

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M23
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.63V
Data Converters	A/D 10x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsaml11e16a-au

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Processor and Architecture

Features	Cortex-M23 Configurable Options	SAM L10 Implementation	SAM L11 Implementation
Cross Trigger Interface (CTI)	Present or absent	Absent	Absent
Micro Trace Buffer (MTB)	Present or absent	Absent	Absent
Embedded Trace Macrocell (ETM)	Present or absent	Absent	Absent
JTAGnSW debug protocol	Selects between JTAG or Serial- Wire interfaces for the DAP	Serial-Wire	Serial-Wire
Multi-drop for Serial Wire	Present or absent	Absent	Absent

Note:

1. Refer to Table 11-3 for more information.

For more details, refer to the ARM Cortex-M23 Processor Technical Reference Manual (http://www.arm.com).

11.1.2 Cortex-M23 Core Peripherals

The processor has the following core peripheral:

- System Timer (SysTick)
 - The System Timer is a 24-bit timer clocked by the core frequency.

Important: On SAM L11 devices, there are two System timers, one for Secure state and one for Non-secure state.

- Nested Vectored Interrupt Controller (NVIC)
 - The NVIC is an embedded interrupt controller that supports low latency interrupt processing.

Important: On SAM L11 devices, there are two Vector tables: the Secure Vector table and the Non-Secure Vector table.

- System Control Block (SCB)
 - The System Control Block (SCB) provides system implementation information and system control that includes configuration, control, and reporting of system exceptions
- Memory Protection Unit (MPU)
 - The MPU improves system reliability by defining the memory attributes for different memory regions.

7

Important: On SAM L11 devices, there are two MPUs: one for the Secure state and one for the Non-secure state. Each MPU can define memory access permissions and attributes independently.

- Security Attribution Unit (SAU)
 - The SAU improves system security by defining security attributes for different regions.

14.4.5.9 Boot Interactive Mode Commands Table 14-9. Boot Interactive Mode Commands

Command Name	Description	Command prefix	Command
CMD_INIT	Entering Interactive Mode	0x444247	55
CMD_EXIT	Exit Interactive Mode	0x444247	AA
CMD_RESET	System Reset Request	0x444247	52
CMD_CE0	ChipErase_NS for SAM L11	0x444247	E0
CMD_CE1	ChipErase_S for SAM L11	0x444247	E1
CMD_CE2	ChipErase_ALL for SAM L11	0x444247	E2
CMD_CHIPERASE	ChipErase for SAM L10	0x444247	E3
CMD_CRC	NVM Memory Regions Integrity Checks	0x444247	C0
CMD_DCEK	Random Session Key Generation for SAM L11	0x444247	44
CMD_RAUX	NVM Rows Integrity Checks	0x444247	4C

14.4.5.10 Boot Interactive Mode Status

Table 14-10. Boot Interactive Mode Status

Status Name	Description	Status prefix	Status coding
SIG_NO	No Error	0xEC0000	00
SIG_SAN_FFF	Fresh from factory error	0xEC0000	10
SIG_SAN_UROW	UROW checksum error	0xEC0000	11
SIG_SAN_SECEN	SECEN parameter error	0xEC0000	12
SIG_SAN_BOCOR	BOCOR checksum error	0xEC0000	13
SIG_SAN_BOOTPROT	BOOTPROT parameter error	0xEC0000	14
SIG_SAN_NOSECREG	No secure register parameter error	0xEC0000	15
SIG_COMM	Debugger start communication command	0xEC0000	20
SIG_CMD_SUCCESS	Debugger command success	0xEC0000	21
SIG_CMD_FAIL	Debugger command fail	0xEC0000	22
SIG_CMD_BADKEY	Debugger bad key	0xEC0000	23
SIG_CMD_VALID	Valid command	0xEC0000	24
SIG_CMD_INVALID	Invalid command	0xEC0000	25
SIG_ARG_VALID	Valid argument	0xEC0000	26
SIG_ARG_INVALID	Invalid argument	0xEC0000	27
SIG_CE_CVM	Chip erase error: CVM	0xEC0000	30
SIG_CE_ARRAY_ERASEFAIL	Chip erase error: array erase fail	0xEC0000	31
SIG_CE_ARRAY_NVME	Chip erase error: array NVME	0xEC0000	32
SIG_CE_DATA_ERASEFAIL	Chip erase error: data erase fail	0xEC0000	33
SIG_CE_DATA_NVME	Chip erase error: data NVME	0xEC0000	34
SIG_CE_BCUR	Chip erase error: BOCOR, UROW	0xEC0000	35
SIG_CE_BC	Chip erase error: BC check	0xEC0000	36
SIG_BOOT_OPT	BOOTOPT parameter error	0xEC0000	40

