

Welcome to E-XFL.COM

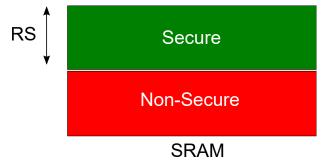
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

·XF


Product Status	Active
Core Processor	ARM® Cortex®-M23
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	17
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.63V
Data Converters	A/D 5x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-VFQFN Exposed Pad
Supplier Device Package	24-VQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsaml11d16a-mut

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- The Secure SRAM region, with a size defined by the RS fuse from the NVM Boot Configuration Row (BOCOR)
- The Non-Secure (NS) SRAM region

Figure 13-4. SAM L11 SRAM Memory Mapping

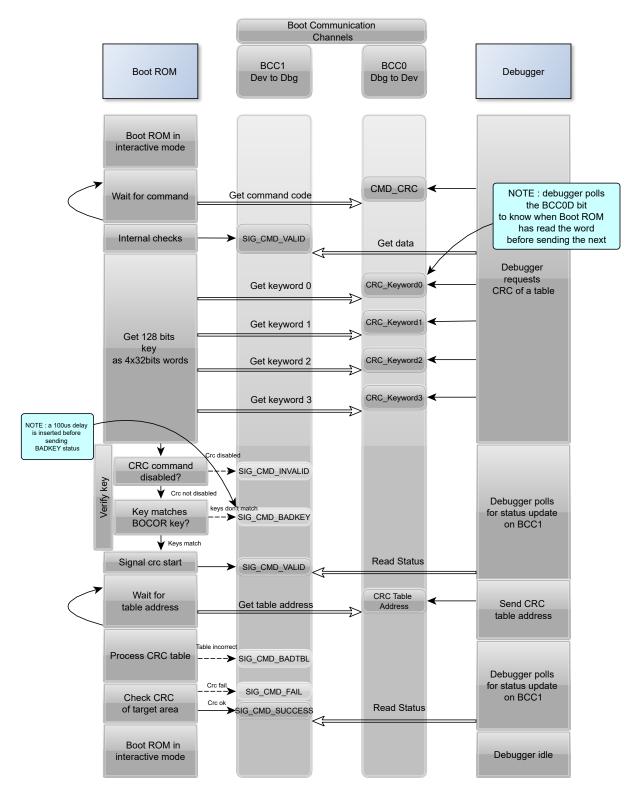
13.2.3 SAM L11 Memory Mapping Configuration Summary

The table below summarizes the mapping of the SAM L11 memory regions.

Table 13-2. SAM L11 Memory Regions Mapping

Memory region	Base address	Size		
Flash Boot area	0x0000000	BOOTPROT * 256Bytes		
Flash Secure Boot	0x0000000	BS*256Bytes - BNSC*32Bytes		
Flash Non-Secure Callable Boot	Contiguous to Flash Secure Boot	BNSC * 32Bytes		
Flash Non-Secure Boot (1)	BS * 256Bytes	Flash Boot remaining size (BOOTPROT * 256Bytes - BS*256Bytes)		
Flash Appliation area	BOOTPROT * 256Bytes	Flash size - BOOTPROT * 256Bytes (Flash Boot area)		
Flash Secure Application	BOOTPROT * 256Bytes	AS*256Bytes-ANSC*32Bytes		
Flash Non-Secure Callable Application	Contiguous to Flash Secure APPLICATION	ANSC * 32Bytes		
Flash Non-Secure Application	(BOOTPROT+AS) * 256Bytes	Flash remaining size (Flash size - BOOTPROT*256Bytes - AS*256Bytes)		
Secure Data Flash	0x00400000	DS * 256Bytes		
Non-Secure Data Flash	Contiguous to Secure Data Flash	2KB - Secure Data Flash size		
Secure SRAM	0x20000000	RS * 128Bytes		
Non-Secure SRAM	Contiguous to Secure SRAM	SRAM size - Secure SRAM size		

Note:


1. Flash Secure Boot size cannot be null if a Flash Non-Secure Boot size is defined.

Here is a typical configuration for a 64KB of Flash, 2KB of Data Flash and 16KB of SRAM:

- Flash boot area:
 - Total Boot area size = 8KB => BOOTPROT = 8192 / 256 = 0x20
 - Flash Secure + Non-Secure Callable Boot size = 1KB => BS = 1024 / 256 = 0x4
 - Flash Non-Secure Callable Boot size = 32Bytes => BNSC = 32 / 32 = 0x1
 - Flash Non-Secure Boot size = 8KB 1KB = 7KB
- Flash Application area:
 - Total Application area size = 64 KB 8KB = 56KB

