If the Clear on Match bit in the Control A register (CTRLA.MATCHCLR) is set, the counter is cleared on the next counter cycle when an alarm match with ALARM0 occurs. This allows the RTC to generate periodic interrupts or events with longer periods than it would be possible with the prescaler events only (see 27.6.8.1 Periodic Intervals).

Note: When CTRLA.MATCHCLR is 1, INTFLAG.ALARM0 and INTFLAG.OVF will both be set simultaneously on an alarm match with ALARM0.

27.6.3 DMA Operation

The RTC generates the following DMA request:

• Tamper (TAMPER): The request is set on capture of the timestamp. The request is cleared when the Timestamp register is read.

SAM L10/L11 Family

RTC – Real-Time Counter

Value	Name	Description
0xB	DIV1024	CLK_RTC_CNT = GCLK_RTC/1024
0xC-0xF	-	Reserved

Bit 7 – MATCHCLR Clear on Match

This bit is valid only in Mode 0 (COUNT32) and Mode 2 (CLOCK). This bit can be written only when the peripheral is disabled. This bit is not synchronized.

Value	Description
0	The counter is not cleared on a Compare/Alarm 0 match
1	The counter is cleared on a Compare/Alarm 0 match

Bit 6 – CLKREP Clock Representation

This bit is valid only in Mode 2 and determines how the hours are represented in the Clock Value (CLOCK) register. This bit can be written only when the peripheral is disabled. This bit is not synchronized.

Value	Description
0	24 Hour
1	12 Hour (AM/PM)

Bits 3:2 - MODE[1:0] Operating Mode

This field defines the operating mode of the RTC. This bit is not synchronized.

Value	Name	Description
0x0	COUNT32	Mode 0: 32-bit counter
0x1	COUNT16	Mode 1: 16-bit counter
0x2	CLOCK	Mode 2: Clock/calendar
0x3	-	Reserved

Bit 1 – ENABLE Enable

Due to synchronization there is delay from writing CTRLA.ENABLE until the peripheral is enabled/ disabled. The value written to CTRLA.ENABLE will read back immediately and the Enable bit in the Synchronization Busy register (SYNCBUSY.ENABLE) will be set. SYNCBUSY.ENABLE will be cleared when the operation is complete.

Value	Description
0	The peripheral is disabled
1	The peripheral is enabled

Bit 0 - SWRST Software Reset

Writing a '0' to this bit has no effect.

Writing a '1' to this bit resets all registers in the RTC, except DBGCTRL, to their initial state, and the RTC will be disabled.

Writing a '1' to CTRLA.SWRST will always take precedence, meaning that all other writes in the same write-operation will be discarded.

Due to synchronization there is a delay from writing CTRLA.SWRST until the reset is complete. CTRLA.SWRST will be cleared when the reset is complete.

28.8.22 Channel Interrupt Flag Status and Clear

Name:CHINTFLAGOffset:0x4EReset:0x00Property:-

This register affects the DMA channel that is selected in the Channel ID register (CHID.ID).

Bit	7	6	5	4	3	2	1	0
						SUSP	TCMPL	TERR
Access						R/W	R/W	R/W
Reset						0	0	0

Bit 2 – SUSP Channel Suspend

This flag is cleared by writing a '1' to it.

This flag is set when a block transfer with suspend block action is completed, when a software suspend command is executed, when a suspend event is received or when an invalid descriptor is fetched by the DMA.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the Channel Suspend interrupt flag for the corresponding channel.

For details on available software commands, refer to CHCTRLB.CMD.

For details on available event input actions, refer to CHCTRLB.EVACT.

For details on available block actions, refer to BTCTRL.BLOCKACT.

Bit 1 – TCMPL Channel Transfer Complete

This flag is cleared by writing a '1' to it.

This flag is set when a block transfer is completed and the corresponding interrupt block action is enabled.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the Transfer Complete interrupt flag for the corresponding channel.

Bit 0 – TERR Channel Transfer Error

This flag is cleared by writing a '1' to it.

This flag is set when a bus error is detected during a beat transfer or when the DMAC fetches an invalid descriptor.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the Transfer Error interrupt flag for the corresponding channel.

30.8.2 Control B

Name:	CTRLB
Offset:	0x04
Reset:	0x0000080
Property:	PAC Write-Protection, Write-Secure

Bit 18 - CACHEDIS Cache Disable

This bit is used to disable the cache.

