E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M23
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	17
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.63V
Data Converters	A/D 5x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-SSOP (0.209", 5.30mm Width)
Supplier Device Package	24-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsaml11d15a-yut

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

22.4.	Signal Description	
22.5.	Product Dependencies	
22.6.	Functional Description	245
22.7.	Register Summary	
22.8.	Register Description	
23. OSC	CCTRL – Oscillators Controller	271
23.1.	Overview	271
23.2.	Features	
23.3.	Block Diagram	272
23.4.	Signal Description	272
23.5.	Product Dependencies	272
23.6.	Functional Description	
23.7.	Register Summary	
23.8.	Register Description	
24 050	22//CTDL 22//Hz Oppilletors Controller	210
24. 030	JSZKUTRL – SZKHZ USCHIAIOIS CONTIONEL	
24.1.	Overview	319
24.2.	Features	
24.3.	Block Diagram	
24.4.	Signal Description	320
24.5.	Product Dependencies	
24.6.	Functional Description	
24.7.	Register Summary	327
24.8.	Register Description	
25 SUF	PC – Supply Controller	339
25.1		330
25.1.		
20.2.	Plack Diagram	
20.0.	Signal Description	
20.4.	Signal Description	
20.0.	Floduct Dependencies	
20.0.	Purictional Description	
25.7.	Register Summary	
25.8.	Register Description	
26. WD	T – Watchdog Timer	
26.1.	Overview	366
26.2	Features	366
26.3	Block Diagram	367
26.4	Signal Description	
26.4	Product Dependencies	
20.0.	Functional Description	368
20.0. 26 7	Register Summary	
26.7.	Register Description	374
20.0.		
27. RTC	c – Real-Time Counter	
27.1	Overview	

SAM L10/L11 Family

Memories

Bit Pos.	Name	Usage	Factory Setting	Related Peripheral Register
25	WDT_RUNSTDBY	WDT Runstdby at power-on	0x0	WDT.CTRLA
26	WDT_ENABLE	WDT Enable at power-on	0x0	WDT.CTRLA
27	WDT_ALWAYSON	WDT Always-On at power-on	0x0	WDT.CTRLA
31:28	WDT_PER	WDT Period at power-on	0xB	WDT.CONFIG
35:32	WDT_WINDOW	WDT Window mode time-out at power-on	0xB	WDT.CONFIG
39:36	WDT_EWOFFSET	WDT Early Warning Interrupt Time Offset at power-on	0xB	WDT.EWCTRL
40	WDT_WEN	WDT Timer Window Mode Enable at power-on	0x0	WDT.CTRLA
41	BOD33_HYST	BOD33 Hysteresis configuration at power-on	0x0	SUPC.BOD33
42	Reserved	Reserved	Reserved	Reserved
43	RXN	RAM is eXecute Never	0x1	IDAU.SECCTRL
44	DXN	Data Flash is eXecute Never	0x1	NVMCTRL.SECCTRL
63:45	Reserved	Reserved	Reserved	Reserved
71:64	AS	Flash Application Secure Size = AS*0x100	0xFF	IDAU.SCFGA
77:72	ANSC	Flash Application Non-Secure Callable Size = ANSC*0x20	0x0	IDAU.SCFGA
79:78	Reserved	Reserved	Reserved	Reserved
83:80	DS	Data Flash Secure Size = DS*0x100	0x8	IDAU.SCFGA
87:84	Reserved	Reserved	Reserved	Reserved
94:88	RS	RAM Secure Size = RS*0x80	0x7F	IDAU.SCFGR
95	Reserved	Reserved	Reserved	Reserved
96	URWEN	User Row Write Enable	0x1	NVMCTRL.SCFGAD
127:97	Reserved	Reserved	Reserved	Reserved
159:128	NONSECA ⁽¹⁾	Peripherals Non-Secure Status Fuses for Bridge A	0x0000_0000	PAC.NONSECA
191:160	NONSECB ^(2, 3)	Peripherals Non-Secure Status Fuses for Bridge B	0x0000_0000	PAC.NONSECB
223:192	NONSECC	Peripherals Non-Secure Status Fuses for Bridge C	0x0000_0000	PAC.NONSECC
255:224	USERCRC	CRC of NVM User Row bits 223:64	0x8433651E	Boot ROM

Note:

- 1. The PAC Peripheral is always secured regardless of its bit value
- 2. The IDAU and NVMCTRL peripherals are always secured regardless of their bit values.
- 3. The DSU peripheral is always non-secured regardless of its bit value.