15.7.10 Peripheral Write Protection Status B

Name:	STATUSB
Offset:	0x38
Reset:	0x000000
Property:	Mix-Secure

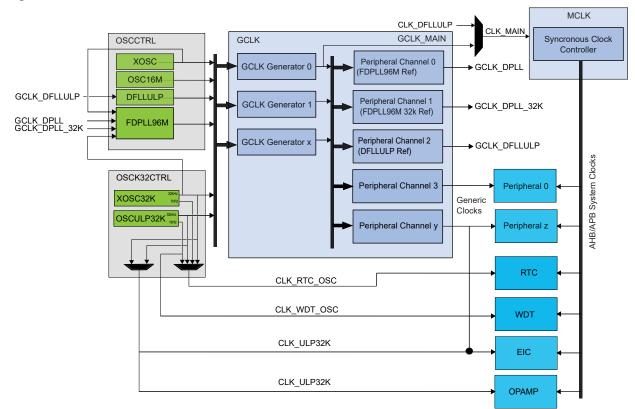
Reading the STATUSB register returns the peripheral write protection status:

Value	Description
0	Peripheral is not write protected.
1	Peripheral is write protected.

Important: For **SAM L11 Non-Secure** accesses, read accesses (R*) are allowed only if the peripheral security attribution for the corresponding peripheral is set as Non-Secured in the NONSECx register.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
				Reserved	DMAC	NVMCTRL	DSU	IDAU
Access				R/R*/R	R/R*/R	R/R*/R	R/R*/R	R/R*/R
Reset				0	0	0	0	0

Bit 4 - Reserved Reserved


- Bit 3 DMAC Peripheral DMAC Write Protection Status
- Bit 2 NVMCTRL Peripheral NVMCTRL Write Protection Status
- Bit 1 DSU Peripheral DSU Write Protection Status
- Bit 0 IDAU Peripheral IDAU Write Protection Status

17. Clock System

This chapter summarizes the clock distribution and terminology in the SAM L10/L11 device. This document will not explain every detail of its configuration, hence for in-depth details, refer to the respective peripherals descriptions and the *Generic Clock* documentation.

17.1 Clock Distribution

Figure 17-1. Clock Distribution

The SAM L10/L11 clock system consists of these features:

- Clock sources, that is oscillators controlled by OSCCTRL and OSC32KCTRL
 - A clock source provides a time base that is used by other components, such as Generic Clock Generators. Example clock sources are the internal 16MHz oscillator (OSC16M), external crystal oscillator (XOSC) and the Fractional Digital Phase Locked Loop (FDPLL96M).
- *Generic Clock Controller (GCLK),* which generates, controls and distributes the asynchronous clock consisting of:
 - Generic Clock Generators: These are programmable prescalers that can use any of the system clock sources as a time base. The Generic Clock Generator 0 generates the clock signal GCLK_MAIN, which is used by the Power Manager and the Main Clock (MCLK) module, which in turn generates synchronous clocks.
 - Generic Clocks: These are clock signals generated by Generic Clock Generators and output by the Peripheral Channels, and serve as clocks for the peripherals of the system. Multiple instances of a peripheral will typically have a separate Generic Clock for each instance.

Related Links

19.6.2.6 Peripheral Clock Masking24. OSC32KCTRL – 32KHz Oscillators Controller

18.5.4 DMA

Not applicable.

18.5.5 Interrupts

Not applicable.

18.5.6 Events

Not applicable.

