E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0 0	
Product Status	Active
Core Processor	ARM® Cortex®-M23
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	25
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.63V
Data Converters	A/D 10x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-VQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsaml11e15a-mft

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5. Signal Descriptions List

The following table provides details on signal names classified by peripherals.

Table 5-1. Signal Descriptions List

Signal Name	Function	Туре		
Generic Clock Generator - GCLK				
GCLK_IO[4:0]	Generators Clock Source (Input) or Generic Clock Signal (Output)	Digital I/O		
Oscillators Control - OSCCTRL				
XIN	Crystal Oscillator or External Clock Input	Analog Input (Crystal Oscillator)/Digital Input (External Clock)		
XOUT	Crystal Oscillator Output	Analog Output		
32 kHz Oscillators Control - OSC32K	CTRL			
XIN32	32.768 kHz Crystal Oscillator or External Clock Input	Analog Input (Crystal Oscillator)/Digital Input (External Clock)		
XOUT32	32.768 kHz Crystal Oscillator Output	Analog Output		
Serial Communication Interface - SE	RCOMx			
PAD[3:0]	General SERCOM Pins	Digital I/O		
Timer Counter - TCx				
WO[1:0]	Capture Inputs or Waveform Outputs	Digital I/O		
Real Timer Clock - RTC				
IN[3:0]	Tamper Detection Inputs	Digital Input		
OUT[3:0]	Tamper Detection Outputs	Digital Output		
Analog Comparators - AC				
AIN[3:0]	AC Comparator Inputs	Analog Input		
CMP[1:0]	AC Comparator Outputs	Digital Output		
Analog Digital Converter - ADC				
AIN[9:0]	ADC Input Channels	Analog Input		
VREFA ⁽¹⁾	ADC External Reference Voltage A	Analog Input		
VREFB	ADC External Reference Voltage B	Analog Input		
Digital Analog Converter - DAC				
VOUT	DAC Voltage Output	Analog Output		
VREFA ⁽¹⁾	DAC External Reference Voltage A	Analog Input		
Operational Amplifier - OPAMP				
OA[2:0]NEG	OPAMP Negative Inputs	Analog Input		
OA[2:0]POS	OPAMP Positive Inputs	Analog Input		
OA0OUT / OA2OUT	OPAMP Outputs	Analog Output		
Peripheral Touch Controller - PTC				
XY[19:0]	X-lines and Y-lines	Digital Output (X-line) /Analog I/O (Y-line)		
Custom Control Logic - CCL				
IN[5:0]	Inputs to lookup table	Digital Output		
OUT[1:0]	Outputs from lookup table	Digital Input		

16.12.5 Length

LENGTH
0x0008
0x0000000
PAC Write-Protection

Bit	31	30	29	28	27	26	25	24				
		LENGTH[29:22]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	0	0	0				
Bit	23	22	21	20	19	18	17	16				
				LENGT	H[21:14]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	0	0	0				
Bit	15	14	13	12	11	10	9	8				
				LENGT	H[13:6]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	0	0	0				
Bit	7	6	5	4	3	2	1	0				
	LENGTH[5:0]											
Access	R/W	R/W	R/W	R/W	R/W	R/W						
Reset	0	0	0	0	0	0						

Bits 31:2 - LENGTH[29:0] Length

Length in words needed for memory operations.

SUPC – Supply Controller

Value	Name	Description
0x2	INT	The BOD33 generates an interrupt
0x3	-	Reserved

Bit 2 – HYST Hysteresis

This bit indicates whether hysteresis is enabled for the BOD33 threshold voltage.

This bit is loaded from NVM User Row at start-up.

This bit is not synchronized.

Value	Description
0	No hysteresis.
1	Hysteresis enabled.

Bit 1 - ENABLE Enable

This bit is loaded from NVM User Row at start-up.

This bit is not enable-protected.

