E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M23
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	17
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.63V
Data Converters	A/D 5x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-SSOP (0.209", 5.30mm Width)
Supplier Device Package	24-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsaml11d16a-yut

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

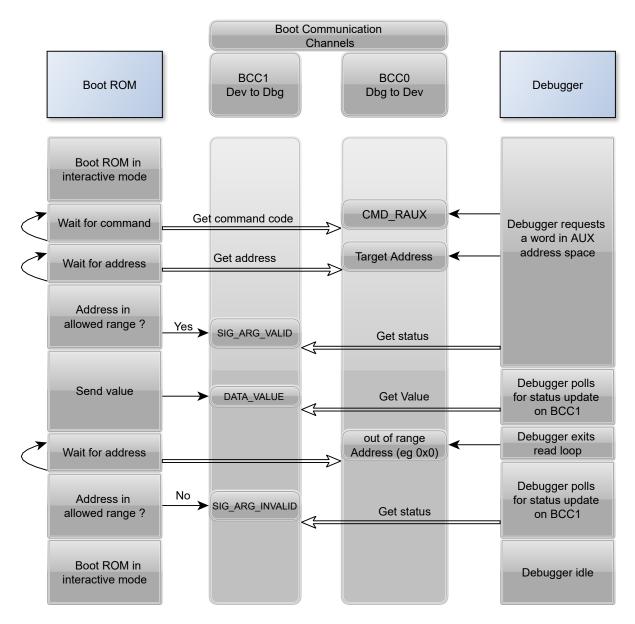

The following areas are accessible:

Table 14-8. Accessible Memory Range by Read Auxiliary Row Command

Area	Start address	End address
User row (UROW)	0x00804000	0x0080401F
Software Calibration row	0x00806020	0x0080602F
Temperature Log row	0x00806038	0x0080603F
Boot Configuration row (BOCOR)	0x0080C000	0x0080C0FF

14.4.5.8.1 CMD_RAUX

Figure 14-15. CMD_RAUX Flow diagram

Note: After the CMD_RAUX is sent, the debugger can read multiple data, the read loop is exit when an out of range address is sent.

16.12.15 CoreSight ROM Table End

Name:	END
Offset:	0x1008
Reset:	0x00000000
Property:	-

R
0
16
R
0
8
R
0
0
R
0

Bits 31:0 - END[31:0] End Marker

Indicates the end of the CoreSight ROM table entries.

	Name: Offset: Reset: Property:	PID0 0x1FE0 0x00000000 -						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Reset								
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
					IBL[7:0]			
Access		R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

16.12.18 Peripheral Identification 0

Bits 7:0 – PARTNBL[7:0] Part Number Low

These bits will always return 0xD0 when read, indicating that this device implements a DSU module instance.

Note: After power-up, the MAINVREG low power mode takes some time to stabilize. Once stabilized, the SUPC->STATUS.ULPVREFRDY bit is set. Before entering Standby, software must ensure that the SUPC->STATUS.ULPVREFRDY bit is set.

Table 22-1.	Sleep Mode	Entry and	Exit Table
-------------	------------	-----------	------------

Mode	Mode Entry	Wake-Up Sources
IDLE	SLEEPCFG.SLEEPMODE = IDLE _n	Synchronous ⁽²⁾ (APB, AHB), asynchronous ⁽¹⁾
STANDBY	SLEEPCFG.SLEEPMODE = STANDBY	Synchronous ⁽³⁾ , Asynchronous
OFF	SLEEPCFG.SLEEPMODE = OFF	External Reset

Note:

- 1. Asynchronous: interrupt generated on generic clock, external clock, or external event.
- 2. Synchronous: interrupt generated on the APB clock.
- 3. Synchronous interrupt only for peripherals configured to run in standby.

Note: The type of wake-up sources (synchronous or asynchronous) is given in each module interrupt section.

The sleep modes (idle, standby, and off) and their effect on the clocks activity, the regulator and the NVM state are described in the table and the sections below. Refer to Power Domain Controller for the power domain gating effect.