14.4.5.6.4 CMD_CRC

Figure 14-12. CMD_CRC Flow diagram

20.7 Register Summary

Offset	Name	Bit Pos.								
0x00	CTRLA	7:0							ENABLE	SWRST
0x01	CTRLB	7:0								START
000	0504	7:0		REFNUM[7:0]						
0x02	CFGA	15:8	DIVREF							
0x04										
	Reserved									
0x07										
0x08	INTENCLR	7:0								DONE
0x09	INTENSET	7:0								DONE
0x0A	INTFLAG	7:0								DONE
0x0B	STATUS	7:0							OVF	BUSY
		7:0							ENABLE	SWRST
0x0C		15:8								
UXUC	SYNCBUSY	23:16								
		31:24								
		7:0				VALU	JE[7:0]			
0x10	VALUE	15:8				VALU	E[15:8]			
	VALUE	23:16				VALU	E[23:16]			
		31:24								

20.8 Register Description

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16-, and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Some registers require synchronization when read and/or written. Synchronization is denoted by the "Read-Synchronized" and/or "Write-Synchronized" property in each individual register description.

Some registers are enable-protected, meaning they can only be written when the module is disabled. Enable-protection is denoted by the "Enable-Protected" property in each individual register description.

Some registers are optionally write-protected by the Peripheral Access Controller (PAC). Optional PAC write-protection is denoted by the "PAC Write-Protection" property in each individual register description.

On **SAM L11** devices, this peripheral has different access permissions depending on PAC Security Attribution (Secure or Non-Secure):

- If the peripheral is configured as Non-Secure in the PAC:
 - Secure access and Non-Secure access are granted
- If the peripheral is configured as Secure in the PAC:
 - Secure access is granted
 - Non-Secure access is discarded (Write is ignored, read 0x0) and a PAC error is triggered

Refer to Peripherals Security Attribution for more information.

20.8.3 Configuration A

Name:	CFGA
Offset:	0x02
Reset:	0x0000
Property:	PAC Write-Protection, Enable-protected

Bit	15	14	13	12	11	10	9	8
ĺ	DIVREF							
Access	R/W							
Reset	0							
Bit	7	6	5	4	3	2	1	0
		REFNUM[7:0]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 – DIVREF Divide Reference Clock

Divides the reference clock by 8

Value	Description
0	The reference clock is divided by 1.
1	The reference clock is divided by 8.

Bits 7:0 - REFNUM[7:0] Number of Reference Clock Cycles

Selects the duration of a measurement in number of CLK_FREQM_REF cycles. This must be a non-zero value, i.e. 0x01 (one cycle) to 0xFF (255 cycles).

Bit 8 – VREGRDY Voltage Regulator Ready Interrupt Enable Writing a '0' to this bit has no effect.

Writing a '1' to this bit will set the Voltage Regulator Ready Interrupt Enable bit, which enables the Voltage Regulator Ready interrupt.

Value	Description
0	The Voltage Regulator Ready interrupt is disabled.
1	The Voltage Regulator Ready interrupt is enabled and an interrupt request will be generated
	when the Voltage Regulator Ready Interrupt Flag is set.

Bit 2 – B33SRDY BOD33 Synchronization Ready Interrupt Enable Writing a '0' to this bit has no effect.

Writing a '1' to this bit will set the BOD33 Synchronization Ready Interrupt Enable bit, which enables the BOD33 Synchronization Ready interrupt.

Value	Description
0	The BOD33 Synchronization Ready interrupt is disabled.
1	The BOD33 Synchronization Ready interrupt is enabled, and an interrupt request will be generated when the BOD33 Synchronization Ready Interrupt flag is set.

Bit 1 – BOD33DET BOD33 Detection Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will set the BOD33 Detection Interrupt Enable bit, which enables the BOD33 Detection interrupt.

Value	Description
0	The BOD33 Detection interrupt is disabled.
1	The BOD33 Detection interrupt is enabled, and an interrupt request will be generated when the BOD33 Detection Interrupt flag is set.

Bit 0 – BOD33RDY BOD33 Ready Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will set the BOD33 Ready Interrupt Enable bit, which enables the BOD33 Ready interrupt.

Value	Description
0	The BOD33 Ready interrupt is disabled.
1	The BOD33 Ready interrupt is enabled, and an interrupt request will be generated when the BOD33 Ready Interrupt flag is set.

