E·XFL

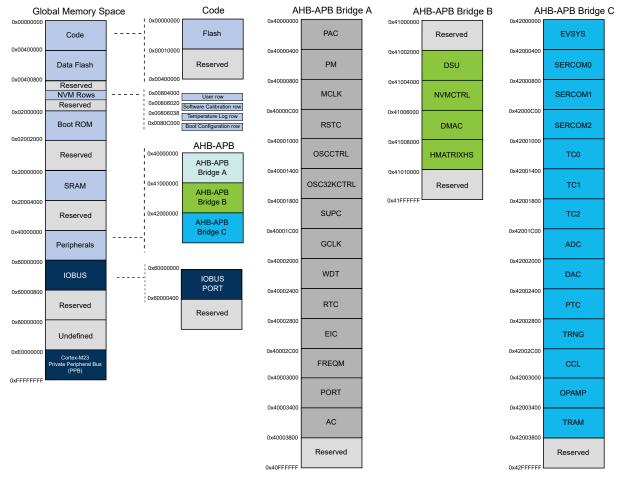
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Product Status	Active
Core Processor	ARM® Cortex®-M23
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	25
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.63V
Data Converters	A/D 10x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-VQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsaml11e14a-mut

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

9. Product Mapping

Figure 9-1. SAM L10 Product Mapping

16.12.14 CoreSight ROM Table Entry 1

Name:	ENTRY1
Offset:	0x1004
Reset:	0xXXXXX00X
Property:	PAC Write-Protection

Bit	31	30	29	28	27	26	25	24			
	ADDOFF[19:12]										
Access	R	R	R	R	R	R	R	R			
Reset	x	х	x	x	х	x	x	x			
Bit	23	22	21	20	19	18	17	16			
				ADDO	FF[11:4]						
Access	R	R	R	R	R	R	R	R			
Reset	x	х	x	х	х	х	х	x			
Bit	15	14	13	12	11	10	9	8			
		ADDO	FF[3:0]								
Access	R	R	R	R							
Reset	x	x	x	x							
Bit	7	6	5	4	3	2	1	0			
							FMT	EPRES			
Access							R	R			
Reset							1	x			

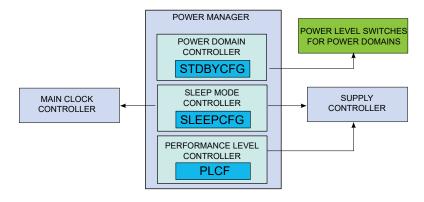
Bits 31:12 - ADDOFF[19:0] Address Offset

The base address of the component, relative to the base address of this ROM table.

Bit 1 – FMT Format

Always read as '1', indicating a 32-bit ROM table.

Bit 0 – EPRES Entry Present


This bit indicates whether an entry is present at this location in the ROM table.

This bit is set at power-up if the device is not protected indicating that the entry is not present.

This bit is cleared at power-up if the device is not protected indicating that the entry is present.

22.3 Block Diagram

Figure 22-1. PM Block Diagram

22.4 Signal Description

Not applicable.

22.5 **Product Dependencies**

In order to use this peripheral, other parts of the system must be configured correctly, as described below.

22.5.1 I/O Lines

Not applicable.

22.5.2 Clocks

The PM bus clock (CLK_PM_APB) can be enabled and disabled in the Main Clock module. If this clock is disabled, it can only be re-enabled by a system reset.

22.5.3 DMA

Not applicable.

22.5.4 Interrupts

The interrupt request line is connected to the interrupt controller. Using the PM interrupt requires the interrupt controller to be configured first.

22.5.5 Events

Not applicable.

22.5.6 Debug Operation

When the CPU is halted in debug mode, the PM continues normal operation. If standby sleep mode is requested by the system while in debug mode, the power domains are not turned off. As a consequence, power measurements while in debug mode are not relevant.