1. BOD12 is calibrated in production and its calibration parameters must not be changed to ensure the correct device behavior.

Table 10-11.	SAM L11	UROW	Mapping
--------------	---------	------	---------

Offset	Bit Pos.	Name					
0x00	7:0	BOD33 Level	-		NSULCK	SULCK	
0x01	15:8	BOD33	3 Action	BOD33 Disable BOD33 Level			
0x02	23:16	BOD12 Calibration Parameters					

14.4.5.5.1 CMD_CEx (SAM L11 only) Figure 14-11. CMD_CEx Flow diagram

14.4.5.6 NVM Memory Regions Integrity Checks (CMD_CRC)

The Boot ROM provides a way to check the integrity of the embedded non-volatile memories which may be of interest in case of a failure analysis.

This requires the user to place tables describing the memory area to be checked with their expected CRC values.

Note: During this integrity check process, the debugger sends the CRC table address to the device.

SAM L10/L11 Family

PAC - Peripheral Access Controller

Table 15-2. PERID Values

Peripheral Bridge Name	BridgeNumber	PERID Values
А	0	0+N
В	1	32+N
С	2	64+N

PAC - Peripheral Access Controller

- Bit 8 WDT Peripheral WDT Write Protection Status
- Bit 7 GCLK Peripheral GCLK Write Protection Status
- Bit 6 SUPC Peripheral SUPC Write Protection Status
- Bit 5 OSC32KCTRL Peripheral OSC32KCTRL Write Protection Status
- Bit 4 OSCCTRL Peripheral OSCCTRL Write Protection Status
- **Bit 3 RSTC** Peripheral RSTC Write Protection Status
- Bit 2 MCLK Peripheral MCLK Write Protection Status
- Bit 1 PM Peripheral PM Write Protection Status
- Bit 0 PAC Peripheral PAC Write Protection Status

22. PM – Power Manager

22.1 Overview

The Power Manager (PM) controls the sleep modes and the power domain gating of the device.

Various sleep modes are provided in order to fit power consumption requirements. This enables the PM to stop unused modules in order to save power. In active mode, the CPU is executing application code. When the device enters a sleep mode, program execution is stopped and some modules and clock domains are automatically switched off by the PM according to the sleep mode. The application code decides which sleep mode to enter and when. Interrupts from enabled peripherals and all enabled reset sources can restore the device from a sleep mode to active mode.

Performance level technique consists of adjusting the regulator output voltage to reduce power consumption. The user can select on the fly the performance level configuration which best suits the application.

The power domain gating technique enables the PM to turn off unused power domain supplies individually, while keeping others powered up. Based on activity monitoring, power domain gating is managed automatically by hardware without software intervention. This technique is transparent for the application while minimizing the static consumption. The user can also manually control which power domains will be turned on and off in standby sleep mode.

The internal state of the logic is retained (retention state) allowing the application context to be kept in non-active states.

22.2 Features

- Power management control
 - Sleep modes: Idle, Standby, and Off
 - Performance levels: PL0 and PL2
 - SleepWalking available in Standby mode.
 - Full retention state in Standby mode
- Power Domain Control
 - Standby Sleep Mode with static power gating
 - SleepWalking extension to power gating
 - SRAM sub-blocks retention in Standby mode

SAM L10/L11 Family OSC32KCTRL – 32KHz Oscillators Controller

	Name: Offset: Reset: Property:	INTFLAG 0x08 0x00000000 -						
Bit	31	30	29	28	27	26	25	24
Access		1						
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Dit	7	6	5	4	2	2	1	0
DIL	1	0	5	4	3		I	
A								DAV
Access						K/VV		K/VV
Reset						U		U

24.8.3 Interrupt Flag Status and Clear

Bit 2 – CLKFAIL XOSC32K Clock Failure Detection

This flag is cleared by writing a '1' to it.

This flag is set on a zero-to-one transition of the XOSC32K Clock Failure Detection bit in the Status register (STATUS.CLKFAIL) and will generate an interrupt request if INTENSET.CLKFAIL is '1'.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the XOSC32K Clock Failure Detection flag.

Bit 0 – XOSC32KRDY XOSC32K Ready

This flag is cleared by writing a '1' to it.

This flag is set by a zero-to-one transition of the XOSC32K Ready bit in the Status register (STATUS.XOSC32KRDY), and will generate an interrupt request if INTENSET.XOSC32KRDY=1.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit clears the XOSC32K Ready interrupt flag.

disabled again by writing a '1' to the Early Warning Interrupt bit in the Interrupt Enable Clear (INTENCLR.EW) register.