26.8.1 Control A

Name:	CTRLA
Offset:	0x00
Reset:	x initially determined from NVM User Row after reset
Property:	PAC Write-Protection, Write-Synchronized

Bit	7	6	5	4	3	2	1	0
	ALWAYSON	RUNSTDBY				WEN	ENABLE	
Access	R/W	R/W				R/W	R/W	
Reset	x	x				x	x	

Bit 7 – ALWAYSON Always-On

This bit allows the WDT to run continuously. After being set, this bit cannot be written to '0', and the WDT will remain enabled until a power-on Reset is received. When this bit is '1', the Control A register (CTRLA), the Configuration register (CONFIG) and the Early Warning Control register (EWCTRL) will be read-only, and any writes to these registers are not allowed.

Writing a '0' to this bit has no effect.

This bit is not Enable-Protected.

This bit is loaded from NVM User Row at start-up.

Value	Description
0	The WDT is enabled and disabled through the ENABLE bit.
1	The WDT is enabled and can only be disabled by a power-on reset (POR).

Bit 6 - RUNSTDBY Run in Standby

This bit controls the behavior of the watchdog during standby sleep mode. This bit can only be written when CTRLA.ENABLE is zero or CTRLA.ALWAYSON is one:

- When CTRLA.ALWAYSON=0, this bit is enable-protected by CTRLA.ENABLE.
- When CTRLA.ALWAYSON=1, this bit is not enable-protected by CTRLA.ENABLE.

These bits are loaded from NVM User Row at startup.

Value	Description
0	The WDT is disabled during standby sleep.
1	The WDT is enabled continues to operate during standby sleep.

Bit 2 – WEN Watchdog Timer Window Mode Enable

This bit enables Window mode. It can only be written if the peripheral is disabled unless CTRLA.ALWAYSON=1. The initial value of this bit is loaded from Flash Calibration.

This bit is loaded from NVM User Row at startup.

Value	Description
0	Window mode is disabled (normal operation).
1	Window mode is enabled.

26.8.8 Clear

Name:	CLEAR
Offset:	0x0C
Reset:	0x00
Property:	Write-Synchronized

Bit	7	6	5	4	3	2	1	0
				CLEA	R[7:0]			
Access	W	W	W	W	W	W	W	W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 – CLEAR[7:0] Watchdog Clear

In Normal mode, writing 0xA5 to this register during the watchdog time-out period will clear the Watchdog Timer and the watchdog time-out period is restarted.

In Window mode, any writing attempt to this register before the time-out period started (i.e., during TO_{WDTW}) will issue an immediate system Reset. Writing 0xA5 during the time-out period TO_{WDT} will clear the Watchdog Timer and the complete time-out sequence (first TO_{WDTW} then TO_{WDT}) is restarted.

In both modes, writing any other value than 0xA5 will issue an immediate system Reset.

27. RTC – Real-Time Counter

27.1 Overview

The Real-Time Counter (RTC) is a 32-bit counter with a 10-bit programmable prescaler that typically runs continuously to keep track of time. The RTC can wake up the device from sleep modes using the alarm/ compare wake up, periodic wake up, or overflow wake up mechanisms, or from the wake inputs.

The RTC can generate periodic peripheral events from outputs of the prescaler, as well as alarm/compare interrupts and peripheral events, which can trigger at any counter value. Additionally, the timer can trigger an overflow interrupt and peripheral event, and can be reset on the occurrence of an alarm/compare match. This allows periodic interrupts and peripheral events at very long and accurate intervals.

The 10-bit programmable prescaler can scale down the clock source. By this, a wide range of resolutions and time-out periods can be configured. With a 32.768kHz clock source, the minimum counter tick interval is 30.5μ s, and time-out periods can range up to 36 hours. For a counter tick interval of 1s, the maximum time-out period is more than 136 years.

27.2 Features

- 32-bit counter with 10-bit prescaler
- Multiple clock sources
- 32-bit or 16-bit counter mode
- One 32-bit or two 16-bit compare values
- Clock/Calendar mode
 - Time in seconds, minutes, and hours (12/24)
 - Date in day of month, month, and year
 - Leap year correction
- Digital prescaler correction/tuning for increased accuracy
- Overflow, alarm/compare match and prescaler interrupts and events
 - Optional clear on alarm/compare match
- 2 general purpose registers
- Tamper Detection
 - Timestamp on event or up to 5 inputs with debouncing
 - Active layer protection

Related Links

33. EVSYS – Event System

27.6.6 Sleep Mode Operation

The RTC will continue to operate in any sleep mode where the source clock is active. The RTC *interrupts* can be used to wake up the device from a sleep mode. RTC *events* can trigger other operations in the system without exiting the sleep mode.