Mode	Main	CPU	AHBx and	GCLK	Oscillators		Regulator	NVM
	clock		APBx clock	clocks	ONDEMAND = 0	ONDEMAND = 1		
Active	Run	Run	Run	Run ⁽³⁾	Run	Run if requested	MAINVREG	active
IDLE	Run	Stop	Stop ⁽¹⁾	Run ⁽³⁾	Run	Run if requested	MAINVREG	active
STANDBY	Stop ⁽¹⁾	Stop	Stop ⁽¹⁾	Stop ⁽¹⁾	Run if requested or RUNSTDBY=1	Run if requested	MAINVREG in low power mode	Ultra Low- power
OFF	Stop	Stop	Stop	OFF	OFF	OFF	OFF	OFF

Table 22-2. Sleep Mode Overview

Note:

- 1. Running if requested by peripheral during SleepWalking.
- 2. Running during SleepWalking.
- 3. Following On-Demand Clock Request principle.

22.6.3.3.1 IDLE Mode

IDLE mode allows power optimization with the fastest wake-up time.

The CPU is stopped, and peripherals are still working. As in Active mode, the AHBx and APBx clocks for peripheral are still provided if requested. As the main clock source is still running, wake-up time is very fast.

• Entering Idle mode: The Idle mode is entered by executing the WFI instruction. Additionally, if the SLEEPONEXIT bit in the Cortex System Control register (SCR) is set, the Idle mode will be entered when the CPU exits the lowest priority ISR (Interrupt Service Routine, refer to the ARM Cortex

23.8.8 16MHz Internal Oscillator (OSC16M) Control

Name:	OSC16MCTRL
Offset:	0x18
Reset:	0x82
Property:	PAC Write-Protection

Bit	7	6	5	4	3	2	1	0
	ONDEMAND	RUNSTDBY			FSEL	.[1:0]	ENABLE	
Access	R/W	R/W			R/W	R/W	R/W	
Reset	1	0			0	0	1	

Bit 7 - ONDEMAND On Demand Control

The On Demand operation mode allows the oscillator to be enabled or disabled depending on peripheral clock requests.

If the ONDEMAND bit has been previously written to '1', the oscillator will only be running when requested by a peripheral. If there is no peripheral requesting the oscillator's clock source, the oscillator will be in a disabled state.

If On Demand is disabled the oscillator will always be running when enabled.

In standby sleep mode, the On Demand operation is still active.

Value	Description
0	The oscillator is always on, if enabled.
1	The oscillator is enabled when a peripheral is requesting the oscillator to be used as a clock
	source. The oscillator is disabled if no peripheral is requesting the clock source.

Bit 6 – RUNSTDBY Run in Standby

This bit controls how the OSC16M behaves during standby sleep mode.

Value	Description
0	The OSC16M is disabled in standby sleep mode if no peripheral requests the clock.
1	The OSC16M is not stopped in standby sleep mode. If ONDEMAND=1, the OSC16M will be running when a peripheral is requesting the clock. If ONDEMAND=0, the clock source will always be running in standby sleep mode.

Bits 3:2 – FSEL[1:0] Oscillator Frequency Selection

These bits control the oscillator frequency range.

Value	Description
0x00	4MHz
0x01	8MHz
0x10	12MHz
0x11	16MHz

Bit 1 – ENABLE Oscillator Enable

SAM L10/L11 Family

SUPC – Supply Controller

Value	Name	Description
0xA	DIV2048	Divide clock by 2048
0xB	DIV4096	Divide clock by 4096
0xC	DIV8192	Divide clock by 8192
0xD	DIV16384	Divide clock by 16384
0xE	DIV32768	Divide clock by 32768
0xF	DIV65536	Divide clock by 65536

Bit 11 – VREFSEL BOD33 Voltage Reference Selection This bit is not synchronized.

ſ	Value	Description
Γ	0	Selects VREF for the BOD33.
	1	Selects ULPVREF for the BOD33.

Bit 8 – ACTCFG BOD33 Configuration in Active Sleep Mode

This bit is not synchronized.

Value	Description
0	In active mode, the BOD33 operates in continuous mode.
1	In active mode, the BOD33 operates in sampling mode.

Bit 6 – RUNSTDBY Run in Standby

This bit is not synchronized.