V	alue	Description
0		BOD33 is disabled.
1		BOD33 is enabled.

constantly running timer that is configured to a predefined time-out period. Before the end of the time-out period, the WDT should be set back, or else, a system Reset is issued.

The WDT has two modes of operation, Normal mode and Window mode. Both modes offer the option of Early Warning interrupt generation. The description for each of the basic modes is given below. The settings in the Control A register (CTRLA) and the Interrupt Enable register (handled by INTENCLR/INTENSET) determine the mode of operation:

Table 26-1. WDT Operating Modes

CTRLA.ENABLE	CTRLA.WEN	Interrupt Enable	Mode
0	x	x	Stopped
1	0	0	Normal mode
1	0	1	Normal mode with Early Warning interrupt
1	1	0	Window mode
1	1	1	Window mode with Early Warning interrupt

26.6.2 Basic Operation

26.6.2.1 Initialization

The following bits are enable-protected, meaning that they can only be written when the WDT is disabled (CTRLA.ENABLE=0):

- Control A register (CTRLA), except the Enable bit (CTRLA.ENABLE)
- Configuration register (CONFIG)
- Early Warning Interrupt Control register (EWCTRL)

Enable-protected bits in the CTRLA register can be written at the same time as CTRLA.ENABLE is written to '1', but not at the same time as CTRLA.ENABLE is written to '0'.

The WDT can be configured only while the WDT is disabled. The WDT is configured by defining the required Time-Out Period bits in the Configuration register (CONFIG.PER). If Window mode operation is desired, the Window Enable bit in the Control A register must be set (CTRLA.WEN=1) and the Window Period bits in the Configuration register (CONFIG.WINDOW) must be defined.

Enable-protection is denoted by the "Enable-Protected" property in the register description.

26.6.2.2 Configurable Reset Values

After a Power-on Reset, some registers will be loaded with initial values from the NVM User Row.

This includes the following bits and bit groups:

- Enable bit in the Control A register, CTRLA.ENABLE
- Always-On bit in the Control A register, CTRLA.ALWAYSON
- Run In Standby Enable bit in the Control A register (CTRLA.RUNSTDBY)
- Watchdog Timer Windows Mode Enable bit in the Control A register, CTRLA.WEN
- Watchdog Timer Windows Mode Time-Out Period bits in the Configuration register, CONFIG.WINDOW
- Time-Out Period bits in the Configuration register, CONFIG.PER
- Early Warning Interrupt Time Offset bits in the Early Warning Interrupt Control register, EWCTRL.EWOFFSET

28.8.11 Interrupt Status

Name: Offset: Reset: Property:		INTSTATUS 0x24 0x00000000 -						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
5.4	45		10	10		40	0	2
Bit	15	14	13	12	11	10	9	8
A								
Access Reset								
Reset								
Bit	7	6	5	4	3	2	1	0
		-	-		CHINTn[6:0]			-
Access		R	R	R	R	R	R	R
Reset		0	0	0	0	0	0	0
		-	-	-	-	-	-	-

Bits 6:0 – CHINTn[6:0] Channel n Pending Interrupt [n=7..0]

This bit is set when Channel n has a pending interrupt/the interrupt request is received.

This bit is cleared when the corresponding Channel n interrupts are disabled or the interrupts sources are cleared.

29.8.8 Interrupt Flag Status and Clear

Name:	INTFLAG
Offset:	0x14
Reset:	0x00000000
Property:	Mix-Secure

Important: For **SAM L11 Non-Secure** accesses, read and write accesses (RW*) are allowed only if the external interrupt x (EXTINTx) is set as Non-Secure in the NONSEC register (NONSEC.EXTINTx bit).

