

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M23
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.63V
Data Converters	A/D 10x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsaml11e16a-af

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

31.4.	Signal Description	614
31.5.	Product Dependencies	615
31.6.	Functional Description	616
31.7.	Register Summary	620
31.8.	Register Description	626
32. POF	RT - I/O Pin Controller	638
32.1.	Overview	638
32.2.	Features	638
32.3.	Block Diagram	639
32.4.	Signal Description	639
32.5.	Product Dependencies	639
32.6.	Functional Description	641
32.7.	Register Summary	648
32.8.	Register Description	650
33. EVS	SYS – Event System	685
33.1.	Overview	685
33.2.	Features	685
33.3.	Block Diagram	686
33.4.	Product Dependencies	686
33.5.	Functional Description	688
33.6.	Register Summary	695
33.7.	Register Description	698
34. SEF	COM – Serial Communication Interface	724
34. SEF	COM – Serial Communication Interface	724
34. SEF 34.1. 34.2.	COM – Serial Communication Interface Overview Features	724 724 724
34. SEF 34.1. 34.2. 34.3.	COM – Serial Communication Interface Overview Features Block Diagram	724 724 724 725
34. SEF 34.1. 34.2. 34.3. 34.4.	COM – Serial Communication Interface Overview Features Block Diagram Signal Description	724 724 724 725 725
34. SEF 34.1. 34.2. 34.3. 34.4. 34.5.	COM – Serial Communication Interface Overview Features Block Diagram Signal Description Product Dependencies.	724 724 724 725 725 725
34. SEF 34.1. 34.2. 34.3. 34.4. 34.5. 34.6.	COM – Serial Communication Interface Overview Features Block Diagram Signal Description Product Dependencies Functional Description	724 724 725 725 725 725 727
34. SEF 34.1. 34.2. 34.3. 34.4. 34.5. 34.6. 35. SEF	COM – Serial Communication Interface Overview Features Block Diagram Signal Description Product Dependencies Functional Description RCOM USART - SERCOM Synchronous and Asynchronous Receiver and	724 724 725 725 725 725
34. SEF 34.1. 34.2. 34.3. 34.4. 34.5. 34.6. 35. SEF Trar	COM – Serial Communication Interface Overview Features Block Diagram Signal Description Product Dependencies Functional Description RCOM USART - SERCOM Synchronous and Asynchronous Receiver and Ismitter	724 724 725 725 725 727
34. SEF 34.1. 34.2. 34.3. 34.4. 34.5. 34.6. 35. SEF Trar 35.1.	COM – Serial Communication Interface Overview Features Block Diagram Signal Description Product Dependencies Functional Description COM USART - SERCOM Synchronous and Asynchronous Receiver and asmitter Overview	724 724 725 725 725 727 733 733
34. SEF 34.1. 34.2. 34.3. 34.4. 34.5. 34.6. 35. SEF Trar 35.1. 35.2.	COM – Serial Communication Interface Overview Features Block Diagram Signal Description Product Dependencies Functional Description RCOM USART - SERCOM Synchronous and Asynchronous Receiver and Ismitter Overview USART Features.	724 724 725 725 725 727 733 733
 34. SEF 34.1. 34.2. 34.3. 34.4. 34.5. 34.6. 35. SEF Trar 35.1. 35.2. 35.3. 	COM – Serial Communication Interface Overview Features Block Diagram Signal Description Product Dependencies Functional Description RCOM USART - SERCOM Synchronous and Asynchronous Receiver and Ismitter Overview USART Features Block Diagram	724 724 725 725 725 727 733 733 733 734
34. SEF 34.1. 34.2. 34.3. 34.4. 34.5. 34.6. 35. SEF Trar 35.1. 35.2. 35.3. 35.4.	COM – Serial Communication Interface	724 724 725 725 725 725 727 733 733 733 734 734
34. SEF 34.1. 34.2. 34.3. 34.4. 34.5. 34.6. 35. SEF Trar 35.1. 35.2. 35.3. 35.4. 35.5.	COM – Serial Communication Interface	724 724 725 725 725 725 727 733 733 733 734 734 734
 34. SEF 34.1. 34.2. 34.3. 34.4. 34.5. 34.6. 35. SEF Trar 35.1. 35.2. 35.3. 35.4. 35.5. 35.6. 	RCOM – Serial Communication Interface	724 724 725 725 725 725 727 733 733 733 734 734 734 734 736