18.5.7 Debug Operation

When the CPU is halted in debug mode the GCLK continues normal operation. If the GCLK is configured in a way that requires it to be periodically serviced by the CPU through interrupts or similar, improper operation or data loss may result during debugging.

18.5.8 Register Access Protection

All registers with write-access can be optionally write-protected by the Peripheral Access Controller (PAC).

Note: Optional write-protection is indicated by the "PAC Write-Protection" property in the register description.

Write-protection does not apply for accesses through an external debugger.

Related Links

15. PAC - Peripheral Access Controller

18.5.9 SAM L11 TrustZone Specific Register Access Protection

On **SAM L11** devices, this peripheral has different access permissions depending on PAC Security Attribution (Secure or Non-Secure):

- If the peripheral is configured as Non-Secure in the PAC:
 - Secure access and Non-Secure access are granted
- If the peripheral is configured as Secure in the PAC:
 - Secure access is granted
 - Non-Secure access is discarded (Write is ignored, read 0x0) and a PAC error is triggered

Refer to Peripherals Security Attribution for more information.

18.5.10 Analog Connections

Not applicable.

18.6 Functional Description

18.6.1 Principle of Operation

The GCLK module is comprised of five Generic Clock Generators (Generators) sourcing up to 64 Peripheral Channels and the Main Clock signal CLK_MAIN.

23.8.19 DPLL Synchronization Busy

Name:	DPLLSYNCBUSY
Offset:	0x3C
Reset:	0x00
Property:	_

Bit	7	6	5	4	3	2	1	0
					DPLLPRESC	DPLLRATIO	ENABLE	
Access					R	R	R	
Reset					0	0	0	

Bit 3 – DPLLPRESC DPLL Prescaler Synchronization Status

Value	Description
0	The DPLLRESC register has been synchronized.
1	The DPLLRESC register value has changed and its synchronization is in progress.

Bit 2 – DPLLRATIO DPLL Loop Divider Ratio Synchronization Status

V	alue	Description
0		The DPLLRATIO register has been synchronized.
1		The DPLLRATIO register value has changed and its synchronization is in progress.

Bit 1 – ENABLE DPLL Enable Synchronization Status

Value	Description
0	The DPLLCTRLA.ENABLE bit has been synchronized.
1	The DPLLCTRLA.ENABLE bit value has changed and its synchronization is in progress.

SAM L10/L11 Family OSC32KCTRL – 32KHz Oscillators Controller

24.8.6 32KHz External Crystal Oscillator (XOSC32K) Control

Name:	XOSC32K
Offset:	0x14
Reset:	0x0000080
Property:	PAC Write-Protection

Bit	15	14	13	12	11	10	9	8
				WRTLOCK			STARTUP[2:0]	
Access				R/W		R/W	R/W	R/W
Reset				0		0	0	0
Bit	7	6	5	4	3	2	1	0
	ONDEMAND	RUNSTDBY		EN1K	EN32K	XTALEN	ENABLE	
Access	R/W	R/W		R/W	R/W	R/W	R/W	
Reset	1	0		0	0	0	0	

Bit 12 – WRTLOCK Write Lock

This bit locks the XOSC32K register for future writes, effectively freezing the XOSC32K configuration.

Value	Description
0	The XOSC32K configuration is not locked.
1	The XOSC32K configuration is locked.

Bits 10:8 - STARTUP[2:0] Oscillator Start-Up Time

These bits select the start-up time for the oscillator.

The OSCULP32K oscillator is used to clock the start-up counter.

Table 24-2. Start-Up Time for 32KHz External Crystal Oscillator

STARTUP[2:0]	Number of OSCULP32K Clock Cycles	Number of XOSC32K Clock Cycles	Approximate Equivalent Time [s]
0x0	2048	3	0.06
0x1	4096	3	0.13
0x2	16384	3	0.5
0x3	32768	3	1
0x4	65536	3	2
0x5	131072	3	4
0x6	262144	3	8
0x7	-	-	Reserved

Note:

- 1. Actual Start-Up time is 1 OSCULP32K cycle + 3 XOSC32K cycles.
- 2. The given time assumes an XTAL frequency of 32.768kHz.