If OFF sleep mode is requested by the system while in debug mode, the core domains are kept on, and the debug modules are kept running to allow the debugger to access internal registers. When exiting the OFF mode upon a reset condition, the core domains are reset except the debug logic, allowing users to keep using their current debug session.

© 2018 Microchip Technology Inc.

22.8.1 Sleep Configuration

Name:	SLEEPCFG
Offset:	0x01
Reset:	0x2
Property:	PAC Write-Protection

Bit	7	6	5	4	3	2	1	0
						5	SLEEPMODE[2:0)]
Access						R/W	R/W	R/W
Reset						0	0	0

Bits 2:0 – SLEEPMODE[2:0] Sleep Mode

Note: A small latency happens between the store instruction and actual writing of the SLEEPCFG register due to bridges. Software has to make sure the SLEEPCFG register reads the wanted value before issuing WFI instruction.

Value	Name	Definition
0x0	Reserved	Reserved
0x1	Reserved	Reserved
0x2	IDLE	CPU, AHBx, and APBx clocks are OFF
0x3	Reserved	Reserved
0x4	STANDBY	ALL clocks are OFF, unless requested by sleepwalking peripheral
0x5	Reserved	Reserved
0x6	OFF	All power domains are powered OFF
0x7	Reserved	Reserved

25.8.1 Interrupt Enable Clear

Name:	INTENCLR
Offset:	0x00
Reset:	0x0000000
Property:	PAC Write-Protection

This register allows the user to disable an interrupt without doing a read-modify-write operation. Changes in this register will also be reflected in the Interrupt Enable Set register (INTENSET).

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
					ULPVREFRDY	VCORERDY		VREGRDY
Access					R/W	R/W		R/W
Reset					0	0		0
Bit	7	6	5	4	3	2	1	0
						B33SRDY	BOD33DET	BOD33RDY
Access	-					R/W	R/W	R/W
Reset						0	0	0

Bit 11 – ULPVREFRDY Low Power Voltage Reference Ready Interrupt Enable Writing a '0' to this bit has no effect.

The ULPVREFRDY bit will clear on a zero-to-one transition of the Low Power Voltage Reference Ready bit in the Status register (STATUS.ULPVREFRDY).

Value	Description
0	The Low Power Ready interrupt is disabled.
1	The Low Power Ready interrupt is enabled and an interrupt request will be generated when the ULPVREFRDY Interrupt Flag is set.

Bit 10 – VCORERDY VDDCORE Voltage Ready Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the VDDCORE Ready Interrupt Enable bit, which disables the VDDCORE Ready interrupt.

Value	Description
0	The VDDCORE Ready interrupt is disabled.
1	The VDDCORE Ready interrupt is enabled and an interrupt request will be generated when the VCORERDY Interrupt Flag is set.

25.8.4 Status

Name:	STATUS
Offset:	0x0C
Reset:	x,y initially determined from NVM User Row after reset
Property:	-

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
				ULPVREFRDY		VCORERDY		VREGRDY
Access				R		R		R
Reset				х		1		1
Bit	7	6	5	4	3	2	1	0
						B33SRDY	BOD33DET	BOD33RDY
Access		•	•	•		R	R	R
Reset						0	0	У

Bit 12 – ULPVREFRDY Low Power Voltage Reference Ready

Value	Description
0	The ULPVREF voltage is not as expected.
1	The ULPVREF voltage is the target voltage.

Bit 10 - VCORERDY VDDCORE Voltage Ready

Value	Description
0	The VDDCORE voltage is not as expected.
1	The VDDCORE voltage is the target voltage.

Bit 8 – VREGRDY Voltage Regulator Ready

Value	Description
0	The selected voltage regulator in VREG.SEL is not ready.
1	The voltage regulator selected in VREG.SEL is ready and the core domain is supplied by
	this voltage regulator.