 34. SEF 34.1. 34.2. 34.3. 34.4. 34.5. 34.6. 35. SEF Trar 35.1. 35.2. 35.3. 35.4. 35.5. 35.6. 35.7. 	RCOM – Serial Communication Interface	724 724 725 725 725 725 727 733 733 733 734 734 734 736 751
 34. SEF 34.1. 34.2. 34.3. 34.4. 34.5. 34.6. 35. SEF Trar 35.1. 35.2. 35.3. 35.4. 35.5. 35.6. 35.7. 35.8. 	RCOM – Serial Communication Interface. Overview. Features. Block Diagram. Signal Description. Product Dependencies. Functional Description. RCOM USART - SERCOM Synchronous and Asynchronous Receiver and asmitter. Overview. USART Features. Block Diagram. Signal Description. Product Dependencies. Functional Description. Product Dependencies. Flock Diagram. Signal Description. Product Dependencies. Functional Description. Product Dependencies. Functional Description. Register Summary. Register Description.	724 724 725 725 725 725 727 733 733 733 734 734 736 751 752
 34. SEF 34.1. 34.2. 34.3. 34.4. 34.5. 34.6. 35. SEF Trar 35.1. 35.2. 35.3. 35.4. 35.5. 35.6. 35.7. 35.8. 36. SEF 	COM – Serial Communication Interface. Overview. Features. Block Diagram. Signal Description. Product Dependencies. Functional Description. RCOM USART - SERCOM Synchronous and Asynchronous Receiver and Ismitter. Overview. USART Features. Block Diagram. Signal Description. Product Dependencies. Functional Description. Register Summary. Register Description. Register Description. Register Description. Register Description.	724 724 725 725 725 725 727 733 733 733 734 734 734 734 751 752 778
 34. SEF 34.1. 34.2. 34.3. 34.4. 34.5. 34.6. 35. SEF Trar 35.1. 35.2. 35.3. 35.4. 35.5. 35.6. 35.7. 35.8. 36. SEF 36.1. 	RCOM – Serial Communication Interface. Overview. Features. Block Diagram. Signal Description. Product Dependencies. Functional Description. RCOM USART - SERCOM Synchronous and Asynchronous Receiver and asmitter. Overview. USART Features. Block Diagram. Signal Description. Product Dependencies. Functional Description. Overview. USART Features. Block Diagram. Signal Description. Product Dependencies. Functional Description. Product Dependencies. Functional Description. Register Summary. Register Description. Register Description. RCOM SPI – SERCOM Serial Peripheral Interface. Overview.	724 724 725 725 725 725 725 727 733 733 733 734 734 734 751 752 778 778
 34. SEF 34.1. 34.2. 34.3. 34.4. 34.5. 34.6. 35. SEF Trar 35.1. 35.2. 35.3. 35.4. 35.5. 35.6. 35.7. 35.8. 36. SEF 36.1. 36.2. 	COM – Serial Communication Interface. Overview. Features. Block Diagram. Signal Description. Product Dependencies. Functional Description. RCOM USART - SERCOM Synchronous and Asynchronous Receiver and asmitter. Overview. USART Features. Block Diagram. Signal Description. Product Dependencies. Functional Description. Overview. USART Features. Block Diagram. Signal Description. Product Dependencies. Functional Description. Product Dependencies. Functional Description. Register Summary. Register Summary. Register Description. RCOM SPI – SERCOM Serial Peripheral Interface. Overview. Features.	724 724 725 725 725 725 727 733 733 733 734 734 734 736 751 752 778 778 778
 34. SEF 34.1. 34.2. 34.3. 34.4. 34.5. 34.6. 35. SEF Trar 35.1. 35.2. 35.3. 35.4. 35.5. 35.6. 35.7. 35.8. 36. SEF 36.1. 36.2. 36.3. 	COM – Serial Communication Interface. Overview. Features. Block Diagram. Signal Description. Product Dependencies. Functional Description. RCOM USART - SERCOM Synchronous and Asynchronous Receiver and asmitter. Overview. USART Features. Block Diagram. Signal Description. Product Dependencies. Functional Description. Overview. USART Features. Block Diagram. Signal Description. Product Dependencies. Functional Description. Register Summary. Register Summary. Register Description. RCOM SPI – SERCOM Serial Peripheral Interface. Overview. Features. Block Diagram.	724 724 725 725 725 725 727 733 733 733 734 734 734 751 751 752 778 778 778 779