25.8.6 Voltage Regulator System (VREG) Control

Name:	VREG
Offset:	0x18
Reset:	0x0000002
Property:	PAC Write-Protection

Bit	31	30	29	28	27	26	25	24
				VSPE	ER[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
						VSVST	EP[3:0]	
Access		•			R/W	R/W	R/W	R/W
Reset					0	0	0	0
Bit	15	14	13	12	11	10	9	8
							VREFSEL	LPEFF
Access		•					R/W	R/W
Reset							0	0
Bit	7	6	5	4	3	2	1	0
		RUNSTDBY	STDBYPL0			SEL	ENABLE	
Access		R/W	R/W			R/W	R/W	
Reset		0	1			0	1	

Bits 31:24 – VSPER[7:0] Voltage Scaling Period

This bitfield sets the period between the voltage steps when the VDDCORE voltage is changing in µs.

If VSPER=0, the period between two voltage steps is 1µs.

Bits 19:16 – VSVSTEP[3:0] Voltage Scaling Voltage Step

This field sets the voltage step height when the VDDCORE voltage is changing to reach the target VDDCORE voltage.

The voltage step is equal to 2^{VSVSTEP*} min_step.

See the Electrical Characteristics chapters for the min_step voltage level.

Bit 9 – VREFSEL Voltage Regulator Voltage Reference Selection This bit provides support of using ULPVREF during active function mode.

Selects ULPVREF for the voltage regulator.

Value	Description
0	Selects VREF for the voltage regulator.

Bit 8 – LPEFF Low power Mode Efficiency

1

15. PAC - Peripheral Access Controller

27.5.9 SAM L11 TrustZone Specific Register Access Protection

On **SAM L11** devices, this peripheral has different access permissions depending on PAC Security Attribution (Secure or Non-Secure):

- If the peripheral is configured as Non-Secure in the PAC:
 - Secure access and Non-Secure access are granted
- If the peripheral is configured as Secure in the PAC:
 - Secure access is granted
 - Non-Secure access is discarded (Write is ignored, read 0x0) and a PAC error is triggered

Refer to *Peripherals Security Attribution* for more information.

27.5.10 Analog Connections

A 32.768kHz crystal can be connected to the XIN32 and XOUT32 pins, along with any required load capacitors. See the Electrical Characteristics Chapters for details on recommended crystal characteristics and load capacitors.

27.6 Functional Description

27.6.1 Principle of Operation

The RTC keeps track of time in the system and enables periodic events, as well as interrupts and events at a specified time. The RTC consists of a 10-bit prescaler that feeds a 32-bit counter. The actual format of the 32-bit counter depends on the RTC operating mode.

The RTC can function in one of these modes:

- Mode 0 COUNT32: RTC serves as 32-bit counter
- Mode 1 COUNT16: RTC serves as 16-bit counter
- Mode 2 CLOCK: RTC serves as clock/calendar with alarm functionality

27.6.2 Basic Operation

27.6.2.1 Initialization

The following bits are enable-protected, meaning that they can only be written when the RTC is disabled (CTRLA.ENABLE=0):

- Operating Mode bits in the Control A register (CTRLA.MODE)
- Prescaler bits in the Control A register (CTRLA.PRESCALER)
- Clear on Match bit in the Control A register (CTRLA.MATCHCLR)
- Clock Representation bit in the Control A register (CTRLA.CLKREP)

The following registers are enable-protected:

- Control B register (CTRLB)
- Event Control register (EVCTRL)
- Tamper Control register (TAMPCTRL)
- Tamper Control B register (TAMPCTRLB)

Enable-protected bits and registers can be changed only when the RTC is disabled (CTRLA.ENABLE=0). If the RTC is enabled (CTRLA.ENABLE=1), these operations are necessary: first write

30.7 Register Summary

Important:

For SAM L11, the NVMCTRL register map is automatically duplicated in a Secure and Non-Secure alias:

- The Non-Secure alias is at the peripheral base address
- The Secure alias is located at the peripheral base address + 0x1000