If the Early Warning interrupt is enabled in Window mode, the interrupt is generated at the start of the open window period, i.e. after TO_{WDTW}. The Window mode operation is illustrated in figure Window-Mode Operation.

Figure 26-3. Window-Mode Operation

26.6.3 DMA Operation

Not applicable.

26.6.4 Interrupts

The WDT has the following interrupt source:

- Early Warning (EW): Indicates that the counter is approaching the time-out condition.
 - This interrupt is an asynchronous wake-up source.

Each interrupt source has an interrupt flag associated with it. The interrupt flag in the Interrupt Flag Status and Clear (INTFLAG) register is set when the interrupt condition occurs.

Each interrupt can be individually enabled by writing a '1' to the corresponding bit in the Interrupt Enable Set (INTENSET) register, and disabled by writing a '1' to the corresponding bit in the Interrupt Enable Clear (INTENCLR) register.

An interrupt request is generated when the interrupt flag is set and the corresponding interrupt is enabled. The interrupt request remains active until the interrupt flag is cleared, the interrupt is disabled, or the WDT is reset. See the 26.8.6 INTFLAG register description for details on how to clear interrupt flags. All interrupt requests from the peripheral are ORed together on system level to generate one combined interrupt request to the NVIC. The user must read the INTFLAG register to determine which interrupt condition is present.

Note: Interrupts must be globally enabled for interrupt requests to be generated.

Related Links

22. PM – Power Manager22.6.3.3 Sleep Mode Controller

26.6.5 Events

Not applicable.

27.10.9 Frequency Correction

Name:	FREQCORR
Offset:	0x14
Reset:	0x00
Property:	PAC Write-Protection, Write-Synchronized

Bit	7	6	5	4	3	2	1	0
	SIGN			VALUE[6:0]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 7 – SIGN Correction Sign

Value	Description
0	The correction value is positive, i.e., frequency will be decreased.
1	The correction value is negative, i.e., frequency will be increased.

Bits 6:0 – VALUE[6:0] Correction Value

These bits define the amount of correction applied to the RTC prescaler.

Value	Description
0	Correction is disabled and the RTC frequency is unchanged.
1 - 127	The RTC frequency is adjusted according to the value.

Within each priority level the DMAC's arbiter can be configured to prioritize statically or dynamically:

Static Arbitration within a priority level is selected by writing a '0' to the Level x Round-Robin Scheduling Enable bit in the Priority Control 0 register (PRICTRL0.RRLVLENx).

When static arbitration is selected, the arbiter will prioritize a low channel number over a high channel number as shown in the figure below. When using the static arbitration there is a risk of high channel numbers never being granted access as the active channel. This can be avoided using a dynamic arbitration scheme.

Dynamic Arbitration within a priority level is selected by writing a '1' to PRICTRL0.RRLVLENx.

The dynamic arbitration scheme in the DMAC is round-robin. With the round-robin scheme, the channel number of the last channel being granted access will have the lowest priority the next time the arbiter has to grant access to a channel within the same priority level, as shown in Figure 28-6. The channel number of the last channel being granted access as the active channel is stored in the Level x Channel Priority Number bit group in the Priority Control 0 register (PRICTRL0.LVLPRIx) for the corresponding priority level.

35.8.7 Interrupt Enable Set

Name:INTENSETOffset:0x16Reset:0x00Property:PAC Write-Protection

This register allows the user to disable an interrupt without doing a read-modify-write operation. Changes in this register will also be reflected in the Interrupt Enable Clear register (INTENCLR).

Bit	7	6	5	4	3	2	1	0
	ERROR		RXBRK	CTSIC	RXS	RXC	TXC	DRE
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W
Reset	0		0	0	0	0	0	0

Bit 7 – ERROR Error Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will set the Error Interrupt Enable bit, which enables the Error interrupt.

Value	Description
0	Error interrupt is disabled.
1	Error interrupt is enabled.

Bit 5 – RXBRK Receive Break Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will set the Receive Break Interrupt Enable bit, which enables the Receive Break interrupt.

Value	Description
0	Receive Break interrupt is disabled.
1	Receive Break interrupt is enabled.

Bit 4 – CTSIC Clear to Send Input Change Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will set the Clear To Send Input Change Interrupt Enable bit, which enables the Clear To Send Input Change interrupt.