Bit	31	30	29	28	27	26	25	24
	NSCHK							
Access	RW/RW/RW	•			•	•	•	
Reset	0							
Bit	23	22	21	20	19	18	17	16
Access							·	
Reset								
Bit	15	14	13	12	11	10	9	8
Access			1				•	
Reset								
Bit	7	6	5	4	3	2	1	0
				EXTIN	IT[7:0]			
Access	RW/RW*/RW							
Reset	0	0	0	0	0	0	0	0

Bit 31 – NSCHK Non-secure Check Interrupt

The flag is cleared by writing a '1' to it. This flag is set when write to either NONSEC and NSCHK register and if the related bit of NSCHK is enabled and the related bit of NONSEC is zero.

Bits 7:0 – EXTINT[7:0] External Interrupt

The flag bit x is cleared by writing a '1' to it.

This flag is set when EXTINTx pin matches the external interrupt sense configuration and will generate an interrupt request if 29.8.6 INTENCLR.EXTINT[x] or 29.8.7 INTENSET.EXTINT[x] is '1'.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit clears the External Interrupt x flag.

NVMCTRL – Nonvolatile Memory Controller

or .										
Offset	Name	Bit Pos.								
		15:8			SLKE	Y[7:0]	-			
0x22	NSULCK	7:0					DNS	ANS	BNS	
0,22	NOOLOK	15:8			NSLKI	EY[7:0]				
		7:0			FLASH	HP[7:0]				
0x24	PARAM	15:8		FLASHP[15:8]						
0724		23:16	DFL	ASHP[3:0]				PSZ[2:0]		
		31:24			DFLASI	HP[11:4]				
0x28										
	Reserved									
0x2F										
		7:0			DSCK	EY[7:0]				
0x30	DSCC	15:8			DSCKE	Y[15:8]				
0,30	DSCC	23:16			DSCKE	Y[23:16]				
						DSCKE	Y[29:24]			
	SECCTRL	7:0	DXN			DSCEN	SILACC		TAMPEEN	
0x34		15:8						TEROW[2:0]		
0x34		23:16								
		31:24			KEY	[7:0]			1	
		7:0						BCWEN	BCREN	
020	00500	15:8								
0x38	SCFGB	23:16								
		31:24								
		7:0							URWEN	
	005015	15:8								
0x3C	SCFGAD	23:16								
		31:24								
		7:0							WRITE	
		15:8								
0x40	NONSEC	23:16								
		31:24								
		7:0							WRITE	
		15:8								
0x44	NSCHK	23:16								
		31:24								

30.8 Register Description

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16-, and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Some registers require synchronization when read and/or written. Synchronization is denoted by the "Read-Synchronized" and/or "Write-Synchronized" property in each individual register description.

Some registers are enable-protected, meaning they can only be written when the module is disabled. Enable-protection is denoted by the "Enable-Protected" property in each individual register description.

© 2018 Microchip Technology Inc.

TRAM - TrustRAM

Offset	Name	Bit Pos.	
		23:16	DATA[23:16]
		31:24	DATA[31:24]
		7:0	DATA[7:0]
0x01D0	RAM52	15:8	DATA[15:8]
0.0100	INAWJZ	23:16	DATA[23:16]
		31:24	DATA[31:24]
		7:0	DATA[7:0]
0x01D4	RAM53	15:8	DATA[15:8]
0,0121		23:16	DATA[23:16]
		31:24	DATA[31:24]
		7:0	DATA[7:0]
0x01D8	RAM54	15:8	DATA[15:8]
0.0120		23:16	DATA[23:16]
		31:24	DATA[31:24]
		7:0	DATA[7:0]
0x01DC	RAM55	15:8	DATA[15:8]
0,0120	RAM55	23:16	DATA[23:16]
		31:24	DATA[31:24]
		7:0	DATA[7:0]
0x01E0	RAM56	15:8	DATA[15:8]
UXUILU		23:16	DATA[23:16]
		31:24	DATA[31:24]
		7:0	DATA[7:0]
0x01E4	RAM57	15:8	DATA[15:8]
	RAIMST	23:16	DATA[23:16]
		31:24	DATA[31:24]
		7:0	DATA[7:0]
0x01E8	RAM58	15:8	DATA[15:8]
		23:16	DATA[23:16]
		31:24	DATA[31:24]
		7:0	DATA[7:0]
0x01EC	RAM59	15:8	DATA[15:8]
		23:16	DATA[23:16]
		31:24	DATA[31:24]
		7:0	DATA[7:0]
0x01F0	RAM60	15:8	DATA[15:8]
		23:16	DATA[23:16]
		31:24	DATA[31:24]
		7:0	DATA[7:0]
0x01F4	RAM61	15:8	DATA[15:8]
		23:16	DATA[23:16]
		31:24	DATA[31:24]
		7:0	DATA[7:0]
0x01F8	RAM62	15:8	DATA[15:8]
		23:16	DATA[23:16]
		31:24	DATA[31:24]