Refer to *Mix-Secure Peripherals* for more information on register access rights

Offset	Name	Bit Pos.								
		7:0					CMD[6:0]			
0x00	CTRLA	15:8				CMD	EX[7:0]			
0x02										
	Reserved									
0x03										
		7:0					RW	S[3:0]	1	
		15:8					FWUP		SLEEPF	PRM[1:0]
0x04	CTRLB	23:16						CACHEDIS	READM	ODE[1:0]
		31:24								
0x08	CTRLC	7:0								MANW
0x09	Reserved									
0x0A	EVCTRL	7:0							AUTOWINV	AUTOWEI
0x0B	Reserved									
0x0C	INTENCLR	7:0			NSCHK	KEYE	NVME	LOCKE	PROGE	DONE
0x0D										
	Reserved									
0x0F										
0x10	INTENSET	7:0			NSCHK	KEYE	NVME	LOCKE	PROGE	DONE
0x11										
	Reserved									
0x13										
0x14	INTFLAG	7:0			NSCHK	KEYE	NVME	LOCKE	PROGE	DONE
0x15										
	Reserved									
0x17										
0x18	STATUS	7:0				DALFU	JSE[1:0]	READY	LOAD	PRM
0210	31A103	15:8								
0x1A										
	Reserved									
0x1B										
		7:0				AOFFS	SET[7:0]			
0x1C	ADDR	15:8				AOFFS	ET[15:8]			
UXIC	ADDK	23:16	ARRA	Y[1:0]						
		31:24								
0x20	SULCK	7:0						DS	AS	BS

EVSYS – Event System

Value	Event Generator	Description
0x19-0x1C	DMAC_CH	DMAC channel
0x1D	TC0_OVF	TC0 overflow
0x1E-0x1F	TC0_MCX	TC0 match/compare
0x20	TC1_OVF	TC1 overflow
0x21-0x22	TC1_MCX	TC1 match/compare
0x23	TC2_OVF	TC2 overflow
0x24-0x25	TC2_MCX	TC2 match/compare
0x26	ADC_RESRDY	ADC resolution ready
0x27	ADC_WINMON	ADC window monitor
0x28-0x29	AC_COMP	AC comparator
0x2A	AC_WIN	AC window
0x2B	DAC_EMPTY	DAC empty
0x2C	PTC_EOC	PTC end of conversion
0x2D	PTC_WCOMP	PTC window comparator
0x2E	TRNG_READY	Data ready
0x2F-0x30	CCL_LUTOUT	CCL output
0x31	PAC_ERR	PAC access error

33.7.17 Channel Security Attribution

Name:	NONSECCHAN
Offset:	0x1D8
Reset:	0x0000000
Property:	PAC Write-Protection, Write-Secure

This register allows the user to configure one or more channels as secured or non-secured.

	>	Important:	portant: This register is only available for SAM L11 and has no effect for SAM L10.							
Bit	31	30	29	28	27	26	25	24		
[
Access Reset				1		1				
Bit	23	22	21	20	19	18	17	16		
[
Access Reset										
Bit	15	14	13	12	11	10	9	8		
Access										
Reset										
Bit	7	6	5	4	3	2	1	0		
					ELn[7:0]					
Access	RW/R/RW	RW/R/RW	RW/R/RW	RW/R/RW	RW/R/RW	RW/R/RW	RW/R/RW	RW/R/RW		
Reset	0	0	0	0	0	0	0	0		

Bits 7:0 – CHANNELn[7:0] Channel n Security Attribution [n=7..0]The bit n of CHANNEL enables the non-secure mode of CHANNELn. The registers whose CHANNEL bit or bitfield n is set in non-secure mode by NONSECCHAN.CHANNELn are CHANNELn, CHINTENCLRn, CHINTENSETn, CHINTFLAGn and CHSTATUSx registers.

These bits set the security attribution for the individual channels.

Value	Description
0	The corresponding channel is secured. When the module is PAC secured, the configuration and status bits for this channel are only available through the secure alias. Attempts to change the channel configuration through the non-secure alias will be silently ignored and reads will return 0.
1	The corresponding channel is non-secured. The configuration and status bits for this channel are available through the non-secure alias.