Value	Description
0	The cache is enabled
1	The cache is disabled

Bits 17:16 - READMODE[1:0] NVMCTRL Read Mode

Value	Name	Description
0x0	NO_MISS_PENALTY	The NVM Controller (cache system) does not insert wait states on a cache miss. Gives the best system performance.
0x1	LOW_POWER	Reduces power consumption of the cache system, but inserts a wait state each time there is a cache miss. This mode may not be relevant if CPU performance is required, as the application will be stalled and may lead to increased run time.
0x2	DETERMINISTIC	The cache system ensures that a cache hit or miss takes the same amount of time, determined by the number of programmed Flash wait states. This mode can be used for real-time applications that require deterministic execution timings.
0x3	Reserved	

33.7.17 Channel Security Attribution

Name:	NONSECCHAN
Offset:	0x1D8
Reset:	0x0000000
Property:	PAC Write-Protection, Write-Secure

This register allows the user to configure one or more channels as secured or non-secured.

	>	Important:	This register is only available for SAM L11 and has no effect for SAM L10 .					
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
1								
Popot								
Resel								
Bit	7	6	5	4	3	2	1	0
				CHANN	ELn[7:0]			
Access	RW/R/RW	RW/R/RW	RW/R/RW	RW/R/RW	RW/R/RW	RW/R/RW	RW/R/RW	RW/R/RW
Reset	0	0	0	0	0	0	0	0

Bits 7:0 – CHANNELn[7:0] Channel n Security Attribution [n=7..0]The bit n of CHANNEL enables the non-secure mode of CHANNELn. The registers whose CHANNEL bit or bitfield n is set in non-secure mode by NONSECCHAN.CHANNELn are CHANNELn, CHINTENCLRn, CHINTENSETn, CHINTFLAGn and CHSTATUSx registers.

These bits set the security attribution for the individual channels.

Value	Description
0	The corresponding channel is secured. When the module is PAC secured, the configuration and status bits for this channel are only available through the secure alias. Attempts to change the channel configuration through the non-secure alias will be silently ignored and reads will return 0.
1	The corresponding channel is non-secured. The configuration and status bits for this channel are available through the non-secure alias.

34.6.7 Sleep Mode Operation

The peripheral can operate in any sleep mode where the selected serial clock is running. This clock can be external or generated by the internal baud-rate generator.

The SERCOM interrupts can be used to wake up the device from sleep modes. Refer to the different SERCOM mode chapters for details.

34.6.8 Synchronization

Due to asynchronicity between the main clock domain and the peripheral clock domains, some registers need to be synchronized when written or read.

Required write-synchronization is denoted by the "Write-Synchronized" property in the register description.

Required read-synchronization is denoted by the "Read-Synchronized" property in the register description.

35.8.6 Interrupt Enable Clear

Name:INTENCLROffset:0x14Reset:0x00Property:PAC Write-Protection

This register allows the user to disable an interrupt without doing a read-modify-write operation. Changes in this register will also be reflected in the Interrupt Enable Set register (INTENSET).

Bit	7	6	5	4	3	2	1	0
	ERROR		RXBRK	CTSIC	RXS	RXC	TXC	DRE
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0

Bit 7 – ERROR Error Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the Error Interrupt Enable bit, which disables the Error interrupt.

Value	Description
0	Error interrupt is disabled.
1	Error interrupt is enabled.

Bit 5 – RXBRK Receive Break Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the Receive Break Interrupt Enable bit, which disables the Receive Break interrupt.

Value	Description
0	Receive Break interrupt is disabled.
1	Receive Break interrupt is enabled.

Bit 4 – CTSIC Clear to Send Input Change Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the Clear To Send Input Change Interrupt Enable bit, which disables the Clear To Send Input Change interrupt.

Value	Description
0	Clear To Send Input Change interrupt is disabled.
1	Clear To Send Input Change interrupt is enabled.

Bit 3 – RXS Receive Start Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the Receive Start Interrupt Enable bit, which disables the Receive Start interrupt.

Value	Description
0	Receive Start interrupt is disabled.
1	Receive Start interrupt is enabled.

36.8.10 Data

	Name: Offset: Reset: Property:	DATA 0x28 0x0000 –						
								_
Bit	15	14	13	12	11	10	9	8
								DATA[8:8]
Access								R/W
Reset								0
Bit	7	6	5	4	3	2	1	0
				DATA	A[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 8:0 - DATA[8:0] Data

Reading these bits will return the contents of the receive data buffer. The register should be read only when the Receive Complete Interrupt Flag bit in the Interrupt Flag Status and Clear register (INTFLAG.RXC) is set.