PORT - I/O Pin Controller

	,			
EVACT0	EVACT1	EVACT2	EVACT3	Executed Event Action
SET	SET	SET	SET	SET
CLR	CLR	CLR	CLR	CLR
All Other Comb	inations	TGL		

Table 32-3. Priority on Simultaneous SET/CLR/TGL Event Actions

Be careful when the event is output to pin. Due to the fact the events are received asynchronously, the I/O pin may have unpredictable levels, depending on the timing of when the events are received. When several events are output to the same pin, the lowest event line will get the access. All other events will be ignored.

Related Links

33. EVSYS - Event System

32.6.6 PORT Access Priority

The PORT is accessed by different systems:

- The ARM[®] CPU through the ARM[®] single-cycle I/O port (IOBUS)
- The ARM[®] CPU through the high-speed matrix and the AHB/APB bridge (APB)
- EVSYS through four asynchronous input events

The following priority is adopted:

- 1. ARM[®] CPU IOBUS (No wait tolerated)
- 2. APB
- 3. EVSYS input events

For input events that require different actions on the same I/O pin, refer to 32.6.5 Events.

32.8.6 Data Output Value Clear

Name:	OUTCLR
Offset:	0x14
Reset:	0x0000000
Property:	PAC Write-Protection, Mix-Secure

Important: For **SAM L11 Non-Secure** accesses, read and write accesses (RW*) are allowed only if the security attribution for the corresponding I/O pin is set as Non-Secured in the NONSEC register.

This register allows the user to set one or more output I/O pin drive levels low, without doing a readmodify-write operation. Changes in this register will also be reflected in the Data Output Value (OUT), Data Output Value Toggle (OUTTGL) and Data Output Value Set (OUTSET) registers.

Tip: The I/O pins are assembled in pin groups ("PORT groups") with up to 32 pins. Group 0 consists of the PA pins, group 1 is for the PB pins, etc. Each pin group has its own PORT registers, with a 0x80 address spacing. For example, the register address offset for the Data Direction (DIR) register for group 0 (PA00 to PA31) is 0x00, and the register address offset for the DIR register for group 1 (PB00 to PB31) is 0x80.

Bit	31	30	29	28	27	26	25	24
				OUTCL	R[31:24]			
Access	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				OUTCL	R[23:16]			
Access	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				OUTCL	.R[15:8]			
Access	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	OUTCLR[7:0]							
Access	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW	RW/RW*/RW
Reset	0	0	0	0	0	0	0	0

Bits 31:0 - OUTCLR[31:0] PORT Data Output Value Clear

Writing '0' to a bit has no effect.

When using the synchronous path, the channel is able to generate interrupts. The channel status bits in the Channel Status register (CHSTATUS) are also updated and available for use.

Resynchronized Path

The resynchronized path are used when the event generator and the event channel do not share the same generator for the generic clock. When the resynchronized path is used, resynchronization of the event from the event generator is done in the channel.

When the resynchronized path is used, the channel is able to generate interrupts. The channel status bits in the Channel Status register (CHSTATUS) are also updated and available for use.