Bit 2 – B33SRDY BOD33 Synchronization Ready

27.10.12 Compare n Value in COUNT16 mode (CTRLA.MODE=1)

Name:	COMP
Offset:	0x20 + n*0x02 [n=01]
Reset:	0x0000
Property:	PAC Write-Protection, Write-Synchronized

Bit	15	14	13	12	11	10	9	8				
	COMP[15:8]											
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	0	0	0				
Bit	7	6	5	4	3	2	1	0				
	COMP[7:0]											
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	0	0	0				

Bits 15:0 - COMP[15:0] Compare Value

The 16-bit value of COMPn is continuously compared with the 16-bit COUNT value. When a match occurs, the Compare n interrupt flag in the Interrupt Flag Status and Clear register (INTFLAG.CMPn) is set on the next counter cycle.

SAM L10/L11 Family

DMAC – Direct Memory Access Controller

Value	Description
0	The descriptor is not valid.
1	The descriptor is valid.

28.10.2 Block Transfer Count

Name: BTCNT Offset: 0x02 Property: -

The BTCNT register offset is relative to (BASEADDR or WRBADDR) + Channel Number * 0x10

Bit	15	14	13	12	11	10	9	8					
		BTCNT[15:8]											
Access													
Reset													
Bit	7	6	5	4	3	2	1	0					
				BTCN	IT[7:0]								
Access													

Reset

Bits 15:0 – BTCNT[15:0] Block Transfer Count

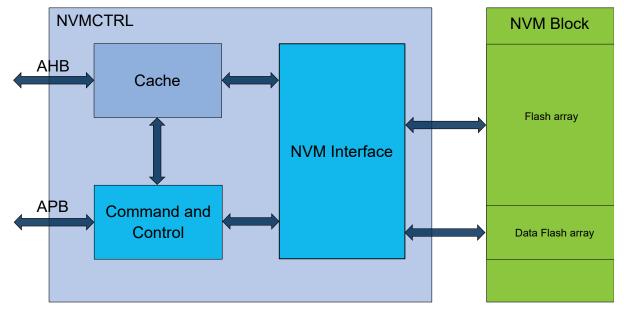
This bit group holds the 16-bit block transfer count.

During a transfer, the internal counter value is decremented by one after each beat transfer. The internal counter is written to the corresponding write-back memory section for the DMA channel when the DMA channel loses priority, is suspended or gets disabled. The DMA channel can be disabled by a complete transfer, a transfer error or by software.

30. NVMCTRL – Nonvolatile Memory Controller

30.1 Overview

Non-Volatile Memory (NVM) is a reprogrammable Flash memory that retains program and data storage even with power off. It embeds three separate arrays namely FLASH, Data FLASH and AUX FLASH. The Data FLASH array can be programmed while reading the FLASH array. It is intended to store data while executing from the FLASH without stalling. AUX FLASH stores data needed during the device startup such as calibration and system configuration. The NVM Controller (NVMCTRL) connects to the AHB and APB bus interfaces for system access to the NVM block. The AHB interface is used for reads and writes to the NVM block, while the APB interface is used for commands and configuration.


30.2 Features

- 32-bit AHB interface for reads and writes
- Write-While-Read (WWR) Data Flash
- All NVM Sections are Memory Mapped to the AHB, Including Calibration and System Configuration
- 32-bit APB Interface for Commands and Control
- Programmable Wait States for Read Optimization
- 6 Regions can be Individually Protected or Unprotected
- Additional Protection for Bootloader
- Interface to Power Manager for Power-Down of Flash Blocks in Sleep Modes
- Can Optionally Wake-up on Exit from Sleep or on First Access
- Direct-mapped Cache
- TrustZone Support (SAM L11)

Note: A register with property "Enable-Protected" may contain bits that are *not* enable-protected.

30.3 Block Diagram

Figure 30-1. Block Diagram

30.4 Signal Description

Not applicable.

30.5 Product Dependencies

In order to use this peripheral, other parts of the system must be configured correctly, as described in the following sections.