Value	Description
0	In standby sleep mode, the BOD33 is disabled.
1	In standby sleep mode, the BOD33 is enabled.

Bit 5 – STDBYCFG BOD33 Configuration in Standby Sleep Mode

If the RUNSTDBY bit is set to '1', the STDBYCFG bit sets the BOD33 configuration in standby sleep mode.

This bit is not synchronized.

Value	Description
0	In standby sleep mode, the BOD33 is enabled and configured in continuous mode.
1	In standby sleep mode, the BOD33 is enabled and configured in sampling mode.

Bits 4:3 – ACTION[1:0] BOD33 Action

These bits are used to select the BOD33 action when the supply voltage crosses below the BOD33 threshold.

These bits are loaded from NVM User Row at start-up.

This bit field is not synchronized.

Value	Name	Description	
0x0	NONE	No action	
0x1	RESET	The BOD33 generates a reset	

SAM L10/L11 Family

RTC – Real-Time Counter

27.8.6 Interrupt Flag Status and Clear in COUNT32 mode (CTRLA.MODE=0)

	Name: Offset: Reset: Property:	INTFLAG 0x0C 0x0000 -						
Bit	15	14	13	12	11	10	9	8
	OVF	TAMPER						CMP0
Access	R/W	R/W	•					R/W
Reset	0	0						0
Bit	7	6	5	4	3	2	1	0
	PER7	PER6	PER5	PER4	PER3	PER2	PER1	PER0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 15 - OVF Overflow

This flag is cleared by writing a '1' to the flag.

This flag is set on the next CLK_RTC_CNT cycle after an overflow condition occurs, and an interrupt request will be generated if INTENCLR/SET.OVF is '1'.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit clears the Overflow interrupt flag.

Bit 14 – TAMPER Tamper event

This flag is set after a damper condition occurs, and an interrupt request will be generated if INTENCLR.TAMPER/INTENSET.TAMPER is '1'. Writing a '0' to this bit has no effect. Writing a '1' to this bit clears the Tamper interrupt flag.

Bit 8 – CMP0 Compare 0

This flag is cleared by writing a '1' to the flag.

This flag is set on the next CLK_RTC_CNT cycle after a match with the compare condition, and an interrupt request will be generated if INTENCLR/SET.COMP0 is one.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit clears the Compare 0 interrupt flag.

Bits 0, 1, 2, 3, 4, 5, 6, 7 – PERn Periodic Interval n [n = 7..0]

This flag is cleared by writing a '1' to the flag.

This flag is set on the 0-to-1 transition of prescaler bit [n+2], and an interrupt request will be generated if INTENCLR/SET.PERn is one.

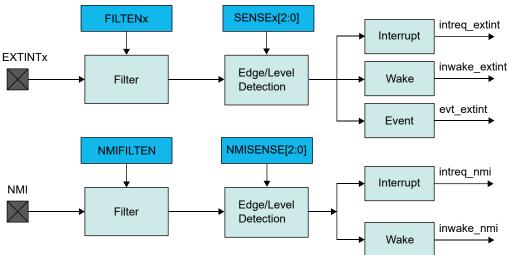
Writing a '0' to this bit has no effect.

Writing a '1' to this bit clears the Periodic Interval n interrupt flag.

29. EIC – External Interrupt Controller

29.1 Overview

The External Interrupt Controller (EIC) allows external pins to be configured as interrupt lines. Each interrupt line can be individually masked and can generate an interrupt on rising, falling, or both edges, or on high or low levels. Each external pin has a configurable filter to remove spikes. Each external pin can also be configured to be asynchronous in order to wake up the device from sleep modes where all clocks have been disabled. External pins can also generate an event. Each external pin can be defined as secured or non-secured, where secured pins can only be handled by secure accesses.


A separate non-maskable interrupt (NMI) is also supported. It has properties similar to the other external interrupts, but is connected to the NMI request of the CPU, enabling it to interrupt any other interrupt mode.