Writing these bits will write the transmit data buffer. This register should be written only when the Data Register Empty Interrupt Flag bit in the Interrupt Flag Status and Clear register (INTFLAG.DRE) is set.

Example: For ROOM_TEMP_VAL_INT=0x19=25 and ROOM_TEMP_VAL_DEC=2, the measured temperature at room insertion is 25.2°C.

- HOT_TEMP_VAL_INT and HOT_TEMP_VAL_DEC contain the measured temperature at hot insertion, *temp*_H, in °C. The integer and decimal value are also separated.
- For each temperature, the corresponding sensor value at the ADC in 12-bit, ADC_R and ADC_H:
 - ROOM_ADC_VAL contains the 12-bit ADC value, ADC_R, corresponding to *temp*_R. Its conversion to Volt is denoted V_{ADCR}.
 - HOT_ADC_VAL contains the 12-bit ADC value, ADC_H, corresponding to *temp*_H. Its conversion to Volt is denoted V_{ADCH}.
- Actual reference voltages at each calibration temperature in Volt, $INT1V_R$ and $INT1V_H$, respectively:
 - ROOM_INT1V_VAL is the 2's complement of the internal 1V reference value at $temp_R$: INT1V_R.
 - HOT_INT1V_VAL is the 2's complement of the internal 1V reference value at *temp*_H: INT1V_H.
 - Both ROOM_INT1V_VAL and HOT_INT1V_VAL values are centered around 1V with a 0.001V step. In other words, the range of values [0,127] corresponds to [1V, 0.873V] and the range of values [-1, -127] corresponds to [1.001V, 1.127V]. INT1V == 1 (VAL/1000) is valid for both ranges.

Calculating the Temperature by Linear Interpolation

Using the data pairs ($temp_R$, V_{ADCR}) and ($temp_H$, V_{ADCH}) for a linear interpolation, we have the following equation:

$$\left(\frac{V_{ADC} - V_{ADCR}}{temp - temp_R}\right) = \left(\frac{V_{ADCH} - V_{ADCR}}{temp_H - temp_R}\right)$$

The voltages V_x are acquired as 12-bit ADC values ADC_x , with respect to an internal reference voltage INT1V_x:

[Equation 1]

$$V_{ADCx} = ADC_x \cdot \frac{\text{INT1V}_x}{2^{12} - 1}$$

For the measured value of the temperature sensor, ADC_m , the reference voltage is assumed to be perfect, i.e., $INT1V_m = INT1V_c = 1V$. These substitutions yield a coarse value of the measured temperature $temp_C$:

[Equation 2]

$$temp_{C} = temp_{R} + \left[\frac{\left\{ \left(ADC_{m} \cdot \frac{INT1V_{C}}{(2^{12} - 1)} \right) - \left(ADC_{R} \cdot \frac{INT1V_{R}}{(2^{12} - 1)} \right) \right\} \cdot (temp_{H} - temp_{R})}{\left(ADC_{H} \cdot \frac{INT1V_{H}}{(2^{12} - 1)} \right) - \left(ADC_{R} \cdot \frac{INT1V_{R}}{(2^{12} - 1)} \right)} \right]$$

Or, after eliminating the 12-bit scaling factor $(2^{12}-1)$:

[Equation 3]

$$temp_{C} = temp_{R} + \left[\frac{\{ADC_{m} \cdot \text{INT1V}_{c} - (ADC_{R} \cdot \text{INT1V}_{R})\} \cdot (temp_{H} - temp_{R})}{\{(ADC_{H} \cdot \text{INT1V}_{H}) - (ADC_{R} \cdot \text{INT1V}_{R})\}}\right]$$

41.8.3 Reference Control

Name:	REFCTRL
Offset:	0x02
Reset:	0x00
Property:	PAC Write-Protection, Enable-Protected

Bit	7	6	5	4	3	2	1	0
	REFCOMP					REFSI	EL[3:0]	
Access	R/W				R/W	R/W	R/W	R/W
Reset	0				0	0	0	0

Bit 7 – REFCOMP Reference Buffer Offset Compensation Enable

The gain error can be reduced by enabling the reference buffer offset compensation. This will increase the start-up time of the reference.

Value	Description
0	Reference buffer offset compensation is disabled.
1	Reference buffer offset compensation is enabled.

Bits 3:0 - REFSEL[3:0] Reference Selection

These bits select the reference for the ADC.