14.4.5.2.1 CMD_EXIT

Figure 14-8. CMD_EXIT to APP flow diagram

14.4.5.5.1 CMD_CEx (SAM L11 only) Figure 14-11. CMD_CEx Flow diagram

14.4.5.6 NVM Memory Regions Integrity Checks (CMD_CRC)

The Boot ROM provides a way to check the integrity of the embedded non-volatile memories which may be of interest in case of a failure analysis.

This requires the user to place tables describing the memory area to be checked with their expected CRC values.

Note: During this integrity check process, the debugger sends the CRC table address to the device.

PAC - Peripheral Access Controller

- Bit 8 WDT Peripheral WDT Non-Secure
- Bit 7 GCLK Peripheral GCLK Non-Secure
- Bit 6 SUPC Peripheral SUPC Non-Secure
- Bit 5 OSC32KCTRL Peripheral OSC32KCTRL Non-Secure
- Bit 4 OSCCTRL Peripheral OSCCTRL Non-Secure
- Bit 3 RSTC Peripheral RSTC Non-Secure
- Bit 2 MCLK Peripheral MCLK Non-Secure
- Bit 1 PM Peripheral PM Non-Secure

Bit 0 – PAC Peripheral PAC Non-Secure The PAC Peripheral is always secured.

16.12.14 CoreSight ROM Table Entry 1

Name:	ENTRY1
Offset:	0x1004
Reset:	0xXXXXX00X
Property:	PAC Write-Protection

Bit	31	30	29	28	27	26	25	24
				ADDOF	F[19:12]			
Access	R	R	R	R	R	R	R	R
Reset	х	x	x	х	x	x	х	x
Bit	23	22	21	20	19	18	17	16
				ADDO	FF[11:4]			
Access	R	R	R	R	R	R	R	R
Reset	х	x	x	х	x	x	х	x
								-
Bit	15	14	13	12	11	10	9	8
		ADDC	FF[3:0]					
Access	R	R	R	R				
Reset	х	x	x	х				
Bit	7	6	5	4	3	2	1	0
							FMT	EPRES
Access							R	R
Reset							1	x

Bits 31:12 - ADDOFF[19:0] Address Offset

The base address of the component, relative to the base address of this ROM table.

Bit 1 – FMT Format

Always read as '1', indicating a 32-bit ROM table.

Bit 0 – EPRES Entry Present

This bit indicates whether an entry is present at this location in the ROM table.

This bit is set at power-up if the device is not protected indicating that the entry is not present.

This bit is cleared at power-up if the device is not protected indicating that the entry is present.

GCLK - Generic Clock Controller

Value	Name	Description
0x00	XOSC	XOSC oscillator output
0x01	GCLK_IN	Generator input pad (GCLK_IO)
0x02	GCLK_GEN1	Generic clock generator 1 output
0x03	OSCULP32K	OSCULP32K oscillator output
0x04	XOSC32K	XOSC32K oscillator output
0x05	OSC16M	OSC16M oscillator output
0x06	DFLLULP	DFLLULP ultra low power output
0x07	FDPLL96M	FDPLL96M output
0x08-0x1F	Reserved	Reserved for future use

Table 18-4. Generator Clock Source Selection

A Power Reset will reset all GENCTRLn registers. the Reset values of the GENCTRLn registers are shown in table below.

Table 18-5. GENCTRLn Reset Value after a Power Reset

GCLK Generator	Reset Value after a Power Reset
0	0x0000105
others	0x0000000

A User Reset will reset the associated GENCTRL register unless the Generator is the source of a locked Peripheral Channel (PCHCTRLm.WRTLOCK=1). The reset values of the GENCTRL register are as shown in the table below.