An interrupt request will be generated after the wake-up if the Interrupt Controller is configured accordingly. Otherwise the CPU will wake up directly, without triggering any interrupt. In this case, the CPU will continue executing right from the first instruction that followed the entry into sleep.

The periodic events can also wake up the CPU through the interrupt function of the Event System. In this case, the event must be enabled and connected to an event channel with its interrupt enabled. See *Event System* for more information.

27.6.7 Synchronization

Due to asynchronicity between the main clock domain and the peripheral clock domains, some registers need to be synchronized when written or read.

The following bits are synchronized when written:

- Software Reset bit in Control A register, CTRLA.SWRST
- Enable bit in Control A register, CTRLA.ENABLE
- Count Read Synchronization bit in Control A register (CTRLA.COUNTSYNC)
- Clock Read Synchronization bit in Control A register (CTRLA.COUNTSYNC)

The following registers are synchronized when written:

- Counter Value register, COUNT
- Clock Value register, CLOCK
- Counter Period register, PER
- Compare n Value registers, COMPn
- Alarm n Value registers, ALARMn
- Frequency Correction register, FREQCORR
- Alarm n Mask register, MASKn
- The General Purpose n registers (GPn)

The following registers are synchronized when read:

- The Counter Value register, COUNT, if the Counter Read Sync Enable bit in CTRLA (CTRLA.COUNTSYNC) is '1'
- The Clock Value register, CLOCK, if the Clock Read Sync Enable bit in CTRLA (CTRLA.CLOCKSYNC) is '1'
- The Timestamp Value register (TIMESTAMP)

Required write-synchronization is denoted by the "Write-Synchronized" property in the register description.

Required read-synchronization is denoted by the "Read-Synchronized" property in the register description.

27.7 Register Summary - Mode 0 - 32-Bit Counter

Offset	Name	Bit Pos.								
0.00	CTRLA	7:0	MATCHCLR				MOE	DE[1:0]	ENABLE	SWRST
0x00		15:8	COUNTSYNC	GPTRST				PRESCA	LER[3:0]	!
0.00		7:0	DMAEN	RTCOUT	DEBASYNC	DEBMAJ				GP0EN
0x02	CTRLB	15:8	SEPTO		ACTF[2:0]				DEBF[2:0]	
		7:0	PEREO7	PEREO6	PEREO5	PEREO4	PEREO3	PEREO2	PEREO1	PEREO0
0.04	EV (OT DI	15:8	OVFEO	TAMPEREO						CMPEO0
0x04	EVCTRL	23:16								TAMPEVEI
		31:24								PERDEO
		7:0	PER7	PER6	PER5	PER4	PER3	PER2	PER1	PER0
0x08	INTENCLR	15:8	OVF	TAMPER						CMP0
		7:0	PER7	PER6	PER5	PER4	PER3	PER2	PER1	PER0
0x0A	INTENSET	15:8	OVF	TAMPER						CMP0
		7:0	PER7	PER6	PER5	PER4	PER3	PER2	PER1	PER0
0x0C	INTFLAG	15:8	OVF	TAMPER						CMP0
0x0E	DBGCTRL	7:0								DBGRUN
0x0F	Reserved									
	SYNCBUSY	7:0			COMP0		COUNT	FREQCORR	ENABLE	SWRST
		15:8	COUNTSYNC							
0x10		23:16							GPr	n[1:0]
		31:24								
0x14	FREQCORR	7:0	SIGN				VALUE[6:0]			
0x15										
	Reserved									
0x17										
		7:0				COUN	NT[7:0]			
		15:8				COUN	T[15:8]			
0x18	COUNT	23:16	COUNT[23:16]							
		31:24				COUNT	Г[31:24]			
0x1C										
	Reserved									
0x1F										
		7:0				COM	P[7:0]			
0.00	00115	15:8				COMF	P[15:8]			
0x20	COMP	23:16				COMP	[23:16]			
		31:24				COMP	[31:24]			
0x24										
	Reserved									
0x3F										
		7:0				GP	[7:0]			
0x40	GP0	15:8				GP[15:8]			
0,40	GEU	23:16				GP[2	3:16]			
		31:24				GP[3	31:24]			
0x44	GP1	7:0				GP	[7:0]			

Value	Description
0	Static arbitration scheme for channels with level 2 priority.
1	Round-robin arbitration scheme for channels with level 2 priority.