29.2 Features

- Up to 8 external pins (EXTINTx), plus one non-maskable pin (NMI)
- Dedicated, individually maskable interrupt for each pin
- Interrupt on rising, falling, or both edges
- Synchronous or asynchronous edge detection mode
- Interrupt pin debouncing
- Interrupt on high or low levels
- Asynchronous interrupts for sleep modes without clock
- Filtering of external pins
- Event generation from EXTINTx
- Selectable secured or non-secured attribution for each individual external pin (SAM L11)

29.3 Block Diagram

Figure 29-1. EIC Block Diagram

Value	Description
0	No programming of any locked lock region has happened since this bit was last cleared.
1	Programming of at least one locked lock region has happened since this bit was last cleared.

Bit 1 – PROGE Programming Error

This flag is set on the occurrence of a PROGE error.

This bit can be cleared by writing a '1' to its bit location.

Value	Description
0	No invalid commands or bad keywords were written in the NVM Command register since this bit was last cleared.
1	An invalid command and/or a bad keyword was/were written in the NVM Command register since this bit was last cleared.

Bit 0 – DONE NVM Command Done

This bit can be cleared by writing a one to its bit location

Value	Description
0	The NVM controller has not completed any commands since the last clear.
1	At least one command has completed since the last clear.

- Secure access and Non-Secure access are granted
- If the peripheral is configured as Secure in the PAC:
 - Secure access is granted
 - Non-Secure access is discarded (Write is ignored, read 0x0) and a PAC error is triggered

Refer to Peripherals Security Attribution for more information.

31.6 Functional Description

31.6.1 Principle of Operation

System bus transactions from the CPU to the security RAM undergoes a scrambling routine. Both address and data buses information are modified through an algorithm determined by a scrambling key. This is performed on both write and read transactions.

31.6.2 Basic Operation

31.6.2.1 Initialization

The following bits are enable-protected, meaning that they can only be written when the TRAM is disabled (CTRLA.ENABLE is zero):

- Tamper Erase bit in the Control A register (CTRLA.TAMPERS)
- Data Remanence Protection bit in the Control A register (CTRLA.DRP)
- Silent Access bit in the Control A register (CTRLA.SILACC)

The following register is enable-protected:

• Data Scramble Control register (DSCC)

Enable-protected bits in the CTRLA register can be written at the same time as CTRLA.ENABLE is written to one, but not at the same time as CTRLA.ENABLE is written to zero.

Enable-protection is denoted by the Enable-Protected property in the register description.

31.6.2.2 Enabling, Disabling and Resetting

The TRAM is enabled by writing a one to the Enable bit in the Control A register (CTRLA.ENABLE). The TRAM is disabled by writing a zero to CTRLA.ENABLE.

The TRAM is reset by writing a one to the Software Reset bit in the Control A register (CTRLA.SWRST). All registers in the TRAM will be reset to their initial state, and the TRAM will be disabled. All data in the secure RAM will be cleared to '0'.

31.6.2.3 Scrambling

The Data Scramble Control (DSCC) must be configured before the CTRLA.ENABLE is set. These settings cannot be changed while the module is enabled.

The scrambling logic is enabled by writing one to the enable bit in the Data Scramble Control register (DSCC.DSCEN). Scrambling is disabled by writing a zero to DSCC.DSCEN. Writing a zero to CTRLA.ENABLE will also disable the scrambling, but will not clear the DSCC.DSCEN bit.

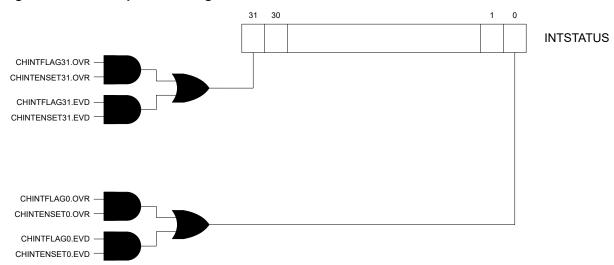
31.6.2.4 Silent Access

Silent access bit (CTRLA.SILACC) must be configured before CTRLA.ENABLE is set. This setting cannot be changed while the module is enabled. When this mode is enabled, only 128 bytes of the security RAM are accessible since the other 128 bytes are reserved to store the 1's complement (bitwise invert) values. The physical access to the RAM is now twice as wide compared to the bus access. Therefore, only 8-bit

The flag will only be set when using a synchronous or resynchronized path. In the case of asynchronous path, the CHINTFLAGn.EVD is always zero.