Table 18-6. GENCTRLn Reset Value after a User Reset

GCLK Generator	Reset Value after a User Reset
0	0x0000105
others	No change if the generator is used by a Peripheral Channel m with PCHCTRLm.WRTLOCK=1 else 0x00000000

Related Links 18.8.4 PCHCTRLm

© 2018 Microchip Technology Inc.

21.5.1 I/O Lines

Not applicable.

21.5.2 Power Management

The Reset Controller module is always on.

21.5.3 Clocks

The RSTC bus clock (CLK_RSTC_APB) can be enabled and disabled in the Main Clock Controller.

Related Links

19. MCLK – Main Clock 19.6.2.6 Peripheral Clock Masking

21.5.4 DMA

Not applicable.

21.5.5 Interrupts

Not applicable.

21.5.6 Events

Not applicable.

21.5.7 Debug Operation

When the CPU is halted in debug mode, the RSTC continues normal operation.

21.5.8 Register Access Protection

All registers with write-access can be optionally write-protected by the Peripheral Access Controller (PAC).

Note: Optional write-protection is indicated by the "PAC Write-Protection" property in the register description.

Write-protection does not apply for accesses through an external debugger.

21.5.9 SAM L11 TrustZone Specific Register Access Protection

On **SAM L11** devices, this peripheral has different access permissions depending on PAC Security Attribution (Secure or Non-Secure):

- If the peripheral is configured as Non-Secure in the PAC:
 - Secure access and Non-Secure access are granted
- If the peripheral is configured as Secure in the PAC:
 - Secure access is granted
 - Non-Secure access is discarded (Write is ignored, read 0x0) and a PAC error is triggered

Refer to Peripherals Security Attribution for more information.

21.5.10 Analog Connections

Not applicable.

23.5.10 Analog Connections

The 0.4-32MHz crystal must be connected between the XIN and XOUT pins, along with any required load capacitors.

23.6 Functional Description

23.6.1 Principle of Operation

XOSC, OSC16M, and FDPLL96M. are configured via OSCCTRL control registers. Through this interface, the oscillators are enabled, disabled, or have their calibration values updated.

The Status register gathers different status signals coming from the oscillators controlled by the OSCCTRL. The status signals can be used to generate system interrupts, and in some cases wake the system from Sleep mode, provided the corresponding interrupt is enabled.

23.6.2 External Multipurpose Crystal Oscillator (XOSC) Operation

The XOSC can operate in two different modes:

- External clock, with an external clock signal connected to the XIN pin
- Crystal oscillator, with an external 0.4-32MHz crystal

The XOSC can be used as a clock source for generic clock generators. This is configured by the Generic Clock Controller.

At reset, the XOSC is disabled, and the XIN/XOUT pins can be used as General Purpose I/O (GPIO) pins or by other peripherals in the system. When XOSC is enabled, the operating mode determines the GPIO usage. When in crystal oscillator mode, the XIN and XOUT pins are controlled by the OSCCTRL, and GPIO functions are overridden on both pins. When in external clock mode, only the XIN pin will be overridden and controlled by the OSCCTRL, while the XOUT pin can still be used as a GPIO pin.

The XOSC is enabled by writing a '1' to the Enable bit in the External Multipurpose Crystal Oscillator Control register (XOSCCTRL.ENABLE).

To enable XOSC as an external crystal oscillator, the XTAL Enable bit (XOSCCTRL.XTALEN) must be written to '1'. If XOSCCTRL.XTALEN is zero, the external clock input on XIN will be enabled.

When in crystal oscillator mode (XOSCCTRL.XTALEN=1), the External Multipurpose Crystal Oscillator Gain (XOSCCTRL.GAIN) must be set to match the external crystal oscillator frequency. If the External Multipurpose Crystal Oscillator Automatic Amplitude Gain Control (XOSCCTRL.AMPGC) is '1', the oscillator amplitude will be automatically adjusted, and in most cases result in a lower power consumption.