Bits 19:16 – LVLPRI2[3:0] Level 2 Channel Priority Number

When round-robin arbitration is enabled (PRICTRL0.RRLVLEN2=1) for priority level 2, this register holds the channel number of the last DMA channel being granted access as the active channel with priority level 2.

When static arbitration is enabled (PRICTRL0.RRLVLEN2=0) for priority level 2, and the value of this bit group is non-zero, it will not affect the static priority scheme.

This bit group is not reset when round-robin arbitration gets disabled (PRICTRL0.RRLVLEN2 written to '0').

Bit 15 – RRLVLEN1 Level 1 Round-Robin Scheduling Enable

For details on arbitration schemes, refer to 28.6.2.4 Arbitration.

Value	Description
0	Static arbitration scheme for channels with level 1 priority.
1	Round-robin arbitration scheme for channels with level 1 priority.

Bits 11:8 – LVLPRI1[3:0] Level 1 Channel Priority Number

When round-robin arbitration is enabled (PRICTRL0.RRLVLEN1=1) for priority level 1, this register holds the channel number of the last DMA channel being granted access as the active channel with priority level 1.

When static arbitration is enabled (PRICTRL0.RRLVLEN1=0) for priority level 1, and the value of this bit group is non-zero, it will not affect the static priority scheme.

This bit group is not reset when round-robin arbitration gets disabled (PRICTRL0.RRLVLEN1 written to '0').

Bit 7 – RRLVLEN0 Level 0 Round-Robin Scheduling Enable

For details on arbitration schemes, refer to 28.6.2.4 Arbitration.

Value	Description
0	Static arbitration scheme for channels with level 0 priority.
1	Round-robin arbitration scheme for channels with level 0 priority.

Bits 3:0 – LVLPRI0[3:0] Level 0 Channel Priority Number

When round-robin arbitration is enabled (PRICTRL0.RRLVLEN0=1) for priority level 0, this register holds the channel number of the last DMA channel being granted access as the active channel with priority level 0.

When static arbitration is enabled (PRICTRL0.RRLVLEN0=0) for priority level 0, and the value of this bit group is non-zero, it will not affect the static priority scheme.

This bit group is not reset when round-robin arbitration gets disabled (PRICTRL0.RRLVLEN0 written to '0').

SAM L10/L11 Family

TRAM - TrustRAM

Offset	Name	Bit Pos.	
		7:0	DATA[7:0]
0x01A0	RAM40	15:8	DATA[15:8]
UXUTAU	RAIVI40	23:16	DATA[23:16]
		31:24	DATA[31:24]
		7:0	DATA[7:0]
0x01A4	RAM41	15:8	DATA[15:8]
00174	NAIVI4 I	23:16	DATA[23:16]
		31:24	DATA[31:24]
		7:0	DATA[7:0]
0x01A8	RAM42	15:8	DATA[15:8]
UXUTAO	RAIVI42	23:16	DATA[23:16]
		31:24	DATA[31:24]
		7:0	DATA[7:0]
0x01AC	RAM43	15:8	DATA[15:8]
UXUTAC	RAIVI43	23:16	DATA[23:16]
		31:24	DATA[31:24]
		7:0	DATA[7:0]
0x01B0	DAM44	15:8	DATA[15:8]
UXUTBU	RAM44	23:16	DATA[23:16]
		31:24	DATA[31:24]
	RAM45	7:0	DATA[7:0]
0x01B4		15:8	DATA[15:8]
0,0104		23:16	DATA[23:16]
		31:24	DATA[31:24]
		7:0	DATA[7:0]
0x01B8	RAM46	15:8	DATA[15:8]
0.0100	KAIVI40	23:16	DATA[23:16]
		31:24	DATA[31:24]
	RAM47	7:0	DATA[7:0]
0x01BC		15:8	DATA[15:8]
0,0100		23:16	DATA[23:16]
		31:24	DATA[31:24]
		7:0	DATA[7:0]
0x01C0	RAM48	15:8	DATA[15:8]
0.0100		23:16	DATA[23:16]
		31:24	DATA[31:24]
		7:0	DATA[7:0]
0x01C4	RAM49	15:8	DATA[15:8]
0,0104	10 101-15	23:16	DATA[23:16]
		31:24	DATA[31:24]
		7:0	DATA[7:0]
0x01C8	RAM50	15:8	DATA[15:8]
0.0100	10 1000	23:16	DATA[23:16]
		31:24	DATA[31:24]
0x01CC	RAM51	7:0	DATA[7:0]
0.0100	RAM51	15:8	DATA[15:8]

33.7.17 Channel Security Attribution

Name:	NONSECCHAN
Offset:	0x1D8
Reset:	0x0000000
Property:	PAC Write-Protection, Write-Secure

This register allows the user to configure one or more channels as secured or non-secured.