Value	Name	Description
0x0	INTREF	Internal variable reference voltage, refer to the SUPC.VREF register for voltage
		reference value
x01	INTVCC0	1/1.6 VDDANA
0x2	INTVCC1	1/2 VDDANA (only for VDDANA > 2.0V)
0x3	VREFA	External reference
0x4	VREFB	External reference
0x5	INTVCC2	VDDANA
0x6 -		Reserved
0xF		

SAM L10/L11 Family

125°C Electrical Characteristics

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Units
		VREF= INT1V	VDD = 1.62V	+/-0,4	+/-0,7	+/-4.2	
			VDD = 3.63V	+/-0,4	+/-0,8	+/-6	
DNL Differential	Differential non-linearity	VREF= Ext 1.0V	VDD = 1.62V	+/-0,1	+/-0,3	+/-2	LSB
			VDD = 3.63V	+/-0,1	+/-0,3	+/-1.5	
		VREF= VDDANA	VDD = 1.62V	+/-0,1	+-0,2	+/-3.0	
			VDD = 3.63V	+/-0,1	+/-0,2	+/-1.6	
		VREF= INT1V	VDD = 1.62V	+/-0,3	+/-0,6	+/-4.3	
			VDD = 3.63V	+/-0,3	+/-0,8	+/-7	
	Gain error	VREF= Ext 1.0V		-	+/-4	+/-16	mV
		VREF= VDDANA		-	+/-12	+/-60	mV
		VREF= INT1V		-	+/-1	+/-23	mV
	Offset error	VREF= Ext 1.0V		-	+/-1	+/-13	mV
		VREF= VDDANA		-	+/-2.5	+/-32	mV
		VREF= INT1V		-	+/-1.5	+/-30	mV

Note:

1. All values measured using a conversion rate of 350ksps.

47.4.4 Analog Comparator Characteristics

Table 47-13. Electrical and Timing ⁽¹⁾

Symbol	Parameters	Conditions	Min.	Тур	Max.	Unit
PNIVR	Positive and Negative input range voltage		0	-	V _{DDANA}	V
ICMR	Input common mode range		0	-	V _{DDANA} -0.1	V
Off	Offset	COMPCTRLn.SPEED=0x0	-70	-4.5/+1.5	70	mV
		COMPCTRLn.SPEED=0x1	-55	-4.5/+1.5	55	
		COMPCTRLn.SPEED=0x2	-48	-4.5/+1.5	48	
		COMPCTRLn.SPEED=0x3	-42	-4.5/+1.5	42	
V _{Hys}	Hysteresis	COMPCTRLn.HYST=0x0	10	45	79	mV
		COMPCTRLn.HYST=0x1	22	70	115	
		COMPCTRLn.HYST=0x2	37	90	138	
		COMPCTRLn.HYST=0x3	49	105	159	

49. Packaging Information

49.1 Package Marking Information

All devices are marked with the Atmel logo, a shortened ordering code and additional marking (the two last lines)

YYWW R ARM

XXXXXX CC

Where:

- "Y" or "YY": Manufacturing Year (last OR two last digit(s))
- "WW": Manufacturing Week
- "R": Revision
- "XXXXXX": Lot number
- "CC": Internal Code