Value	Description
0	Clear To Send Input Change interrupt is disabled.
1	Clear To Send Input Change interrupt is enabled.

Bit 3 – RXS Receive Start Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will set the Receive Start Interrupt Enable bit, which enables the Receive Start interrupt.

Value	Description
0	Receive Start interrupt is disabled.
1	Receive Start interrupt is enabled.

36.8.5 Interrupt Enable Set

Name:INTENSETOffset:0x16Reset:0x00Property:PAC Write-Protection

This register allows the user to disable an interrupt without read-modify-write operation. Changes in this register will also be reflected in the Interrupt Enable Clear register (INTENCLR).

Bit	7	6	5	4	3	2	1	0
	ERROR				SSL	RXC	TXC	DRE
Access	R/W				R/W	R/W	R/W	R/W
Reset	0				0	0	0	0

Bit 7 – ERROR Error Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will set the Error Interrupt Enable bit, which enables the Error interrupt.

Value	Description
0	Error interrupt is disabled.
1	Error interrupt is enabled.

Bit 3 – SSL Slave Select Low Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will set the Slave Select Low Interrupt Enable bit, which enables the Slave Select Low interrupt.

Value	Description
0	Slave Select Low interrupt is disabled.
1	Slave Select Low interrupt is enabled.

Bit 2 – RXC Receive Complete Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will set the Receive Complete Interrupt Enable bit, which enables the Receive Complete interrupt.

Value	Description
0	Receive Complete interrupt is disabled.
1	Receive Complete interrupt is enabled.

Bit 1 – TXC Transmit Complete Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will set the Transmit Complete Interrupt Enable bit, which enables the Transmit Complete interrupt.

Value	Description
0	Transmit Complete interrupt is disabled.
1	Transmit Complete interrupt is enabled.

Figure 37-13. PMBus Group Command Example

37.6.3 Additional Features

37.6.3.1 SMBus

The I²C includes three hardware SCL low time-outs which allow a time-out to occur for SMBus SCL low time-out, master extend time-out, and slave extend time-out. This allows for SMBus functionality These time-outs are driven by the GCLK_SERCOM_SLOW clock. The GCLK_SERCOM_SLOW clock is used to accurately time the time-out and must be configured to use a 32KHz oscillator. The I²C interface also allows for a SMBus compatible SDA hold time.

- T_{TIMEOUT}: SCL low time of 25..35ms Measured for a single SCL low period. It is enabled by CTRLA.LOWTOUTEN.
- T_{LOW:SEXT}: Cumulative clock low extend time of 25 ms Measured as the cumulative SCL low extend time by a slave device in a single message from the initial START to the STOP. It is enabled by CTRLA.SEXTTOEN.
- T_{LOW:MEXT}: Cumulative clock low extend time of 10 ms Measured as the cumulative SCL low extend time by the master device within a single byte from START-to-ACK, ACK-to-ACK, or ACKto-STOP. It is enabled by CTRLA.MEXTTOEN.

37.6.3.2 Smart Mode

The I^2C interface has a smart mode that simplifies application code and minimizes the user interaction needed to adhere to the I^2C protocol. The smart mode accomplishes this by automatically issuing an ACK or NACK (based on the content of CTRLB.ACKACT) as soon as DATA.DATA is read.

37.6.3.3 4-Wire Mode

Writing a '1' to the Pin Usage bit in the Control A register (CTRLA.PINOUT) will enable 4-wire mode operation. In this mode, the internal I^2C tri-state drivers are bypassed, and an external I^2C compliant tristate driver is needed when connecting to an I^2C bus.

37.8.6 Status

Name:	STATUS
Offset:	0x1A
Reset:	0x0000
Property:	-

Bit	15	14	13	12	11	10	9	8
					LENERR	HS	SEXTTOUT	
Access					R/W	R/W	R/W	
Reset					0	0	0	
Bit	7	6	5	4	3	2	1	0
	CLKHOLD	LOWTOUT		SR	DIR	RXNACK	COLL	BUSERR
Access	R	R/W		R	R	R	R/W	R/W
Reset	0	0		0	0	0	0	0

Bit 11 – LENERR Transaction Length Error

This bit is set when the length counter is enabled (LENGTH.LENEN) and a STOP or repeated START is received before or after the length in LENGTH.LEN is reached.

This bit is cleared automatically when responding to a new start condition with ACK or NACK (CTRLB.CMD=0x3) or when INTFLAG.AMATCH is cleared.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the status.