SERCOM USART - SERCOM Synchronous and Asyn...

Value	Description
0	There is no reset operation ongoing.
1	The reset operation is ongoing.

36.8.4 Interrupt Enable Clear

Name:INTENCLROffset:0x14Reset:0x00Property:PAC Write-Protection

This register allows the user to disable an interrupt without read-modify-write operation. Changes in this register will also be reflected in the Interrupt Enable Set register (INTENSET).

Bit	7	6	5	4	3	2	1	0
	ERROR				SSL	RXC	TXC	DRE
Access	R/W				R/W	R/W	R/W	R/W
Reset	0				0	0	0	0

Bit 7 – ERROR Error Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the Error Interrupt Enable bit, which disables the Error interrupt.

Value	Description
0	Error interrupt is disabled.
1	Error interrupt is enabled.

Bit 3 – SSL Slave Select Low Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the Slave Select Low Interrupt Enable bit, which disables the Slave Select Low interrupt.

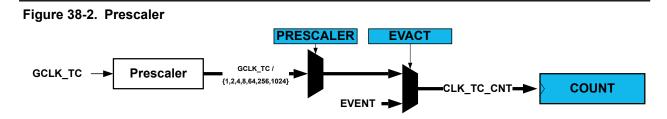
Value	Description
0	Slave Select Low interrupt is disabled.
1	Slave Select Low interrupt is enabled.

Bit 2 – RXC Receive Complete Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the Receive Complete Interrupt Enable bit, which disables the Receive Complete interrupt.

Value	Description
0	Receive Complete interrupt is disabled.
1	Receive Complete interrupt is enabled.


Bit 1 – TXC Transmit Complete Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the Transmit Complete Interrupt Enable bit, which disable the Transmit Complete interrupt.

Value	Description
0	Transmit Complete interrupt is disabled.
1	Transmit Complete interrupt is enabled.

TC – Timer/Counter

38.6.2.4 Counter Mode

The counter mode is selected by the Mode bit group in the Control A register (CTRLA.MODE). By default, the counter is enabled in the 16-bit counter resolution. Three counter resolutions are available:

- COUNT8: The 8-bit TC has its own Period Value and Period Buffer Value registers (PER and PERBUF).
- COUNT16: 16-bit is the default counter mode. There is no dedicated period register in this mode.
- COUNT32: This mode is achieved by pairing two 16-bit TC peripherals. TCn is paired with TCn+1. TC2 does not support 32-bit resolution.

When paired, the TC peripherals are configured using the registers of the even-numbered TC. The odd-numbered partner will act as a slave, and the Slave bit in the Status register (STATUS.SLAVE) will be set. The register values of a slave will not reflect the registers of the 32-bit counter. Writing to any of the slave registers will not affect the 32-bit counter. Normal access to the slave COUNT and CCx registers is not allowed.

38.6.2.5 Counter Operations

Depending on the mode of operation, the counter is cleared, reloaded, incremented, or decremented at each TC clock input (CLK_TC_CNT). A counter clear or reload marks the end of the current counter cycle and the start of a new one.

The counting direction is set by the Direction bit in the Control B register (CTRLB.DIR). If this bit is zero the counter is counting up, and counting down if CTRLB.DIR=1. The counter will count up or down for each tick (clock or event) until it reaches TOP or ZERO. When it is counting up and TOP is reached, the counter will be set to zero at the next tick (overflow) and the Overflow Interrupt Flag in the Interrupt Flag Status and Clear register (INTFLAG.OVF) will be set. When it is counting down, the counter is reloaded with the TOP value when ZERO is reached (underflow), and INTFLAG.OVF is set.

INTFLAG.OVF can be used to trigger an interrupt, a DMA request, or an event. An overflow/underflow occurrence (i.e., a compare match with TOP/ZERO) will stop counting if the One-Shot bit in the Control B register is set (CTRLBSET.ONESHOT).