	>	Important: This register is only available for SAM L11 and has no effect for SAM L10.						AM L10.		
Bit	31	30	29	28	27	26	25	24		
[
Access Reset				1		1				
Bit	23	22	21	20	19	18	17	16		
[
Access Reset										
Bit	15	14	13	12	11	10	9	8		
Access										
Reset										
Bit	7	6	5	4	3	2	1	0		
	CHANNELn[7:0]									
Access	RW/R/RW	RW/R/RW	RW/R/RW	RW/R/RW	RW/R/RW	RW/R/RW	RW/R/RW	RW/R/RW		
Reset	0	0	0	0	0	0	0	0		

Bits 7:0 – CHANNELn[7:0] Channel n Security Attribution [n=7..0]The bit n of CHANNEL enables the non-secure mode of CHANNELn. The registers whose CHANNEL bit or bitfield n is set in non-secure mode by NONSECCHAN.CHANNELn are CHANNELn, CHINTENCLRn, CHINTENSETn, CHINTFLAGn and CHSTATUSx registers.

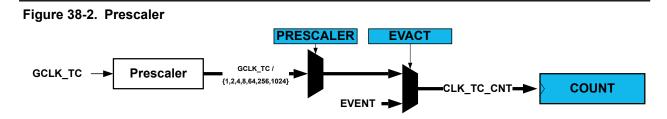
These bits set the security attribution for the individual channels.

Value	Description
0	The corresponding channel is secured. When the module is PAC secured, the configuration and status bits for this channel are only available through the secure alias. Attempts to change the channel configuration through the non-secure alias will be silently ignored and reads will return 0.
1	The corresponding channel is non-secured. The configuration and status bits for this channel are available through the non-secure alias.

33.7.18 Channel Security Attribution Check

Name:	NSCHKCHAN
Offset:	0x1DC
Reset:	0x0000000
Property:	PAC Write-Protection

This register allows the user to select one or more channels to check their security attribution as non-secured.


	>	Important:	This register is only available for SAM L11 and has no effect for SAM L10 .					
Bit	31	30	29	28	27	26	25	24
Access			1	1				
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
DIL	15	14	13	12	11	10	9	0
Access								
Reset								
10000								
Bit	7	6	5	4	3	2	1	0
				CHANN	ELn[7:0]			
Access	RW/RW/RW	RW/RW/RW	RW/RW/RW	RW/RW/RW	RW/RW/RW	RW/RW/RW	RW/RW/RW	RW/RW/RW
Reset	0	0	0	0	0	0	0	0

Bits 7:0 – CHANNELn[7:0] Channel n Selection [n=7..0]

These bits selects the individual channels for security attribution check. If any channel selected in NSCHKCHAN has the corresponding bit in NONSECCHAN set to the opposite value, then the NSCHK interrupt flag will be set.

Value	Description
0	0-to-1 transition will be detected on corresponding NONSECCHAN bit.
1	1-to-0 transition will be detected on corresponding NONSECCHAN bit.

TC – Timer/Counter

38.6.2.4 Counter Mode

The counter mode is selected by the Mode bit group in the Control A register (CTRLA.MODE). By default, the counter is enabled in the 16-bit counter resolution. Three counter resolutions are available:

- COUNT8: The 8-bit TC has its own Period Value and Period Buffer Value registers (PER and PERBUF).
- COUNT16: 16-bit is the default counter mode. There is no dedicated period register in this mode.
- COUNT32: This mode is achieved by pairing two 16-bit TC peripherals. TCn is paired with TCn+1. TC2 does not support 32-bit resolution.

When paired, the TC peripherals are configured using the registers of the even-numbered TC. The odd-numbered partner will act as a slave, and the Slave bit in the Status register (STATUS.SLAVE) will be set. The register values of a slave will not reflect the registers of the 32-bit counter. Writing to any of the slave registers will not affect the 32-bit counter. Normal access to the slave COUNT and CCx registers is not allowed.

38.6.2.5 Counter Operations

Depending on the mode of operation, the counter is cleared, reloaded, incremented, or decremented at each TC clock input (CLK_TC_CNT). A counter clear or reload marks the end of the current counter cycle and the start of a new one.