30.5.1 Power Management

The NVMCTRL will continue to operate in any sleep mode where the selected source clock is running. The NVMCTRL interrupts can be used to wake up the device from sleep modes.

The Power Manager will automatically put the NVM block into a low-power state when entering sleep mode. This is based on the Control B register (CTRLB) SLEEPPRM bit setting. Refer to the 30.8.2 CTRLB.SLEEPPRM register description for more details. The NVM block goes into low-power mode automatically when the device enters STANDBY mode regardless of SLEEPPRM. The NVM Page Buffer is lost when the NVM goes into low power mode therefore a write command must be issued prior entering the NVM low power mode. NVMCTRL SLEEPPRM can be disabled to avoid such loss when the CPU goes into sleep except if the device goes into STANDBY mode for which there is no way to retain the Page Buffer.

Related Links

22. PM – Power Manager

30.5.2 Clocks

Two synchronous clocks are used by the NVMCTRL. One is provided by the AHB bus (CLK_NVMCTRL_AHB) and the other is provided by the APB bus (CLK_NVMCTRL_APB). For higher

31.8.2 Interrupt Enable Clear

Name:	INTENCLR
Offset:	0x004
Reset:	0x00
Property:	PAC Write-Protection

Bit	7	6	5	4	3	2	1	0
							DRP	ERR
Access							R/W	R/W
Reset							0	0

Bit 1 – DRP Data Remanence Prevention Complete Interrupt Enable Writing a zero to this bit has no effect.

Writing a one to this bit will clear the Data Remanence Prevention Complete Interrupt Enable bit, which disables the data remanence prevention complete interrupt.

Value	Description
0	Data remanence prevention complete interrupt is disabled.
1	Data remanence prevention complete interrupt is enabled.

Bit 0 – ERR TrustRAM Read Error Interrupt Enable

Writing a zero to this bit has no effect.

Writing a one to this bit will clear the TrustRAM Read Error Interrupt Enable bit, which disables the TrustRAM read error interrupt.

Value	Description
0	TrustRAM read error interrupt is disabled.
1	TrustRAM read error interrupt is enabled.

SAM L10/L11 Family

EVSYS – Event System

_									
Offset	Name	Bit Pos.							
0x26	CHINTFLAG0	7:0						EVD	OVR
0x27	CHSTATUS0	7:0						BUSYCH	RDYUSR
		7:0				EVG	EN[5:0]		
0x28	CHANNEL1	15:8	ONDEMAND	RUNSTDBY		EDG	SEL[1:0]	PATH	H[1:0]
UNEO	OF # HILLET	23:16							
		31:24							
0x2C	CHINTENCLR1	7:0						EVD	OVR
0x2D	CHINTENSET1	7:0						EVD	OVR
0x2E	CHINTFLAG1	7:0						EVD	OVR
0x2F	CHSTATUS1	7:0						BUSYCH	RDYUSR
		7:0				EVG	EN[5:0]		
0x30	CHANNEL2	15:8	ONDEMAND	RUNSTDBY		EDG	SEL[1:0]	PATH	H[1:0]
0,00	CHANNELZ	23:16							
		31:24							
0x34	CHINTENCLR2	7:0						EVD	OVR
0x35	CHINTENSET2	7:0						EVD	OVR
0x36	CHINTFLAG2	7:0						EVD	OVR
0x37	CHSTATUS2	7:0						BUSYCH	RDYUSR
		7:0				EVG	EN[5:0]		
0.20	CHANNEL3	15:8	ONDEMAND	RUNSTDBY		EDG	SEL[1:0]	PATH	H[1:0]
0x38		23:16							
		31:24							
0x3C	CHINTENCLR3	7:0						EVD	OVR
0x3D	CHINTENSET3	7:0						EVD	OVR
0x3E	CHINTFLAG3	7:0						EVD	OVR
0x3F	CHSTATUS3	7:0						BUSYCH	RDYUSR
		7:0				EVG	EN[5:0]		1
040		15:8	ONDEMAND	RUNSTDBY		EDG	SEL[1:0]	PATH	H[1:0]
0x40	CHANNEL4	23:16							
		31:24							
0x44	CHINTENCLR4	7:0						EVD	OVR
0x45	CHINTENSET4	7:0						EVD	OVR
0x46	CHINTFLAG4	7:0						EVD	OVR
0x47	CHSTATUS4	7:0						BUSYCH	RDYUSR
		7:0				EVG	EN[5:0]		
010		15:8	ONDEMAND	RUNSTDBY		EDG	SEL[1:0]	PATI	H[1:0]
0x48	CHANNEL5	23:16							
		31:24							
0x4C	CHINTENCLR5	7:0						EVD	OVR
0x4D	CHINTENSET5	7:0						EVD	OVR
0x4E	CHINTFLAG5	7:0						EVD	OVR
0x4F	CHSTATUS5	7:0						BUSYCH	RDYUSR
		7:0				EVG	EN[5:0]		1
a ==		15:8	ONDEMAND	RUNSTDBY			SEL[1:0]	PATH	H[1:0]
0x50	CHANNEL6	00.40							
		23:16							