It is possible to change the counter value (by writing directly in the COUNT register) even when the counter is running. When starting the TC, the COUNT value will be either ZERO or TOP (depending on the counting direction set by CTRLBSET.DIR or CTRLBCLR.DIR), unless a different value has been written to it, or the TC has been stopped at a value other than ZERO. The write access has higher priority than count, clear, or reload. The direction of the counter can also be changed when the counter is running. See also the following figure.

Some registers are synchronized when read and/or written. Synchronization is denoted by the "Write-Synchronized" or the "Read-Synchronized" property in each individual register description. For details, refer to Synchronization.

Some registers are enable-protected, meaning they can only be written when the peripheral is disabled. Enable-protection is denoted by the "Enable-Protected" property in each individual register description.

On **SAM L11** devices, this peripheral has different access permissions depending on PAC Security Attribution (Secure or Non-Secure):

- If the peripheral is configured as Non-Secure in the PAC:
 - Secure access and Non-Secure access are granted
- If the peripheral is configured as Secure in the PAC:
 - Secure access is granted
 - Non-Secure access is discarded (Write is ignored, read 0x0) and a PAC error is triggered

Refer to *Peripherals Security Attribution* for more information.

43.8.5 Interrupt Enable Set

Name:INTENSETOffset:0x05Reset:0x00Property:PAC Write-Protection

This register allows the user to disable an interrupt without doing a read-modify-write operation. Changes in this register will also be reflected in the Interrupt Enable Clear register (INTENCLR).

Bit	7	6	5	4	3	2	1	0
							EMPTY	UNDERRUN
Access							R/W	R/W
Reset							0	0

Bit 1 – EMPTY Data Buffer Empty Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will set the Data Buffer Empty Interrupt Enable bit, which enables the Data Buffer Empty interrupt.

Value	Description
0	The Data Buffer Empty interrupt is disabled.
1	The Data Buffer Empty interrupt is enabled.

Bit 0 – UNDERRUN Underrun Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will set the Data Buffer Underrun Interrupt Enable bit, which enables the Data Buffer Underrun interrupt.

	Value	Description
[0	The Data Buffer Underrun interrupt is disabled.
	1	The Data Buffer Underrun interrupt is enabled.

Electrical Characteristics

46.11.7 DETREF Characteristics

Table 46-31. Reference Voltage Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
ADC/DAC Ref	ADC/DAC internal reference	nom. 1.0V, V _{CC} =3.0V, T= 25°C	0.976	1.0	1.022	V
		nom. 1.1V, V _{CC} =3.0V, T= 25°C	1.077	1.1	1.127	
		nom. 1.2V, V _{CC} =3.0V, T= 25°C	1.174	1.2	1.234	
		nom. 1.25V, V _{CC} =3.0V, T= 25°C	1.221	1.25	1.287	
		nom. 2.0V, V _{CC} =3.0V, T= 25°C	1.945	2.0	2.030	
		nom. 2.2V, V _{CC} =3.0V, T= 25°C	2.143	2.2	2.242	
		nom. 2.4V, V_{CC} =3.0V, T= 25°C	2.335	2.4	2.457	
		nom. 2.5V, V _{CC} =3.0V, T= 25°C	2.428	2.5	2.563	
	Ref Temperature coefficient	drift over [-40, +25]°C	-	-0.01/+0.015	-	%/°C
		drift over [+25, +85]°C	-	-0.01/+0.005	-	
	Ref Supply coefficient	drift over [1.6, 3.63]V	-	+/-0.35	-	%/V
AC Ref	AC Ref Accuracy	V _{CC} =3.0V, T=25°C	1.086	1.1	1.128	V
	Ref Temperature coefficient	drift over [-40, +25]°C	-	+/-0.01	-	%/°C
		drift over [+25, +85]°C	-	-0.005/+0.001	-	%/°C
	Ref Supply coefficient	drift over [1.6, 3.63]V	-	-0.35/+0.35	-	%/V