The XOSC will behave differently in different sleep modes, based on the settings of XOSCCTRL.RUNSTDBY, XOSCCTRL.ONDEMAND, and XOSCCTRL.ENABLE. If XOSCCTRL.ENABLE=0, the XOSC will be always stopped. For XOSCCTRL.ENABLE=1, this table is valid:

Table 23-'	1. XO	SC SIe	ep Beł	navior
------------	-------	--------	--------	--------

CPU Mode	XOSCCTRL.RUNST DBY	XOSCCTRL.ONDEM AND	Sleep Behavior
Active or Idle	-	0	Always run
Active or Idle	-	1	Run if requested by peripheral

23.8.18 DPLL Prescaler

Name:DPLLPRESCOffset:0x38Reset:0x00Property:PAC Write-Protection, Write-Synchronized

Bit	7	6	5	4	3	2	1	0
							PRES	SC[1:0]
Access							R/W	R/W
Reset							0	0

Bits 1:0 – PRESC[1:0] Output Clock Prescaler These bits define the output clock prescaler setting.

Value	Name	Description
0x0	DIV1	DPLL output is divided by 1
0x1	DIV2	DPLL output is divided by 2
0x2	DIV4	DPLL output is divided by 4
0x3	Reserved	

25.8 Register Description

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16-, and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Some registers are optionally write-protected by the Peripheral Access Controller (PAC). PAC Writeprotection is denoted by the "PAC Write-Protection" property in each individual register description. Refer to 25.5.8 Register Access Protection for details.

Some registers require synchronization when read and/or written. Synchronization is denoted by the "Write-Synchronized" or the "Read-Synchronized" property in each individual register description. Refer to 25.6.6 Synchronization for details.

On **SAM L11** devices, this peripheral has different access permissions depending on PAC Security Attribution (Secure or Non-Secure):

- If the peripheral is configured as Non-Secure in the PAC:
 - Secure access and Non-Secure access are granted
- If the peripheral is configured as Secure in the PAC:
 - Secure access is granted
 - Non-Secure access is discarded (Write is ignored, read 0x0) and a PAC error is triggered

Refer to Peripherals Security Attribution for more information.

SAM L10/L11 Family

EIC – External Interrupt Controller

Value	Name	Description
0x3	BOTH	Both-edge detection
0x4	HIGH	High-level detection
0x5	LOW	Low-level detection
0x6 -	-	Reserved
0x7		

SAM L10/L11 Family PORT - I/O Pin Controller

Writing a '1' to a bit will clear the corresponding bit in the DIR register, which configures the I/O pin as an input.

Value	Description
0	The corresponding I/O pin in the PORT group will keep its configuration.
1	The corresponding I/O pin in the PORT group is configured as input.

32.8.5 Data Output Value

Name:	OUT
Offset:	0x10
Reset:	0x0000000
Property:	PAC Write-Protection, Mix-Secure

Important: For **SAM L11 Non-Secure** accesses, read and write accesses (RW*) are allowed only if the security attribution for the corresponding I/O pin is set as Non-Secured in the NONSEC register.

This register sets the data output drive value for the individual I/O pins in the PORT.

This register can be manipulated without doing a read-modify-write operation by using the Data Output Value Clear (OUTCLR), Data Output Value Set (OUTSET), and Data Output Value Toggle (OUTTGL) registers.

Tip: The I/O pins are assembled in pin groups ("PORT groups") with up to 32 pins. Group 0 consists of the PA pins, group 1 is for the PB pins, etc. Each pin group has its own PORT registers, with a 0x80 address spacing. For example, the register address offset for the Data Direction (DIR) register for group 0 (PA00 to PA31) is 0x00, and the register address offset for the DIR register for group 1 (PB00 to PB31) is 0x80.

33.5.3 Interrupts

The EVSYS has the following interrupt sources for each channel:

- Overrun Channel n interrupt (OVR)
- Event Detected Channel n interrupt (EVD)

These interrupts events are asynchronous wake-up sources.

Each interrupt source has an interrupt flag associated with it. The interrupt flag in the corresponding Channel n Interrupt Flag Status and Clear (CHINTFLAG) register is set when the interrupt condition occurs.

Note: Interrupts must be globally enabled to allow the generation of interrupt requests.