Bit 10 – HS High-speed

This bit is set if the slave detects a START followed by a Master Code transmission.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the status. However, this flag is automatically cleared when a STOP is received.

Bit 9 - SEXTTOUT Slave SCL Low Extend Time-Out

This bit is set if a slave SCL low extend time-out occurs.

This bit is cleared automatically if responding to a new start condition with ACK or NACK (write 3 to CTRLB.CMD) or when INTFLAG.AMATCH is cleared.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the status.

Value	Description
0	No SCL low extend time-out has occurred.
1	SCL low extend time-out has occurred.

SAM L10/L11 Family SERCOM I2C – SERCOM Inter-Integrated Circ...

37.8.7 Synchronization Busy

Name: Offset: Reset: Property:		SYNCBUSY 0x1C 0x00000000 -						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
5.4	45		10	10		10	0	<u> </u>
Bit	15	14	13	12	11	10	9	8
A								
Report								
Resei								
Bit	7	6	5	4	3	2	1	0
							ENABLE	SWRST
Access							R	R
Reset							0	0

Bit 1 – ENABLE SERCOM Enable Synchronization Busy

Enabling and disabling the SERCOM (CTRLA.ENABLE) requires synchronization. When written, the SYNCBUSY.ENABLE bit will be set until synchronization is complete.

Value	Description
0	Enable synchronization is not busy.
1	Enable synchronization is busy.

Bit 0 – SWRST Software Reset Synchronization Busy

Resetting the SERCOM (CTRLA.SWRST) requires synchronization. When written, the SYNCBUSY.SWRST bit will be set until synchronization is complete.

Value	Description
0	SWRST synchronization is not busy.
1	SWRST synchronization is busy.

If CMD 0x1 is issued, a repeated start will be issued followed by the transmission of the current address in ADDR.ADDR. If another address is desired, ADDR.ADDR must be written instead of the CMD bits. This will trigger a repeated start followed by transmission of the new address.

Issuing a command will set the System Operation bit in the Synchronization Busy register (SYNCBUSY.SYSOP).

CMD[1:0]	Direction	Action
0x0	Х	(No action)
0x1	Х	Execute acknowledge action succeeded by repeated Start
0x2	0 (Write)	No operation
	1 (Read)	Execute acknowledge action succeeded by a byte read operation
0x3	Х	Execute acknowledge action succeeded by issuing a stop condition

Table 37-4. Command Description

These bits are not enable-protected.

Bit 9 – QCEN Quick Command Enable

d.
С

Value	Description
0	Quick Command is disabled.
1	Quick Command is enabled.

Bit 8 – SMEN Smart Mode Enable

When smart mode is enabled, acknowledge action is sent when DATA.DATA is read.

This bit is not write-synchronized.

Value	Description
0	Smart mode is disabled.
1	Smart mode is enabled.

SAM L10/L11 Family SERCOM I2C – SERCOM Inter-Integrated Circ...

37.10.11 Debug Control

Name: Offset: Reset: Property:		DBGCTRL 0x30 0x00 PAC Write-Pro	otection					
Bit	7	6	5	4	3	2	1	0
								DBGSTOP
Access								R/W
Reset								0

Bit 0 – DBGSTOP Debug Stop Mode

This bit controls functionality when the CPU is halted by an external debugger.

Value	Description
0	The baud-rate generator continues normal operation when the CPU is halted by an external
	debugger.
1	The baud-rate generator is halted when the CPU is halted by an external debugger.

38.7.2.9 Waveform Generation Control

Name:WAVEOffset:0x0CReset:0x00Property:PAC Write-Protection, Enable-Protected

Bit	7	6	5	4	3	2	1	0
							WAVEGEN[1:0]	
Access							R/W	R/W
Reset							0	0

Bits 1:0 – WAVEGEN[1:0] Waveform Generation Mode

These bits select the waveform generation operation. They affect the top value, as shown in 38.6.2.6.1 Waveform Output Operations. They also control whether frequency or PWM waveform generation should be used. The waveform generation operations are explained in 38.6.2.6.1 Waveform Output Operations.

These bits are not synchronized.

Value	Name	Operation	Top Value	Output Waveform on Match	Output Waveform on Wraparound
0x0	NFRQ	Normal frequency	PER ¹ / Max	Toggle	No action
0x1	MFRQ	Match frequency	CC0	Toggle	No action
0x2	NPWM	Normal PWM	PER ¹ / Max	Set	Clear
0x3	MPWM	Match PWM	CC0	Set	Clear

1) This depends on the TC mode: In 8-bit mode, the top value is the Period Value register (PER). In 16and 32-bit mode it is the respective MAX value.