33.5.2.11 Channel Status

The Channel Status register (CHSTATUS) shows the status of the channels when using a synchronous or resynchronized path. There are two different status bits in CHSTATUS for each of the available channels:


- The CHSTATUSn.BUSYCH bit will be set when an event on the corresponding channel n has not been handled by all event users connected to that channel.
- The CHSTATUSn.RDYUSR bit will be set when all event users connected to the corresponding channel are ready to handle incoming events on that channel.

33.5.2.12 Software Event

A software event can be initiated on a channel by writing a '1' to the Software Event bit in the Channel register (CHANNELm.SWEVT). Then the software event can be serviced as any event generator; i.e., when the bit is set to '1', an event will be generated on the respective channel.

33.5.2.13 Interrupt Status and Interrupts Arbitration

The Interrupt Status register stores all channels with pending interrupts, as shown below.

Figure 33-2. Interrupt Status Register

The Event System can arbitrate between all channels with pending interrupts. The arbiter can be configured to prioritize statically or dynamically the incoming events. The priority is evaluated each time a new channel has an interrupt pending, or an interrupt has been cleared. The Channel Pending Interrupt register (INTPEND) will provide the channel number with the highest interrupt priority, and the corresponding channel interrupt flags and status bits.

By default, static arbitration is enabled (PRICTRL.RRENx is '0'), the arbiter will prioritize a low channel number over a high channel number as shown below. When using the status scheme, there is a risk of high channel numbers never being granted access by the arbiter. This can be avoided using a dynamic arbitration scheme.

SAM L10/L11 Family

EVSYS – Event System

Value	Event Generator	Description
0x19-0x1C	DMAC_CH	DMAC channel
0x1D	TC0_OVF	TC0 overflow
0x1E-0x1F	TC0_MCX	TC0 match/compare
0x20	TC1_OVF	TC1 overflow
0x21-0x22	TC1_MCX	TC1 match/compare
0x23	TC2_OVF	TC2 overflow
0x24-0x25	TC2_MCX	TC2 match/compare
0x26	ADC_RESRDY	ADC resolution ready
0x27	ADC_WINMON	ADC window monitor
0x28-0x29	AC_COMP	AC comparator
0x2A	AC_WIN	AC window
0x2B	DAC_EMPTY	DAC empty
0x2C	PTC_EOC	PTC end of conversion
0x2D	PTC_WCOMP	PTC window comparator
0x2E	TRNG_READY	Data ready
0x2F-0x30	CCL_LUTOUT	CCL output
0x31	PAC_ERR	PAC access error

33.7.13 Event User m

Name:	USERm
Offset:	0x0120 + m*0x01 [m=022]
Reset:	0x0
Property:	PAC Write-Protection, Mix-Secure

Important: For **SAM L11 Non-Secure** accesses, read and write accesses (RW*) are allowed only if the security attribution for the corresponding event user (USERx) is set as Non-Secured in the NONSECUSER register.

Bit	7	6	5	4	3	2	1	0
					CHANNEL[3:0]			
Access					R/W/RW*/RW	R/W/RW*/RW	R/W/RW*/RW	R/W/RW*/RW
Reset					0	0	0	0

Bits 3:0 – CHANNEL[3:0] Channel Event Selection

These bits select channel n to connect to the event user m.

Note: A value x of this bit field selects channel n = x-1.