Each interrupt can be individually enabled by writing a '1' to the corresponding bit in the Channel n Interrupt Enable Set (CHINTENSET) register, and disabled by writing a '1' to the corresponding bit in the Channel n Interrupt Enable Clear (CHINTENCLR) register. An interrupt request is generated when the interrupt flag is set and the corresponding interrupt is enabled. The interrupt request remains active until the interrupt flag is cleared, the interrupt is disabled or the Event System is reset. All interrupt requests are ORed together on system level to generate one combined interrupt request to the NVIC.

The user must read the Channel Interrupt Status (INTSTATUS) register to identify the channels with pending interrupts, and must read the Channel n Interrupt Flag Status and Clear (CHINTFLAG) register to determine which interrupt condition is present for the corresponding channel. It is also possible to read the Interrupt Pending register (INTPEND), which provides the highest priority channel with pending interrupt and the respective interrupt flags.

33.5.4 Sleep Mode Operation

The Event System can generate interrupts to wake up the device from IDLE or STANDBY sleep mode.

To be able to run in standby, the Run in Standby bit in the Channel register (CHANNELn.RUNSTDBY) must be set to '1'. When the Generic Clock On Demand bit in Channel register (CHANNELn.ONDEMAND) is set to '1' and the event generator is detected, the event channel will request its clock (GCLK_EVSYS_CHANNEL_n). The event latency for a resynchronized channel path will increase by two GCLK_EVSYS_CHANNEL_n clock (i.e., up to five GCLK_EVSYS_CHANNEL_n clock cycles).

A channel will behave differently in different sleep modes regarding to CHANNELn.RUNSTDBY and CHANNELn.ONDEMAND:

CHANNELn.PAT H	CHANNELn. ONDEMAND	CHANNELn. RUNSTDBY	Sleep Behavior
ASYNC	0	0	Only run in IDLE sleep modes if an event must be propagated. Disabled in STANDBY sleep mode.
SYNC/RESYNC	0	1	Run in both IDLE and STANDBY sleep modes.
SYNC/RESYNC	1	0	Only run in IDLE sleep modes if an event must be propagated. Disabled in STANDBY sleep mode. Two GCLK_EVSYS_n latency

Table 33-1. Event Channel Sleep Behavior

Bits 11:10 – EDGSEL[1:0] Edge Detection Selection

These bits set the type of edge detection to be used on the channel.

These bits must be written to zero when using the asynchronous path.

Value	Name	Description
0x0	NO_EVT_OUTPUT	No event output when using the resynchronized or synchronous path
0x1	RISING_EDGE	Event detection only on the rising edge of the signal from the event generator
0x2	FALLING_EDGE	Event detection only on the falling edge of the signal from the event generator
0x3	BOTH_EDGES	Event detection on rising and falling edges of the signal from the event generator

Bits 9:8 – PATH[1:0] Path Selection

These bits are used to choose which path will be used by the selected channel.

Note: The path choice can be limited by the channel source, see the table in 33.7.13 USERm.

Important: Only EVSYS channel 0 to 3 can be configured as synchronous or resynchronized.

Value	Name	Description
0x0	SYNCHRONOUS	Synchronous path
0x1	RESYNCHRONIZED	Resynchronized path
0x2	ASYNCHRONOUS	Asynchronous path
Other	-	Reserved

Bits 5:0 – EVGEN[5:0] Event Generator Selection

These bits are used to choose the event generator to connect to the selected channel.

Table 33-2. Event Generators

Value	Event Generator	Description
0x00	NONE	No event generator selected
0x01	OSCCTRL_XOSC_FAIL	XOSC fail detection
0x02	OSC32KCTRL_XOSC32K_FAIL	XOSC32K fail detection
0x03	SUPC_BOD33DET	SUPC BOD33 detection
0x04-0x0B	RTC_PER	RTC period
0x0C-0x0D	RTC_CMP	RTC comparison
0x0E	RTC_TAMPER	RTC tamper detection
0x0F	RTC_OVF	RTC overflow
0x10	RTC_PERD	RTC periodic interval daily
0x11-0x18	EIC_EXTINT	EIC external interrupt

When a data packet is received or sent, INTFLAG.DRDY will be set. After receiving data, the I²C slave will send an acknowledge according to CTRLB.ACKACT.