Bit 2 – RXC Receive Complete Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the Receive Complete Interrupt Enable bit, which disables the Receive Complete interrupt.

Value	Description
0	Receive Complete interrupt is disabled.
1	Receive Complete interrupt is enabled.

Bit 1 – TXC Transmit Complete Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the Transmit Complete Interrupt Enable bit, which disables the Receive Complete interrupt.

Value	Description
0	Transmit Complete interrupt is disabled.
1	Transmit Complete interrupt is enabled.

Bit 0 – DRE Data Register Empty Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the Data Register Empty Interrupt Enable bit, which disables the Data Register Empty interrupt.

Value	Description
0	Data Register Empty interrupt is disabled.
1	Data Register Empty interrupt is enabled.

- Status register (STATUS)
- Data register (DATA)

Optional PAC Write-Protection is denoted by the "PAC Write-Protection" property in each individual register description.

Write-protection does not apply to accesses through an external debugger.

Related Links

15. PAC - Peripheral Access Controller

36.5.9 SAM L11 TrustZone Specific Register Access Protection

On **SAM L11** devices, this peripheral has different access permissions depending on PAC Security Attribution (Secure or Non-Secure):

- If the peripheral is configured as Non-Secure in the PAC:
 - Secure access and Non-Secure access are granted
- If the peripheral is configured as Secure in the PAC:
 - Secure access is granted
 - Non-Secure access is discarded (Write is ignored, read 0x0) and a PAC error is triggered

Refer to Peripherals Security Attribution for more information.

36.5.10 Analog Connections

Not applicable.

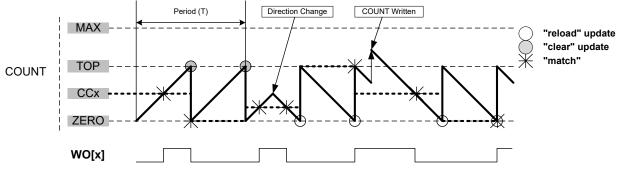
36.6 Functional Description

36.6.1 Principle of Operation

The SPI is a high-speed synchronous data transfer interface It allows high-speed communication between the device and peripheral devices.

The SPI can operate as master or slave. As master, the SPI initiates and controls all data transactions. The SPI is single buffered for transmitting and double buffered for receiving.

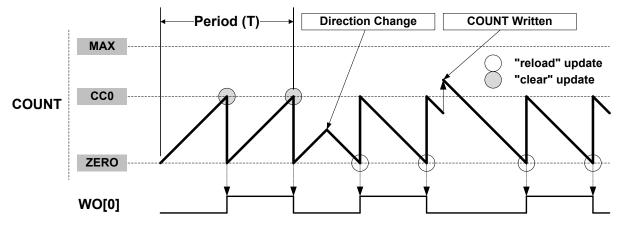
When transmitting data, the Data register can be loaded with the next character to be transmitted during the current transmission.