33.5.2.7 Edge Detection

When synchronous or resynchronized paths are used, edge detection must be enabled. The event system can execute edge detection in three different ways:

- Generate an event only on the rising edge
- Generate an event only on the falling edge
- Generate an event on rising and falling edges.

Edge detection is selected by writing to the Edge Selection bit group of the Channel register (CHANNELn.EDGSEL).

33.5.2.8 Event Latency

An event from an event generator is propagated to an event user with different latency, depending on event channel configuration.

- Asynchronous Path: The maximum routing latency of an external event is related to the internal signal routing and it is device dependent.
- Synchronous Path: The maximum routing latency of an external event is one GCLK_EVSYS_CHANNEL_n clock cycle.
- Resynchronized Path: The maximum routing latency of an external event is three GCLK_EVSYS_CHANNEL_n clock cycles.

The maximum propagation latency of a user event to the peripheral clock core domain is three peripheral clock cycles.

The event generators, event channel and event user clocks ratio must be selected in relation with the internal event latency constraints. Events propagation or event actions in peripherals may be lost if the clock setup violates the internal latencies.

33.5.2.9 The Overrun Channel n Interrupt

The Overrun Channel n interrupt flag in the Interrupt Flag Status and Clear register (CHINTFLAGn.OVR) will be set, and the optional interrupt will be generated in the following cases:

- One or more event users on channel n is not ready when there is a new event.
- An event occurs when the previous event on channel m has not been handled by all event users connected to that channel.

The flag will only be set when using synchronous or resynchronized paths. In the case of asynchronous path, the CHINTFLAGn.OVR is always read as zero.

33.5.2.10 The Event Detected Channel n Interrupt

The Event Detected Channel n interrupt flag in the Interrupt Flag Status and Clear register (CHINTFLAGn.EVD) is set when an event coming from the event generator configured on channel n is detected.

Optional write-protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write-Protection" property in each individual register description.

PAC write-protection does not apply to accesses through an external debugger.

Related Links

15. PAC - Peripheral Access Controller

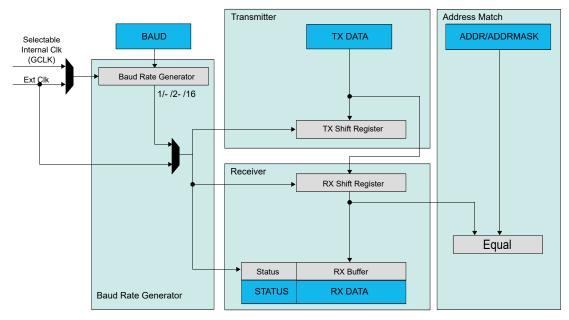
34.5.9 SAM L11 TrustZone Specific Register Access Protection

On **SAM L11** devices, this peripheral has different access permissions depending on PAC Security Attribution (Secure or Non-Secure):

- If the peripheral is configured as Non-Secure in the PAC:
- Secure access and Non-Secure access are granted
- If the peripheral is configured as Secure in the PAC:
 - Secure access is granted
 - Non-Secure access is discarded (Write is ignored, read 0x0) and a PAC error is triggered

Refer to Peripherals Security Attribution for more information.

34.5.10 Analog Connections


Not applicable.

34.6 Functional Description

34.6.1 Principle of Operation

The basic structure of the SERCOM serial engine is shown in Figure 34-2. Labels in capital letters are synchronous to the system clock and accessible by the CPU; labels in lowercase letters can be configured to run on the GCLK_SERCOMx_CORE clock or an external clock.

Figure 34-2. SERCOM Serial Engine

The transmitter consists of a single write buffer and a shift register.

37. SERCOM I²C – SERCOM Inter-Integrated Circuit

37.1 Overview

The inter-integrated circuit (I^2C) interface is one of the available modes in the serial communication interface (SERCOM).