Case 1: Data received

INTFLAG.DRDY is set, and SCL is held low, pending for SW interaction.

Case 2: Data sent

When a byte transmission is successfully completed, the INTFLAG.DRDY interrupt flag is set. If NACK is received, indicated by STATUS.RXNACK=1, the I²C slave must expect a stop or a repeated start to be received. The I²C slave must release the data line to allow the I²C master to generate a stop or repeated start. Upon detecting a stop condition, the Stop Received bit in the Interrupt Flag register (INTFLAG.PREC) will be set and the I²C slave will return to IDLE state.

37.6.2.5.4 High-Speed Mode

When the I²C slave is configured in High-speed mode (*Hs*, CTRLA.SPEED=0x2) and CTRLA.SCLSM=1, switching between Full-speed and High-speed modes is automatic. When the slave recognizes a START followed by a master code transmission and a NACK, it automatically switches to High-speed mode and sets the High-speed status bit (STATUS.HS). The slave will then remain in High-speed mode until a STOP is received.

37.6.2.5.5 10-Bit Addressing

When 10-bit addressing is enabled (ADDR.TENBITEN=1), the two address bytes following a START will be checked against the 10-bit slave address recognition. The first byte of the address will always be acknowledged, and the second byte will raise the address interrupt flag, see 10-bit Addressing.

If the transaction is a write, then the 10-bit address will be followed by *N* data bytes.

If the operation is a read, the 10-bit address will be followed by a repeated START and reception of '11110 ADDR[9:8] 1', and the second address interrupt will be received with the DIR bit set. The slave matches on the second address as it it was addressed by the previous 10-bit address.

Figure 37-12. 10-bit Addressing

37.6.2.5.6 PMBus Group Command

When the PMBus Group Command bit in the CTRLB register is set (CTRLB.GCMD=1) and 7-bit addressing is used, INTFLAG.PREC will be set if the slave has been addressed since the last STOP condition. When CTRLB.GCMD=0, a STOP condition without address match will not be set INTFLAG.PREC.

The group command protocol is used to send commands to more than one device. The commands are sent in one continuous transmission with a single STOP condition at the end. When the STOP condition is detected by the slaves addressed during the group command, they all begin executing the command they received.

PMBus Group Command Example shows an example where this slave, bearing ADDRESS 1, is addressed after a repeated START condition. There can be multiple slaves addressed before and after this slave. Eventually, at the end of the group command, a single STOP is generated by the master. At this point a STOP interrupt is asserted.

© 2018 Microchip Technology Inc.

SAM L10/L11 Family SERCOM I2C – SERCOM Inter-Integrated Circ...

CMD[1:0]	DIR	Action		
0x0	Х	(No action)		
0x1	Х	(Reserved)		
0x2	Used to complete a transaction in response to a data interrupt (DRDY)			
	0 (Master write)	Execute acknowledge action succeeded by waiting for any start (S/Sr) condition		
	1 (Master read)	Wait for any start (S/Sr) condition		
0x3	Used in response to an address interrupt (AMATCH)			
	0 (Master write)	Execute acknowledge action succeeded by reception of next byte		
	1 (Master read)	Execute acknowledge action succeeded by slave data interrupt		
	Used in response to a data interrupt (DRDY)			
	0 (Master write)	Execute acknowledge action succeeded by reception of next byte		
	1 (Master read)	Execute a byte read operation followed by ACK/NACK reception		

Table 37-3. Command Description

Bits 15:14 - AMODE[1:0] Address Mode

These bits set the addressing mode.

These bits are not write-synchronized.

Value	Name	Description
0x0	MASK	The slave responds to the address written in ADDR.ADDR masked by the value
		IN ADDR.ADDRIMASK.
		See SERCOM – Serial Communication Interface for additional information.
0x1	2_ADDRS	The slave responds to the two unique addresses in ADDR.ADDR and
		ADDR.ADDRIVIASK.
0x2	RANGE	The slave responds to the range of addresses between and including
		ADDR.ADDR and ADDR.ADDRMASK. ADDR.ADDR is the upper limit.
0x3	-	Reserved.