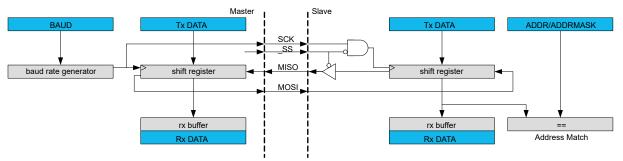

USERm	User Multiplexer	Description	Path Type
m=0	OSCCTRL_TUNE	DFLLULP Tune	A
m=1	RTC_TAMPER	RTC Tamper	A
m=2	NWMCTRL_PAGEW	NVMCTRL Auto-Write	A,S,R
m=36	PORT_EV[03]	Port Event 03	A
m=710	DMAC_CH[03]	Channel 03	S,R
m=11	TC0_EVU	TC0 EVU	A,S,R
m=12	TC1_EVU	TC1 EVU	A,S,R
m=13	TC2_EVU	TC2 EVU	A,S,R
m=14	ADC_START	ADC Start Conversion	A,S,R
m=15	ADC_SYNC	Flush ADC	A,S,R
m=1617	AC_COMP[01]	Start Comparator 01	A
m=18	DAC_START	DAC Start Conversion	A
m=19	PTC_STCONV	PTC Start Conversion	A,S,R
m=20	PTC_DSEQR	PTC Sequencing	A,S,R
m=2122	CCL_LUTIN[01]	CCL Input 01	A

Table 33-3. User Multiplexer Number m

1) A = Asynchronous path, S = Synchronous path, R = Resynchronized path

36.3 Block Diagram

Figure 36-1. Full-Duplex SPI Master Slave Interconnection

36.4 Signal Description

Table 36-1. SERCOM SPI Signals

Signal Name	Туре	Description
PAD[3:0]	Digital I/O	General SERCOM pins

One signal can be mapped to one of several pins.

36.5 **Product Dependencies**

In order to use this peripheral, other parts of the system must be configured correctly, as described below.

36.5.1 I/O Lines

In order to use the SERCOM's I/O lines, the I/O pins must be configured using the IO Pin Controller (PORT).

When the SERCOM is configured for SPI operation, the SERCOM controls the direction and value of the I/O pins according to the table below. Both PORT control bits PINCFGn.PULLEN and PINCFGn.DRVSTR are still effective. If the receiver is disabled, the data input pin can be used for other purposes. In master mode, the slave select line (\overline{SS}) is hardware controlled when the Master Slave Select Enable bit in the Control B register (CTRLB.MSSEN) is '1'.

Table 36-2. SPI Pin Configuration

Pin	Master SPI	Slave SPI
MOSI	Output	Input
MISO	Input	Output
SCK	Output	Input
SS	Output (CTRLB.MSSEN=1)	Input

The combined configuration of PORT, the Data In Pinout and the Data Out Pinout bit groups in the Control A register (CTRLA.DIPO and CTRLA.DOPO) define the physical position of the SPI signals in the table above.

Related Links

Note: The I^2C standard *Fm*+ (Fast-mode plus) requires a nominal high to low SCL ratio of 1:2, and BAUD should be set accordingly. At a minimum, BAUD.BAUD and/or BAUD.BAUDLOW must be non-zero.

Startup Timing The minimum time between SDA transition and SCL rising edge is 6 APB cycles when the DATA register is written in smart mode. If a greater startup time is required due to long rise times, the time between DATA write and IF clear must be controlled by software.

Note: When timing is controlled by user, the Smart Mode cannot be enabled.

Master Clock Generation (High-Speed Mode)

For I²C *Hs* transfers, there is no SCL synchronization. Instead, the SCL frequency is determined by the GCLK_SERCOMx_CORE frequency (f_{GCLK}) and the High-Speed Baud setting in the Baud register (BAUD.HSBAUD). When BAUD.HSBAUDLOW=0, the HSBAUD value will determine both SCL high and SCL low. In this case the following formula determines the SCL frequency.

$$f_{\rm SCL} = \frac{f_{\rm GCLK}}{2 + 2 \cdot HS \, BAUD}$$

When HSBAUDLOW is non-zero, the following formula determines the SCL frequency.

$$f_{\rm SCL} = \frac{f_{\rm GCLK}}{2 + HS\,BAUD + HSBAUDLOW}$$

Note: The I²C standard *Hs* (High-speed) requires a nominal high to low SCL ratio of 1:2, and HSBAUD should be set accordingly. At a minimum, BAUD.HSBAUD and/or BAUD.HSBAUDLOW must be non-zero.