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Asia Pacific Office	China - Xiamen	Austria - Wels
2355 West Chandler Blvd.	Suites 3707-14, 37th Floor	Tel: 86-592-2388138	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	Tower 6, The Gateway	Fax: 86-592-2388130	Fax: 43-7242-2244-393
Tel: 480-792-7200	Harbour City, Kowloon	China - Zhuhai	Denmark - Copenhagen
Fax: 480-792-7277	Hong Kong	Tel: 86-756-3210040	Tel: 45-4450-2828
Technical Support:	Tel: 852-2943-5100	Fax: 86-756-3210049	Fax: 45-4485-2829
http://www.microchip.com/	Fax: 852-2401-3431	India - Bangalore	Finland - Espoo
support	Australia - Sydney	Tel: 91-80-3090-4444	Tel: 358-9-4520-820
Web Address:	Tel: 61-2-9868-6733	Fax: 91-80-3090-4123	France - Paris
www.microchip.com	Fax: 61-2-9868-6755	India - New Delhi	Tel: 33-1-69-53-63-20
Atlanta	China - Beijing	Tel: 91-11-4160-8631	Fax: 33-1-69-30-90-79
Duluth, GA	Tel: 86-10-8569-7000	Fax: 91-11-4160-8632	France - Saint Cloud
Tel: 678-957-9614	Fax: 86-10-8528-2104	India - Pune	Tel: 33-1-30-60-70-00
Fax: 678-957-1455	China - Chengdu	Tel: 91-20-3019-1500	Germany - Garching
Austin, TX	Tel: 86-28-8665-5511	Japan - Osaka	Tel: 49-8931-9700
Tel: 512-257-3370	Fax: 86-28-8665-7889	Tel: 81-6-6152-7160	Germany - Haan
Boston	China - Chongqing	Fax: 81-6-6152-9310	Tel: 49-2129-3766400
Westborough, MA	Tel: 86-23-8980-9588	Japan - Tokyo	Germany - Heilbronn
Tel: 774-760-0087	Fax: 86-23-8980-9500	Tel: 81-3-6880- 3770	Tel: 49-7131-67-3636
Fax: 774-760-0088	China - Dongguan	Fax: 81-3-6880-3771	Germany - Karlsruhe
Chicago	Tel: 86-769-8702-9880	Korea - Daegu	Tel: 49-721-625370
Itasca, IL	China - Guangzhou	Tel: 82-53-744-4301	Germany - Munich
Tel: 630-285-0071	Tel: 86-20-8755-8029	Fax: 82-53-744-4302	Tel: 49-89-627-144-0
Fax: 630-285-0075	China - Hangzhou	Korea - Seoul	Fax: 49-89-627-144-44
Dallas	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Rosenheim
Addison, TX	Fax: 86-571-8792-8116	Fax: 82-2-558-5932 or	Tel: 49-8031-354-560
Tel: 972-818-7423	China - Hong Kong SAR	82-2-558-5934	Israel - Ra'anana
Fax: 972-818-2924	Tel: 852-2943-5100	Malaysia - Kuala Lumpur	Tel: 972-9-744-7705
Detroit	Fax: 852-2401-3431	Tel: 60-3-6201-9857	Italy - Milan
Novi, MI	China - Nanjing	Fax: 60-3-6201-9859	Tel: 39-0331-742611
Tel: 248-848-4000	Tel: 86-25-8473-2460	Malaysia - Penang	Fax: 39-0331-466781
Houston, TX	Fax: 86-25-8473-2470	Tel: 60-4-227-8870	Italy - Padova
Tel: 281-894-5983	China - Qingdao	Fax: 60-4-227-4068	Tel: 39-049-7625286
Indianapolis	Tel: 86-532-8502-7355	Philippines - Manila	Netherlands - Drunen
Noblesville, IN	Fax: 86-532-8502-7205	Tel: 63-2-634-9065	Tel: 31-416-690399
Tel: 317-773-8323	China - Shanghai	Fax: 63-2-634-9069	Fax: 31-416-690340
Fax: 317-773-5453	Tel: 86-21-3326-8000	Singapore	Norway - Trondheim
Tel: 317-536-2380	Fax: 86-21-3326-8021	Tel: 65-6334-8870	Tel: 47-7289-7561
Los Angeles	China - Shenyang	Fax: 65-6334-8850	Poland - Warsaw
Mission Viejo, CA	Tel: 86-24-2334-2829	Taiwan - Hsin Chu	Tel: 48-22-3325737
Tel: 949-462-9523	Fax: 86-24-2334-2393	Tel: 886-3-5778-366	Romania - Bucharest
Fax: 949-462-9608	China - Shenzhen	Fax: 886-3-5770-955	Tel: 40-21-407-87-50
Tel: 951-273-7800	Tel: 86-755-8864-2200	Taiwan - Kaohsiung	Spain - Madrid
Raleigh, NC	Fax: 86-755-8203-1760	Tel: 886-7-213-7830	Tel: 34-91-708-08-90
Tel: 919-844-7510	China - Wuhan	Taiwan - Taipei	Fax: 34-91-708-08-91
New York, NY	Tel: 86-27-5980-5300	Tel: 886-2-2508-8600	Sweden - Gothenberg
Tel: 631-435-6000	Fax: 86-27-5980-5118	Fax: 886-2-2508-0102	Tel: 46-31-704-60-40
San Jose, CA	China - Xian	Thailand - Bangkok	Sweden - Stockholm
Tel: 408-735-9110	Tel: 86-29-8833-7252	Tel: 66-2-694-1351	Tel: 46-8-5090-4654
Tel: 408-436-4270	Fax: 86-29-8833-7256	Fax: 66-2-694-1350	UK - Wokingham
Canada - Toronto			Tel: 44-118-921-5800
Tel: 905-695-1980			Fax: 44-118-921-5820

Fax: 905-695-2078