The I²C interface uses the SERCOM transmitter and receiver configured as shown in Figure 37-1. Labels in capital letters are registers accessible by the CPU, while lowercase labels are internal to the SERCOM.

A SERCOM instance can be configured to be either an I^2C master or an I^2C slave. Both master and slave have an interface containing a shift register, a transmit buffer and a receive buffer. In addition, the I^2C master uses the SERCOM baud-rate generator, while the I^2C slave uses the SERCOM address match logic.

Related Links

34. SERCOM – Serial Communication Interface

37.2 Features

SERCOM I²C includes the following features:

- Master or slave operation
- Can be used with DMA
- Philips I²C compatible
- SMBus[™] compatible
- PMBus compatible
- Support of 100kHz and 400kHz, 1MHz and 3.4MHz I²C mode
- 4-Wire operation supported
- Physical interface includes:
 - Slew-rate limited outputs
 - Filtered inputs
- Slave operation:
 - Operation in all sleep modes
 - Wake-up on address match
 - 7-bit and 10-bit Address match in hardware for:
 - Unique address and/or 7-bit general call address
 - Address range
 - Two unique addresses can be used with DMA

Related Links

34.2 Features

37.10.5 Interrupt Enable Set

Name:INTENSETOffset:0x16Reset:0x00Property:PAC Write-Protection

This register allows the user to enable an interrupt without doing a read-modify-write operation. Changes in this register will also be reflected in the Interrupt Enable Clear register (INTENCLR).

Bit	7	6	5	4	3	2	1	0
	ERROR						SB	MB
Access	R/W						R/W	R/W
Reset	0						0	0

Bit 7 – ERROR Error Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will set the Error Interrupt Enable bit, which enables the Error interrupt.

Value	Description
0	Error interrupt is disabled.
1	Error interrupt is enabled.

Bit 1 – SB Slave on Bus Interrupt Enable Writing '0' to this bit has no effect.

Writing '1' to this bit will set the Slave on Bus Interrupt Enable bit, which enables the Slave on Bus interrupt.

Value	Description
0	The Slave on Bus interrupt is disabled.
1	The Slave on Bus interrupt is enabled.

Bit 0 – MB Master on Bus Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will set the Master on Bus Interrupt Enable bit, which enables the Master on Bus interrupt.

ν	/alue	Description
0		The Master on Bus interrupt is disabled.
1		The Master on Bus interrupt is enabled.

38.7.1.17 Channel x Compare Buffer Value, 8-bit Mode

Name:CCBUFxOffset:0x30 + x*0x01 [x=0..1]Reset:0x00Property:Write-Synchronized

Bit	7	6	5	4	3	2	1	0
Γ				CCBL	JF[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 – CCBUF[7:0] Channel x Compare Buffer Value

These bits hold the value of the Channel x Compare Buffer Value. When the buffer valid flag is '1' and double buffering is enabled (CTRLBCLR.LUPD=1), the data from buffer registers will be copied into the corresponding CCx register under UPDATE condition (CTRLBSET.CMD=0x3), including the software update command.

38.7.3.17 Channel x Compare Buffer Value, 32-bit Mode

Name:	CCBUFx
Offset:	0x30 + x*0x04 [x=01]
Reset:	0x0000000
Property:	Write-Synchronized

Bit	31	30	29	28	27	26	25	24
		CCBUF[31:24]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				CCBUF	[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				CCBU	F[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				CCBL	JF[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 31:0 – CCBUF[31:0] Channel x Compare Buffer Value

These bits hold the value of the Channel x Compare Buffer Value. When the buffer valid flag is '1' and double buffering is enabled (CTRLBCLR.LUPD=1), the data from buffer registers will be copied into the corresponding CCx register under UPDATE condition (CTRLBSET.CMD=0x3), including the software update command.

- If the peripheral is configured as Secure in the PAC:
 - Secure access is granted
 - Non-Secure access is discarded (Write is ignored, read 0x0) and a PAC error is triggered

Refer to Peripherals Security Attribution for more information.