37.6.2.4.2 Transmitting Address Packets

The I²C master starts a bus transaction by writing the I²C slave address to ADDR.ADDR and the direction bit, as described in 37.6.1 Principle of Operation. If the bus is busy, the I²C master will wait until the bus becomes idle before continuing the operation. When the bus is idle, the I²C master will issue a start condition on the bus. The I²C master will then transmit an address packet using the address written to ADDR.ADDR. After the address packet has been transmitted by the I²C master, one of four cases will arise according to arbitration and transfer direction.

Case 1: Arbitration lost or bus error during address packet transmission

If arbitration was lost during transmission of the address packet, the Master on Bus bit in the Interrupt Flag Status and Clear register (INTFLAG.MB) and the Arbitration Lost bit in the Status register (STATUS.ARBLOST) are both set. Serial data output to SDA is disabled, and the SCL is released, which disables clock stretching. In effect the I²C master is no longer allowed to execute any operation on the bus until the bus is idle again. A bus error will behave similarly to the arbitration lost condition. In this case, the MB interrupt flag and Master Bus Error bit in the Status register (STATUS.BUSERR) are both set in addition to STATUS.ARBLOST.

The Master Received Not Acknowledge bit in the Status register (STATUS.RXNACK) will always contain the last successfully received acknowledge or not acknowledge indication.

In this case, software will typically inform the application code of the condition and then clear the interrupt flag before exiting the interrupt routine. No other flags have to be cleared at this moment, because all flags will be cleared automatically the next time the ADDR.ADDR register is written.

Case 2: Address packet transmit complete – No ACK received

If there is no I²C slave device responding to the address packet, then the INTFLAG.MB interrupt flag and STATUS.RXNACK will be set. The clock hold is active at this point, preventing further activity on the bus.

38.7.2.1 Control A

Name:	CTRLA
Offset:	0x00
Reset:	0x0000000
Property:	PAC Write-Protection, Write-Synchronized, Enable-Protected

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
			COPEN1	COPEN0			CAPTEN1	CAPTEN0
Access			R/W	R/W			R/W	R/W
Reset			0	0			0	0
Bit	15	14	13	12	11	10	9	8
					ALOCK	F	PRESCALER[2:0	1
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0
Bit	7	6	5	4	3	2	1	0
	ONDEMAND	RUNSTDBY	PRESCS	YNC[1:0]	MODE[1:0]		ENABLE	SWRST
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	W
Reset	0	0	0	0	0	0	0	0

Bits 20, 21 – COPENx Capture On Pin x Enable

Bit x of COPEN[1:0] selects the trigger source for capture operation, either events or I/O pin input.

Value	Description
0	Event from Event System is selected as trigger source for capture operation on channel x.
1	I/O pin is selected as trigger source for capture operation on channel x.

Bits 16, 17 – CAPTENx Capture Channel x Enable

Bit x of CAPTEN[1:0] selects whether channel x is a capture or a compare channel.

These bits are not synchronized.

/ alue	Description
)	CAPTEN disables capture on channel x.
1	CAPTEN enables capture on channel x.

Bit 11 – ALOCK Auto Lock

When this bit is set, Lock bit update (LUPD) is set to '1' on each overflow/underflow or re-trigger event.

This bit is not synchronized.

38.7.3.9 Waveform Generation Control

Name:WAVEOffset:0x0CReset:0x00Property:PAC Write-Protection, Enable-Protected

Bit	7	6	5	4	3	2	1	0
							WAVEG	GEN[1:0]
Access							R/W	R/W
Reset							0	0

Bits 1:0 – WAVEGEN[1:0] Waveform Generation Mode

These bits select the waveform generation operation. They affect the top value, as shown in 38.6.2.6.1 Waveform Output Operations. They also control whether frequency or PWM waveform generation should be used. The waveform generation operations are explained in 38.6.2.6.1 Waveform Output Operations.

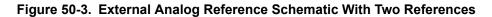
These bits are not synchronized.