When receiving, the data is transferred to the two-level or four-level receive buffer, and the receiver is ready for a new character.

The SPI transaction format is shown in SPI Transaction Format. Each transaction can contain one or more characters. The character size is configurable, and can be either 8 or 9 bits.

Figure 36-2. SPI Transaction Format

	•	Character	 Transaction		
MOSI/MISO	\times	Character 0	Character 1	Character 2	
_SS					



Match Frequency Generation (MFRQ)

For Match Frequency Generation, the period time (T) is controlled by the CC0 register instead of PER or MAX. WO[0] toggles on each update condition.

Figure 38-5. Match Frequency Operation

Normal Pulse-Width Modulation Operation (NPWM)

NPWM uses single-slope PWM generation.

For single-slope PWM generation, the period time (T) is controlled by the TOP value, and CCx controls the duty cycle of the generated waveform output. When up-counting, the WO[x] is set at start or compare match between the COUNT and TOP values, and cleared on compare match between COUNT and CCx register values. When down-counting, the WO[x] is cleared at start or compare match between the COUNT and ZERO values, and set on compare match between COUNT and CCx register values.

The following equation calculates the exact resolution for a single-slope PWM ($R_{PWM SS}$) waveform:

$$R_{\rm PWM_SS} = \frac{\log(\rm TOP+1)}{\log(2)}$$

The PWM frequency (f_{PWM_SS}) depends on TOP value and the peripheral clock frequency (f_{GCLK_TC}), and can be calculated by the following equation:

$$f_{\rm PWM_SS} = \frac{f_{\rm GCLK_TC}}{\rm N(TOP+1)}$$

Where N represents the prescaler divider used (1, 2, 4, 8, 16, 64, 256, 1024).

Match Pulse-Width Modulation Operation (MPWM)

In MPWM, the output of WO[1] is depending on CC1 as shown in the figure below. On every overflow/ underflow, a one-TC-clock-cycle negative pulse is put out on WO[0] (not shown in the figure).

38.7.1.14 Period Value, 8-bit Mode

Name:PEROffset:0x1BReset:0xFFProperty:Write-Synchronized

Bit	7	6	5	4	3	2	1	0		
	PER[7:0]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	1		

Bits 7:0 – PER[7:0] Period Value

These bits hold the value of the Period Buffer register PERBUF. The value is copied to PER register on UPDATE condition.

38.7.3.10 Driver Control

Name:	DRVCTRL
Offset:	0x0D
Reset:	0x00
Property:	PAC Write-Protection, Enable-Protected

Bit	7	6	5	4	3	2	1	0
								INVENx
Access								R/W
Reset								0

Bit 0 – INVENx Output Waveform x Invert Enable

Bit x of INVEN[1:0] selects inversion of the output or capture trigger input of channel x.

Value	Description
0	Disable inversion of the WO[x] output and IO input pin.
1	Enable inversion of the WO[x] output and IO input pin.