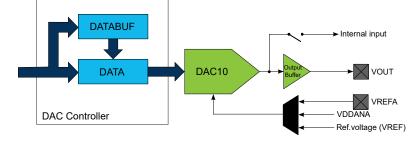
The counting direction is set by the Direction bit in the Control B register (CTRLB.DIR). If this bit is zero the counter is counting up, and counting down if CTRLB.DIR=1. The counter will count up or down for each tick (clock or event) until it reaches TOP or ZERO. When it is counting up and TOP is reached, the counter will be set to zero at the next tick (overflow) and the Overflow Interrupt Flag in the Interrupt Flag Status and Clear register (INTFLAG.OVF) will be set. When it is counting down, the counter is reloaded with the TOP value when ZERO is reached (underflow), and INTFLAG.OVF is set.

INTFLAG.OVF can be used to trigger an interrupt, a DMA request, or an event. An overflow/underflow occurrence (i.e., a compare match with TOP/ZERO) will stop counting if the One-Shot bit in the Control B register is set (CTRLBSET.ONESHOT).

It is possible to change the counter value (by writing directly in the COUNT register) even when the counter is running. When starting the TC, the COUNT value will be either ZERO or TOP (depending on the counting direction set by CTRLBSET.DIR or CTRLBCLR.DIR), unless a different value has been written to it, or the TC has been stopped at a value other than ZERO. The write access has higher priority than count, clear, or reload. The direction of the counter can also be changed when the counter is running. See also the following figure.

43. DAC – Digital-to-Analog Converter

43.1 Overview


The Digital-to-Analog Converter (DAC) converts a digital value to a voltage. The DAC has one channel with 10-bit resolution, and it is capable of converting up to 350,000 samples per second (350ksps).

43.2 Features

- DAC with 10-bit resolution
- Up to 350ksps conversion rate
- Hardware support for 14-bit using dithering
- Multiple trigger sources
- High-drive capabilities
- Output can be used as input to the Analog Comparator (AC), ADC
- DMA support

43.3 Block Diagram

Figure 43-1. DAC Block Diagram

43.4 Signal Description

Signal Name	Туре	Description
VOUT	Analog output	DAC output
VREFA	Analog input	External reference

43.5 **Product Dependencies**

In order to use this peripheral, other parts of the system must be configured correctly, as described below.

43.5.1 I/O Lines

Using the DAC Controller's I/O lines requires the I/O pins to be configured using the port configuration (PORT).

Related Links

- Interrupt Flag Status and Clear (INTFLAG) register
- Data Buffer (DATABUF) register

Optional write-protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write-Protection" property in each individual register description.

PAC write-protection does not apply to accesses through an external debugger

Related Links

15. PAC - Peripheral Access Controller

43.5.9 SAM L11 TrustZone Specific Register Access Protection

On **SAM L11** devices, this peripheral has different access permissions depending on PAC Security Attribution (Secure or Non-Secure):

- If the peripheral is configured as Non-Secure in the PAC:
 - Secure access and Non-Secure access are granted
- If the peripheral is configured as Secure in the PAC:
 - Secure access is granted
 - Non-Secure access is discarded (Write is ignored, read 0x0) and a PAC error is triggered

Refer to Peripherals Security Attribution for more information.

43.5.10 Analog Connections

The DAC has one output pin (VOUT) and one analog input pin (VREFA) that must be configured first.

When internal input is used, it must be enabled before DAC Controller is enabled.

43.6 Functional Description

43.6.1 Principle of Operation

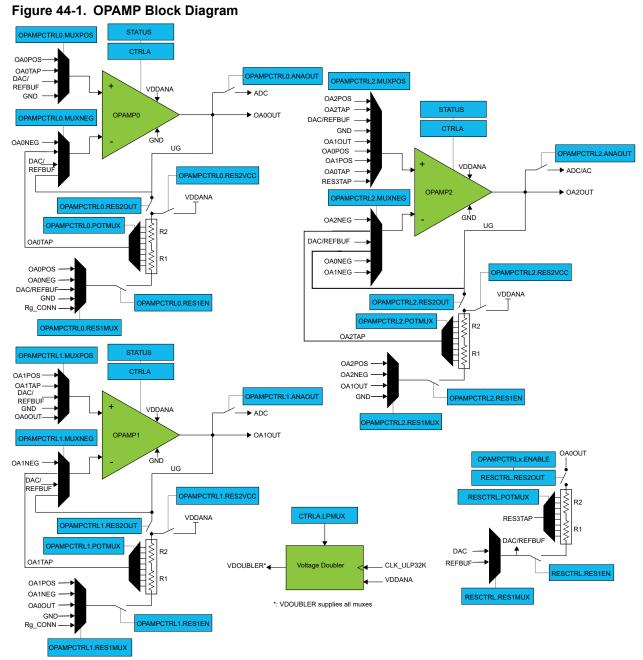
The DAC converts the digital value located in the Data register (DATA) into an analog voltage on the DAC output (VOUT).