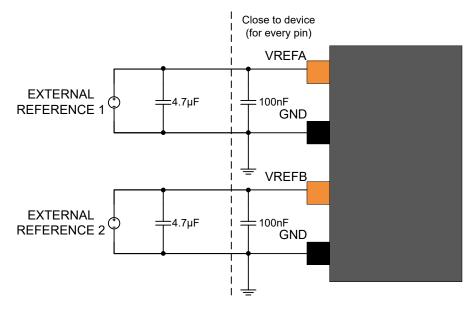
Value	Name	Operation	Top Value	Output Waveform on Match	Output Waveform on Wraparound
0x0	NFRQ	Normal frequency	PER ¹ / Max	Toggle	No action
0x1	MFRQ	Match frequency	CC0	Toggle	No action
0x2	NPWM	Normal PWM	PER ¹ / Max	Set	Clear
0x3	MPWM	Match PWM	CC0	Set	Clear

1) This depends on the TC mode: In 8-bit mode, the top value is the Period Value register (PER). In 16and 32-bit mode it is the respective MAX value.

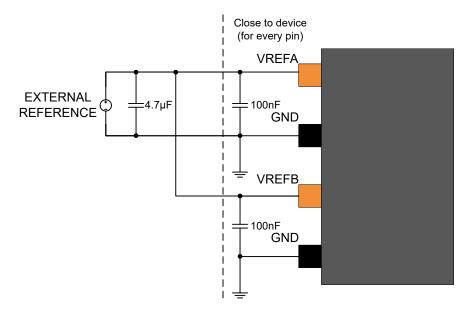
SAM L10/L11 Family

Electrical Characteristics


Symbol	Parameters	Conditions	Min	Тур	Мах	Unit
Vin	Input channel range	-	0	-	VDDANA	V
Vcmin	Input common mode voltage	For Vref > 1.0V	0.7	-	Vref-0.7	V
		For Vref=1.0V	0.3	-	Vref-0.3	V
CSAMPLE ⁽¹⁾	Input sampling capacitance		-	2.8	3.2	pF
RSAMPLE ⁽¹⁾	Input sampling on-resistance		-	-	1715	Ω
Rref ⁽¹⁾	Reference input source resistance	REFCOMP = 1	-	-	5	kΩ


Note:

1. These values are based on simulation. They are not covered by production test limits or characterization.


Table 46-24. Differential Mode ⁽¹⁾

Symb	Parameters	Conditions		Measurements			11::4
ol				Min	Тур	Max	Unit
ENOB	Effective Number of bits	Fadc = 1Msps	Vref=2.0V Vddana=3.0V	9.1	10.2	10.8	bits
			Vref=1.0V Vddana=1.6V to 3.6V	9.0	10.1	10.6	
			Vref=Vddana=1.6V to 3.6V	8.9	9.9	11.0	
			Bandgap Reference, Vddana=1.6V to 3.6V	9.0	9.8	10.6	
TUE	Total Unadjusted Error	without offset and gain compensation	Vref=Vddana=1.6V to 3.6V	-	7	32	LSB
INL	Integral Non Linearity	without offset and gain compensation	Vref=Vddana=1.6V to 3.6V	-	+/-1.9	+/-4	-
DNL	Differential Non Linearity	without offset and gain compensation	Vref=Vddana=1.6V to 3.6V	-	+0.94/- 1	+1.85/ -1	
Gain	Gain Error	without gain compensation	Vref=1V Vddana=1.6V to 3.6V	-	+/-0.38	+/-1.9	%
			Vref=3V Vddana=1.6V to 3.6V	-	+/-0.14	+/-0.9	
			Bandgap Reference	-	+/-0.64	+/-5.4	
			Vref=Vddana=1.6V to 3.6V	-	+/-0.15	+/-0.9	
Offset	Offset Error	without offset compensation	Vref=1V Vddana=1.6V to 3.6V	-	+/-0.13	+/-15. 8	mV

Figure 50-4. External Analog Reference Schematic With One Reference

Table 50-2. External Analog Reference Connections

Signal Name	Recommended Pin Connection	Description
VREFx	1.0V to $(V_{DDANA} - 0.6V)$ for ADC 1.0V to $(V_{DDANA} - 0.15V)$ for DAC Decoupling/filtering capacitors 100nF ⁽¹⁾⁽²⁾ and 4.7µF ⁽¹⁾	External reference VREFx for the analog port
GND		Ground

1. These values are only given as a typical example.

analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.