E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M23
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.63V
Data Converters	A/D 10x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-VQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsaml11e16a-mu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

SAM L10/L11 Family

Signal Descriptions List

Signal Name	Function	Туре		
External Interrupt Controller - EIC				
EXTINT[7:0]	External Interrupts Pins	Digital Input		
NMI	Non-Maskable Interrupt Pin	Digital Input		
General Purpose I/O - PORT				
PA11-PA00 / PA19-PA14 / PA25-PA22 / PA27 / PA31-PA30	General Purpose I/O Pin in Port A	Digital I/O		
Reset Controller - RSTC				
RESET	External Reset Pin (Active Level: LOW)	Digital Input		
Debug Service Unit - DSU				
SWCLK	Serial Wire Clock	Digital Input		
SWDIO	Serial Wire Bidirectional Data Pin	Digital I/O		

1. VREFA is shared between the ADC and DAC peripherals.

SAM L10/L11 Family

Memories

Bit Pos.	Name	Usage	Factory Setting	Related Peripheral Register
25	WDT_RUNSTDBY	WDT Runstdby at power-on	0x0	WDT.CTRLA
26	WDT_ENABLE	WDT Enable at power-on	0x0	WDT.CTRLA
27	WDT_ALWAYSON	WDT Always-On at power-on	0x0	WDT.CTRLA
31:28	WDT_PER	WDT Period at power-on	0xB	WDT.CONFIG
35:32	WDT_WINDOW	WDT Window mode time-out at power-on	0xB	WDT.CONFIG
39:36	WDT_EWOFFSET	WDT Early Warning Interrupt Time Offset at power-on	0xB	WDT.EWCTRL
40	WDT_WEN	WDT Timer Window Mode Enable at power-on	0x0	WDT.CTRLA
41	BOD33_HYST	BOD33 Hysteresis configuration at power-on	0x0	SUPC.BOD33
42	Reserved	Reserved	Reserved	Reserved
43	RXN	RAM is eXecute Never	0x1	IDAU.SECCTRL
44	DXN	Data Flash is eXecute Never	0x1	NVMCTRL.SECCTRL
63:45	Reserved	Reserved	Reserved	Reserved
71:64	AS	Flash Application Secure Size = AS*0x100	0xFF	IDAU.SCFGA
77:72	ANSC	Flash Application Non-Secure Callable Size = ANSC*0x20	0x0	IDAU.SCFGA
79:78	Reserved	Reserved Reserved		Reserved
83:80	DS	Data Flash Secure Size = DS*0x100 0x8 IDAU.SCFG/		IDAU.SCFGA
87:84	Reserved	Reserved Reserved Reserved		Reserved
94:88	RS	RAM Secure Size = RS*0x80	0x7F	IDAU.SCFGR
95	Reserved	Reserved	Reserved	Reserved
96	URWEN	User Row Write Enable 0x1 NVMCTR		NVMCTRL.SCFGAD
127:97	Reserved	Reserved Reserved Reserved		Reserved
159:128	NONSECA ⁽¹⁾	Peripherals Non-Secure Status Fuses for Bridge A	0x0000_0000	PAC.NONSECA
191:160	NONSECB ^(2, 3)	Peripherals Non-Secure Status Fuses for Bridge B	0x0000_0000	PAC.NONSECB
223:192	NONSECC	Peripherals Non-Secure Status Fuses for Bridge C	0x0000_0000	PAC.NONSECC
255:224	USERCRC	CRC of NVM User Row bits 223:64	0x8433651E	Boot ROM

Note:

- 1. The PAC Peripheral is always secured regardless of its bit value
- 2. The IDAU and NVMCTRL peripherals are always secured regardless of their bit values.
- 3. The DSU peripheral is always non-secured regardless of its bit value.

1. BOD12 is calibrated in production and its calibration parameters must not be changed to ensure the correct device behavior.