Bit 10 – AACKEN Automatic Acknowledge Enable

This bit enables the address to be automatically acknowledged if there is an address match.

This bit is not write-synchronized.

Value	Description
0	Automatic acknowledge is disabled.
1	Automatic acknowledge is enabled.

Bit 9 – GCMD PMBus Group Command

This bit enables PMBus group command support. When enabled, the Stop Recived interrupt flag (INTFLAG.PREC) will be set when a STOP condition is detected if the slave has been addressed since the last STOP condition on the bus.

This bit is not write-synchronized.

38. TC – Timer/Counter

38.1 Overview

There are up to three TC peripheral instances.

Each TC consists of a counter, a prescaler, compare/capture channels and control logic. The counter can be set to count events, or clock pulses. The counter, together with the compare/capture channels, can be configured to timestamp input events or IO pin edges, allowing for capturing of frequency and/or pulse width.

A TC can also perform waveform generation, such as frequency generation and pulse-width modulation.

38.2 Features

- Selectable configuration
 - 8-, 16- or 32-bit TC operation, with compare/capture channels
- 2 compare/capture channels (CC) with:
 - Double buffered timer period setting (in 8-bit mode only)
 - Double buffered compare channel
- Waveform generation
 - Frequency generation
 - Single-slope pulse-width modulation
- Input capture
 - Event / IO pin edge capture
 - Frequency capture
 - Pulse-width capture
 - Time-stamp capture
- One input event
- Interrupts/output events on:
 - Counter overflow/underflow
 - Compare match or capture
- Internal prescaler
- DMA support

ADC – Analog-to-Digital Converter

Value	Name	Description
0x07	AIN7	ADC AIN7 pin
0x08	AIN8	ADC AIN8 pin
0x09	AIN9	ADC AIN9 pin
0x0A -	-	Reserved
0x17		
0x18	TEMP	Temperature Sensor
0x19	BANDGAP	INTREF Voltage Reference
0x1A	SCALEDVDDCORE	1/4 Scaled VDDCORE Supply
0x1B	SCALEDVDDANA	1/4 Scaled VDDANA Supply
0x1C	DAC	DAC Output
0x1D	SCALEDVDDIO	1/4 Scaled VDDIO Supply
0x1E	OPAMP01	OPAMP0 or OPAMP1 output
0x1F	OPAMP2	OPAMP2 output

Figure 42-5. VDD Scaler

42.6.6 Input Hysteresis

Application software can selectively enable/disable hysteresis for the comparison. Applying hysteresis will help prevent constant toggling of the output, which can be caused by noise when the input signals are close to each other.

Hysteresis is enabled for each comparator individually by the Hysteresis Enable bit in the Comparator x Control register (COMPCTRLx.HYSTEN). Furthermore, when enabled, the level of hysteresis is programmable through the Hysteresis Level bits also in the Comparator x Control register (COMPCTRLx.HYST). Hysteresis is available only in continuous mode (COMPCTRLx.SINGLE=0).

42.6.7 Propagation Delay vs. Power Consumption

It is possible to trade off comparison speed for power efficiency to get the shortest possible propagation delay or the lowest power consumption. The speed setting is configured for each comparator individually by the Speed bit group in the Comparator x Control register (COMPCTRLx.SPEED). The Speed bits select the amount of bias current provided to the comparator, and as such will also affect the start-up time.

42.6.8 Filtering

The output of the comparators can be filtered digitally to reduce noise. The filtering is determined by the Filter Length bits in the Comparator Control x register (COMPCTRLx.FLEN), and is independent for each comparator. Filtering is selectable from none, 3-bit majority (N=3) or 5-bit majority (N=5) functions. Any change in the comparator output is considered valid only if N/2+1 out of the last N samples agree. The filter sampling rate is the GCLK_AC frequency.

Note that filtering creates an additional delay of N-1 sampling cycles from when a comparison is started until the comparator output is validated. For continuous mode, the first valid output will occur when the required number of filter samples is taken. Subsequent outputs will be generated every cycle based on the current sample plus the previous N-1 samples, as shown in Figure 42-6. For single-shot mode, the comparison completes after the Nth filter sample, as shown in Figure 42-7.

© 2018 Microchip Technology Inc.