46.11.8 OPAMP Characteristics Table 46-32. Operating Conditions

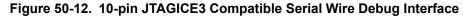
Symbol	Parameters	Conditions	Min.	Тур.	Max.	Unit
VCC	Power Supply	All power modes	1.6	3	3.63	V
Vin	Input voltage range		0	-	Vcc	V
Vout	Output voltage range		0.15	-	Vcc-0.15	V
Cload	Maximum capacitance load		-	-	50	pF
Rload ⁽¹⁾	Minimum resistive load	Output Range[0.15V;Vcc-0.15V]	3.5	-	-	kΩ
		Output Range[0.3V;Vcc-0.3V]	0.5	-	-	
I _{load} (1)	DC output current load	Output Range[0.15V;Vcc-0.15V]	-	-	1	mA
		Output Range[0.3V;Vcc-0.3V]	-	-	6.9	

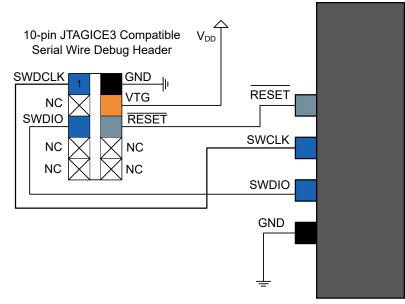
Note: 1. These values are based on simulation. They are not covered by production test limits or characterization.

125°C Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units			
		Calibrated against a 4/8/12/16 MHz	7.92	8.00	8.08				
		reference	11.88	12.00	12.12				
			15.84	16.00	16.16				
TempDrift	Freq vs. temperature drift	VDD=3.3V over temperature [-40°C-125°C], versus calibration reference at 25°C	-5		5	%			
SupplyDrift	Freq vs. supply drift	Temperature =25°C over voltage [1.62V-3.63V], versus calibration reference at 3.3V	-1.5		1.5				
T _{WUP} ⁽²⁾	Wake up time - 1st clock edge after enable	F _{OUT} = 4MHz	-	0.13	0.32	1			
		F _{OUT} = 8MHz	-	0.13	0.31				
		F _{OUT} = 12MHz	-	0.13	0.31				
		F _{OUT} = 16MHz	-	0.13	0.31				
T _{STARTUP} ⁽²⁾	Startup time	F _{OUT} = 4MHz	-	1.16	2.96	96 µs			
		F _{OUT} = 8MHz	-	1.29	2.74				
		F _{OUT} = 12MHz	-	1.34	2.95				
		F _{OUT} = 16MHz	-	1.39	3.11				
Duty ⁽¹⁾	Duty Cycle	-	45	50	55	%			

Note:


- 1. These values are based on simulation. They are not covered by production test limits or characterization.
- 2. These values are based on characterization. These values are not covered in test limits in production.


Table 47-22. Power Consumption

Symbol	Parameter	Conditions	Та	Min.	Тур.	Max.	Units
I _{DD}	Current consumption	F _{out} =4MHz, V _{CC} =3.3V	Max.125°C Typ.25°C	-	73	370	μΑ
		F _{out} =8MHz, V _{CC} =3.3V		-	106	400	
		F _{out} =12MHz, V _{CC} =3.3V		-	135	425	
		F _{out} =16MHz, V _{CC} =3.3V		-	166	455	

JTAGICE3 and SAM L10/L11. The following figure describes how to connect a 10-pin header that support connecting the JTAGICE3 directly to the SAM L10/L11 without the need for a squid cable. This can also be used for the Atmel-ICE AVR connector port.

The JTAGICE3 squid cable or the JTACICE3 50mil cable can be used to connect the JTAGICE3 programmer and debugger to the SAM L10/L11. The figure illustrates the correct pinout for the JTAGICE3 50 mil, and details are given in the following table.

Table 50-8. 10-pin JTAGICE3 Compatible Serial Wire Debug Interface

Header Signal Name	Description
SWDCLK	Serial wire clock pin
SWDIO	Serial wire bidirectional data pin
RESET	Target device reset pin, active low
VTG	Target voltage sense, should be connected to the device V_{DD}
GND	Ground

50.7.3 20-pin IDC JTAG Connector

For debuggers and/or programmers that support the 20-pin IDC JTAG Connector, e.g., the SAM-ICE, the signals should be connected, as shown in the following figure, with details described in the following table.