40.5.10 Analog Connections

Not applicable.

40.6 Functional Description

40.6.1 Principle of Operation

Configurable Custom Logic (CCL) is a programmable logic block that can use the device port pins, internal peripherals, and the internal Event System as both input and output channels. The CCL can serve as glue logic between the device and external devices. The CCL can eliminate the need for external logic component and can also help the designer overcome challenging real-time constrains by combining core independent peripherals in clever ways to handle the most time critical parts of the application independent of the CPU.

40.6.2 Operation

40.6.2.1 Initialization

The following bits are enable-protected, meaning that they can only be written when the corresponding even LUT is disabled (LUTCTRLx.ENABLE=0):

• Sequential Selection bits in the Sequential Control x (SEQCTRLx.SEQSEL) register

The following registers are enable-protected, meaning that they can only be written when the corresponding LUT is disabled (LUTCTRLx.ENABLE=0):

• LUT Control x (LUTCTRLx) register, except the ENABLE bit

Enable-protected bits in the LUTCTRLx registers can be written at the same time as LUTCTRLx.ENABLE is written to '1', but not at the same time as LUTCTRLx.ENABLE is written to '0'.

Enable-protection is denoted by the Enable-Protected property in the register description.

40.6.2.2 Enabling, Disabling, and Resetting

The CCL is enabled by writing a '1' to the Enable bit in the Control register (CTRL.ENABLE). The CCL is disabled by writing a '0' to CTRL.ENABLE.

Each LUT is enabled by writing a '1' to the Enable bit in the LUT Control x register (LUTCTRLx.ENABLE). Each LUT is disabled by writing a '0' to LUTCTRLx.ENABLE.

The CCL is reset by writing a '1' to the Software Reset bit in the Control register (CTRL.SWRST). All registers in the CCL will be reset to their initial state, and the CCL will be disabled. Refer to 40.8.1 CTRL for details.

40.6.2.3 Lookup Table Logic

The lookup table in each LUT unit can generate any logic expression OUT as a function of three inputs (IN[2:0]), as shown in Figure 40-2. One or more inputs can be masked. The truth table for the expression is defined by TRUTH bits in LUT Control x register (LUTCTRLx.TRUTH).

41.8.8 Sequence Status

Name:	SEQSTATUS
Offset:	0x07
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
	SEQBUSY					SEQSTATE[4:0]		
Access	R			R	R	R	R	R
Reset	0			0	0	0	0	0

Bit 7 – SEQBUSY Sequence busy

This bit is set when the sequence start.

This bit is clear when the last conversion in a sequence is done.

Bits 4:0 - SEQSTATE[4:0] Sequence State

These bit fields are the pointer of sequence. This value identifies the last conversion done in the sequence.

41.8.14 Window Monitor Upper Threshold

Name:	WINUT
Offset:	0x10
Reset:	0x0000
Property:	PAV Write-Protection, Write-Synchronized

Bit	15	14	13	12	11	10	9	8
		WINUT[15:8]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				WINU	T[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:0 - WINUT[15:0] Window Upper Threshold

If the window monitor is enabled, these bits define the upper threshold value.

42.8.7 Status A

Name:	STATUSA
Offset:	0x07
Reset:	0x00
Property:	Read-Only

Bit	7	6	5	4	3	2	1	0
			WSTAT	E0[1:0]			STATEx	STATEx
Access			R	R			R	R
Reset			0	0			0	0

Bits 5:4 – WSTATE0[1:0] Window 0 Current State

These bits show the current state of the signal if the window 0 mode is enabled.

Value	Name	Description
0x0	ABOVE	Signal is above window
0x1	INSIDE	Signal is inside window
0x2	BELOW	Signal is below window
0x3		Reserved

Bits 1,0 – STATEx Comparator x Current State

This bit shows the current state of the output signal from COMPx. STATEx is valid only when STATUSB.READYx is one.