43.7 Register Summary

Offset	Name	Bit Pos.									
0x00	CTRLA	7:0		RUNSTDBY					ENABLE	SWRST	
0x01	CTRLB	7:0	REFSI	EL[1:0]	DITHER		VPD	LEFTADJ	IOEN	EOEN	
0x02	EVCTRL	7:0						INVEI	EMPTYEO	STARTEI	
0x03	Reserved										
0x04	INTENCLR	7:0							EMPTY	UNDERRUN	
0x05	INTENSET	7:0							EMPTY	UNDERRUN	
0x06	INTFLAG	7:0							EMPTY	UNDERRUN	
0x07	STATUS	7:0								READY	
0,00	DATA	7:0				DATA	\ [7:0]				
UXUO	DATA	15:8				DATA	[15:8]				
0x0A											
	Reserved										
0x0B											
0×00		7:0	DATABUF[7:0]								
0,000	DAIADOI	15:8	DATABUF[15:8]								
0x0E											
	Reserved										
0x0F											
		7:0					DATABUF	DATA	ENABLE	SWRST	
0x10	SYNCBUSY	15:8							ENABLE SWRST IOEN EOEN EMPTYEO STARTEI EMPTY UNDERRUN IENABLE SWRST IENABLE SWRST IENABLE DBGRUN		
0,10	CINCLOUT	23:16									
		31:24									
0x14											
	Reserved										
0x17											
0x18	DBGCTRL	7:0								DBGRUN	

43.8 Register Description

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Some registers are optionally write-protected by the Peripheral Access Controller (PAC). Optional PAC write-protection is denoted by the "PAC Write-Protection" property in each individual register description. For details, refer to 43.5.8 Register Access Protection.

Some registers are synchronized when read and/or written. Synchronization is denoted by the "Write-Synchronized" or the "Read-Synchronized" property in each individual register description. For details, refer to 43.6.7 Synchronization.

Some registers are enable-protected, meaning they can only be written when the peripheral is disabled. Enable-protection is denoted by the "Enable-Protected" property in each individual register description.

On **SAM L11** devices, this peripheral has different access permissions depending on PAC Security Attribution (Secure or Non-Secure):

© 2018 Microchip Technology Inc.

SAM L10/L11 Family

Electrical Characteristics

Mode	Conditions	Regulator	PL	CPU Clock	Vcc	Та	Тур.	Мах	Units
				DFLLULP at 32MHz	1.8V		14.3	19	
					3.3V		14.4	19	
		BUCK	PL0	DFLLULP at 8MHz	1.8V		11.1	21	
					3.3V		8.3	16	
				OSC 8MHz	1.8V		15.5	24	
					3.3V		15.2	21	
				OSC 4MHz	1.8V		21.3	39	
					3.3V		21.6	35	
			PL2	FDPLL96M at 32MHz	1.8V		14.9	19	
					3.3V		9.1	12	
				DFLLULP at 32MHz	1.8V		10.6	14	
					3.3V		6.7	9	

Table 46-9. Standby and Off Mode Current Consumption

Mode	Conditions	Regulator Mode	Vcc	Та	Тур.	Max.	Units
STANDBY	All 16 kB RAM retained,	LPVREG with LPEFF Disable	1.8V	25°C	1.3	3.5	μΑ
	PDSW domain in active state			85°C	18.4	66.0	
		LPVREG with LPEFF Enable	3.3V	25°C	1.1	3.0	
				85°C	14.2	41.8	
		BUCK in standby with MAINVREG in PL0 mode (VREG.RUNSTDBY=1 and VREG.STDBYPL0=1)	1.8V	25°C	1.2	2.9	
				85°C	14.6	42.9	
			3.3V	25°C	1.1	2.2	
				85°C	9.6	28.6	
	All 16 kB RAM retained,	LPVREG with LPEFF Disable	1.8V	25°C	0.6	1.1	
	PDSW domain in retention			85°C	5.1	14.9	
		LPVREG with LPEFF Enable	3.3V	25°C	0.5	1.0	
				85°C	4.3	12.1	
		BUCK in standby with MAINVREG in PL0 mode (VREG.RUNSTDBY=1 and VREG.STDBYPL0=1)	1.8V	25°C	0.8	1.1	
				85°C	4.3	11.9	
			3.3V	25°C	0.8	1.5	
				85°C	3.4	8.5	