SAM L10/L11 Family

AC – Analog Comparators

42.7 Register Summary

Offset	Name	Bit Pos.								
0x00	CTRLA	7:0							ENABLE	SWRST
0x01	CTRLB	7:0							STARTx	STARTx
0x02	EVCTRL	7:0				WINEO0			COMPEOx	COMPEOx
0x02	EVCIRE	15:8			INVEIx	INVEIx			COMPEIx	COMPEIx
0x04	INTENCLR	7:0				WIN0			COMPx	COMPx
0x05	INTENSET	7:0				WIN0			COMPx	COMPx
0x06	INTFLAG	7:0				WIN0			COMPx	COMPx
0x07	STATUSA	7:0			WSTAT	E0[1:0]			STATEx	STATEx
0x08	STATUSB	7:0							READYx	READYx
0x09	DBGCTRL	7:0								DBGRUN
0x0A	WINCTRL	7:0						WINTS	EL0[1:0]	WEN0
0x0B	Reserved									
0x0C	SCALER0	7:0				1	VALU	E[5:0]	1	1
0x0D	SCALER1	7:0					VALU	E[5:0]		
0x0E 0x0F	Reserved									
		7:0		RUNSTDBY		INTSE	EL[1:0]	SINGLE	ENABLE	
010	COMPCTRL0	15:8	SWAP		MUXPOS[2:0]				MUXNEG[2:0]	
0x10	COMPCTRLU	23:16			HYS.	T[1:0]	HYSTEN		SPEE	D[1:0]
		31:24			OUT	[1:0]			FLEN[2:0]	
		7:0		RUNSTDBY		INTSE	EL[1:0]	SINGLE	ENABLE	
0.14		15:8	SWAP		MUXPOS[2:0]				MUXNEG[2:0]	
0x14	COMPCTRL1	23:16			HYS.	T[1:0]	HYSTEN		SPEE	D[1:0]
		31:24			Ουτ	[1:0]			FLEN[2:0]	
0x18										
 0x1F	Reserved									
		7:0				COMPCTRLx	COMPCTRLx	WINCTRL	ENABLE	SWRST
0.00	OVNODU OV	15:8								
0x20	SYNCBUSY	23:16								
		31:24								

42.8 Register Description

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Some registers are optionally write-protected by the Peripheral Access Controller (PAC). Optional PAC write-protection is denoted by the "PAC Write-Protection" property in each individual register description. For details, refer to Register Access Protection.

An interrupt request is generated when the interrupt flag is set and the corresponding interrupt is enabled. The interrupt request remains active until the interrupt flag is cleared, the interrupt is disabled or the DAC is reset. See INTFLAG register for details on how to clear interrupt flags.

All interrupt requests from the peripheral are ORed together on system level to generate one combined interrupt request to the NVIC. The user must read the INTFLAG register to determine which interrupt condition is present.

Note that interrupts must be globally enabled for interrupt requests to be generated..

43.6.5 Events

The DAC Controller can generate the following output events:

• Data Buffer Empty (EMPTY): Generated when the internal data buffer of the DAC is empty. Refer to DMA Operation for details.

Writing a '1' to an Event Output bit in the Event Control register (EVCTRL.EMPTYEO) enables the corresponding output event. Writing a '0' to this bit disables the corresponding output event.

The DAC can take the following action on an input event:

 Start Conversion (START): DATABUF value is transferred into DATA as soon as the DAC is ready for the next conversion, and then conversion is started. START is considered as asynchronous to GCLK_DAC thus it is resynchronized in DAC Controller. Refer to 43.6.2.4 Digital to Analog Conversion for details.

Writing a '1' to an Event Input bit in the Event Control register (EVCTRL.STARTEI) enables the corresponding action on an input event. Writing a '0' to this bit disables the corresponding action on input event.

Note: When several events are connected to the DAC Controller, the enabled action will be taken on any of the incoming events.

By default, DAC Controller detects rising edge events. Falling edge detection can be enabled by writing a '1' to EVCTRL.INVEIx.

Related Links

33. EVSYS – Event System

43.6.6 Sleep Mode Operation

The generic clock for the DAC is running in idle sleep mode. If the Run In Standby bit in the Control A register (CTRLA.RUNSTDBY) is one, the DAC output buffer will keep its value in standby sleep mode. If CTRLA.RUNSTDBY is zero, the DAC output buffer will be disabled in standby sleep mode.

43.6.7 Synchronization

Due to the asynchronicity between main clock domain and the peripheral clock domains, some registers need to be synchronized when written or read. A register can require:

- Synchronization when written
- Synchronization when read
- Synchronization when written and read
- No synchronization

When executing an operation that requires synchronization, the corresponding status bit in the Synchronization Busy register (SYNCBUSY) will be set immediately, and cleared when synchronization is complete.