Table 10-11.	SAM L11	UROW	Mapping
--------------	---------	------	---------

Offset	Bit Pos.		Name					
0x00	7:0	BOD33 Level	Level - NSULCK SULCK					
0x01	15:8	BOD33	Action	BOD33 Disable		BOD33 Level		
0x02	23:16	BOD12 Calibration Parameters						

20.8.9 Value

	Name: Offset: Reset: Property:	VALUE 0x10 0x00000000 -						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
				VALUE	[23:16]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				VALUE	E[15:8]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
					E[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bits 23:0 – VALUE[23:0] Measurement Value Result from measurement.

23.8.1 Event Control

Name:	EVCTRL
Offset:	0x00
Reset:	0x00
Property:	PAC Write-Protection

Bit	7	6	5	4	3	2	1	0
						TUNEINV	TUNEEI	CFDEO
Access						R/W	R/W	R/W
Reset						0	0	0

Bit 2 – TUNEINV Tune Event Input Invert

This bit is used to invert the input event of the DFLLULP tuner.

Value	Description
0	Tune event input source is not inverted.
1	Tune event input source is inverted.

Bit 1 – TUNEEI Tune Event Input Enable

This bit is used to enable the input event of the DFLLULP tuner.

Value	Description
0	A new closed loop tuning will not be triggered on any incoming event.
1	A new closed loop tuning will be triggered on any incoming event.

Bit 0 – CFDEO Clock Failure Detector Event Output Enable

This bit indicates whether the Clock Failure detector event output is enabled or not and an output event will be generated when the Clock Failure detector detects a clock failure

Value	Description
0	Clock Failure detector event output is disabled and no event will be generated.
1	Clock Failure detector event output is enabled and an event will be generated.

SAM L10/L11 Family OSC32KCTRL – 32KHz Oscillators Controller

Name: OSCULP32K Offset: 0x1C Reset: 0x0000XX06 Property: **PAC Write-Protection** Bit 31 30 29 28 27 26 25 24 Access Reset Bit 23 22 21 20 19 18 17 16 Access Reset 15 Bit 14 13 12 11 10 9 8 WRTLOCK CALIB[4:0] R/W R/W R/W R/W R/W R/W Access 0 Reset х х х х х Bit 7 6 5 4 3 2 0 1 ULP32KSW R/W Access 0 Reset

24.8.9 32KHz Ultra Low-Power Internal Oscillator (OSCULP32K) Control

Bit 15 – WRTLOCK Write Lock

This bit locks the OSCULP32K register for future writes to fix the OSCULP32K configuration.

Val	lue	Description
0		The OSCULP32K configuration is not locked.
1		The OSCULP32K configuration is locked.

Bits 12:8 - CALIB[4:0] Oscillator Calibration

These bits control the oscillator calibration.

These bits are loaded from Flash Calibration at startup.

Bit 5 – ULP32KSW OSCULP32K Clock Switch Enable

Value	е	Description
0		OSCULP32K is not switched and provided by the ULP32K oscillator.
1		OSCULP32K is switched to be provided by the XOSC32K oscillator.

25.8.2 Interrupt Enable Set

Name:	INTENSET
Offset:	0x04
Reset:	0x0000000
Property:	PAC Write-Protection

This register allows the user to disable an interrupt without doing a read-modify-write operation. Changes in this register will also be reflected in the Interrupt Enable Clear register (INTENCLR).

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
					ULPVREFRDY	VCORERDY		VREGRDY
Access					R/W	R/W		R/W
Reset					0	0		0
Bit	7	6	5	4	3	2	1	0
						B33SRDY	BOD33DET	BOD33RDY
Access						R/W	R/W	R/W
Reset						0	0	0

Bit 11 – ULPVREFRDY Low Power Voltage Reference Ready Interrupt Enable Writing a '0' to this bit has no effect.

The ULPVREFRDY bit is set on a zero-to-one transition of the Low Power Voltage Reference Ready bit in the Status register (STATUS.ULPVREFRDY).

Value	Description
0	The Low Power Ready interrupt is disabled.
1	The Low Power Ready interrupt is enabled and an interrupt request will be generated when the ULPVREFRDY Interrupt Flag is set.