A conversion is started when new data is written to the Data register. The resulting voltage is available on the DAC output after the conversion time. A conversion can also be started by input events from the Event System.

43.6.2 Basic Operation

43.6.2.1 Initialization

The following registers are enable-protected, meaning they can only be written when the DAC is disabled (CTRLA.ENABLE is zero):

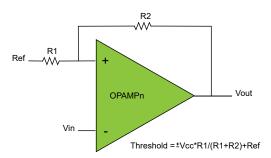

- Control B register (CTRLB)
- Event Control register (EVCTRL)

Enable-protection is denoted by the Enable-Protected property in the register description.

Before enabling the DAC, it must be configured by selecting the voltage reference using the Reference Selection bits in the Control B register (CTRLB.REFSEL).

43.6.2.2 Enabling, Disabling and Resetting

The DAC Controller is enabled by writing a '1' to the Enable bit in the Control A register (CTRLA.ENABLE). The DAC Controller is disabled by writing a '0' to CTRLA.ENABLE.



44.3 Block Diagram

44.4 Signal Description

Signal	Description	Туре
OA0POS	OPAMP0 positive input	Analog input
OA0NEG	OPAMP0 negative input	Analog input
OA1POS	OPAMP1 positive input	Analog input

Figure 44-11. Inverting comparator with programmable hysteresis

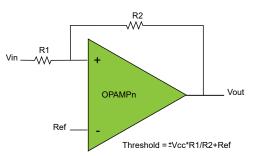

To configure an OPAMP as a non-inverting comparator with programmable hysteresis, the OPAMPCTRLx register can be configured as follows:

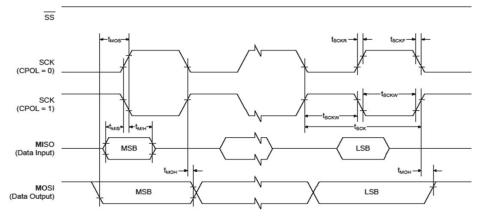
Table 44-17. Configuration of Input Multiplexes for OPAMP0 and OPAMP1 (Example: Vth = 1/3*Vcc, Ref = Gnd)

	MUXPOS	MUXNEG	RES1MUX	ΡΟΤΜUΧ	RES2VCC	RES2OUT	RES1EN	ANAOUT
OPAMP0	0001	010	000	100	0	1	1	0
OPAMP1	0001	010	000	100	0	1	1	0
OPAMP2	0001	010	000	100	0	1	1	0

Value	R1	R2	Threshold = Vcc * R1 / R2
0x0	14R	2R	Vcc * 7 (unused)
0x1	12R	4R	Vcc * 3 (unused)
0x2	8R	8R	Vcc (unused)
0x3	6R	10R	0.6* Vcc
0x4	4R	12R	1/3 * Vcc
0x5	3R	13R	3/13 *Vcc
0x6	2R	14R	1/7 * Vcc
0x7	R	15R	1/15 * Vcc

Figure 44-12. Non-Inverting comparator with programmable hysteresis

SAM L10/L11 Family


125°C Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
		Slave, VDD>1,62V	13.4	-	-	
tSOSS MISO setup after SS low		Slave, VDD>2,70V		-	1* tSCK	
		Slave, VDD>1,62V		-	1* tSCK	
tSOSH MISO hold	Slave, VDD>2,70V	8.7	-	-		
	after SS high	Slave, VDD>1,62V	8.7	-	-	

Note:

- 1. These values are based on simulation. These values are not covered by test limits in production.
- 2. See I/O Pin Characteristics.
- 3. Where tSLAVE_OUT is the slave external device output response time, generally tEXT_SOV +tLINE_DELAY (See Note 7).
- 4. Where tSLAVE_IN is the slave external device input constraint, generally tEXT_SIS+tLINE_DELAY (See Note 7).
- 5. Where tMASTER_OUT is the master external device output response time, generally tEXT_MOV +tLINE_DELAY (See Note 7).
- 6. Where tMASTER_IN is the master external device input constraint, generally tEXT_MIS +tLINE_DELAY (See Note 7).
- 7. tLINE_DELAY is the transmission line time delay.
- 8. tEXT_MIS is the input constraint for the master external device.
- 9. tAPBC is the APB period for SERCOM.

Figure 47-4. SPI Timing Requirements in Master Mode