Bit 10 – VCORERDY VDDCORE Voltage Ready Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will set the VDDCORE Ready Interrupt Enable bit, which enables the VDDCORE Ready interrupt.

Value	Description
0	The VDDCORE Ready interrupt is disabled.
1	The VDDCORE Ready interrupt is enabled and an interrupt request will be generated when the VCORERDY Interrupt Flag is set.

If the CPU accesses the registers which are source for DMA request set/clear condition, the DMA request can be lost or the DMA transfer can be corrupted, if enabled.

27.6.4 Interrupts

The RTC has the following interrupt sources:

- Overflow (OVF): Indicates that the counter has reached its top value and wrapped to zero.
- Tamper (TAMPER): Indicates detection of valid signal on a tamper input pin or tamper event input.
- Compare (CMPn): Indicates a match between the counter value and the compare register.
- Alarm (ALARMn): Indicates a match between the clock value and the alarm register.
- Period n (PERn): The corresponding bit in the prescaler has toggled. Refer to 27.6.8.1 Periodic Intervals for details.

Each interrupt source has an interrupt flag associated with it. The interrupt flag in the Interrupt Flag Status and Clear (INTFLAG) register is set when the interrupt condition occurs. Each interrupt can be individually enabled by setting the corresponding bit in the Interrupt Enable Set register (INTENSET=1), and disabled by setting the corresponding bit in the Interrupt Enable Clear register (INTENCLR=1).

An interrupt request is generated when the interrupt flag is raised and the corresponding interrupt is enabled. The interrupt request remains active until either the interrupt flag is cleared, the interrupt is disabled or the RTC is reset. See the description of the INTFLAG registers for details on how to clear interrupt flags.

All interrupt requests from the peripheral are ORed together on system level to generate one combined interrupt request to the NVIC. Refer to the Nested Vector Interrupt Controller for details. The user must read the INTFLAG register to determine which interrupt condition is present.

Note: Interrupts must be globally enabled for interrupt requests to be generated. Refer to the Nested Vector Interrupt Controller for details.

27.6.5 Events

The RTC can generate the following output events:

- Overflow (OVF): Generated when the counter has reached its top value and wrapped to zero.
- Tamper (TAMPER): Generated on detection of valid signal on a tamper input pin or tamper event input.
- Compare (CMPn): Indicates a match between the counter value and the compare register.
- Alarm (ALARM): Indicates a match between the clock value and the alarm register.
- Period n (PERn): The corresponding bit in the prescaler has toggled. Refer to 27.6.8.1 Periodic Intervals for details.
- Periodic Daily (PERD): Generated when the COUNT/CLOCK has incremented at a fixed period of time.

Setting the Event Output bit in the Event Control Register (EVCTRL.xxxEO=1) enables the corresponding output event. Writing a zero to this bit disables the corresponding output event. Refer to the EVSYS - Event System for details on configuring the event system.

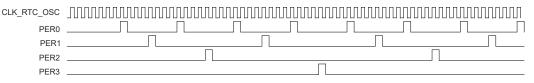
The RTC can take the following actions on an input event:

• Tamper (TAMPEVT): Capture the RTC counter to the timestamp register. See *Tamper Detection*.

Writing a one to an Event Input bit into the Event Control register (EVCTRL.xxxEI) enables the corresponding action on input event. Writing a zero to this bit disables the corresponding action on input event.

27.6.8 Additional Features

27.6.8.1 Periodic Intervals


The RTC prescaler can generate interrupts and events at periodic intervals, allowing flexible system tick creation. Any of the upper eight bits of the prescaler (bits 2 to 9) can be the source of an interrupt/event. When one of the eight Periodic Event Output bits in the Event Control register (EVCTRL.PEREO[n=0..7]) is '1', an event is generated on the 0-to-1 transition of the related bit in the prescaler, resulting in a periodic event frequency of:

$$f_{\text{PERIODIC}(n)} = \frac{f_{\text{CLK}_{\text{RTC}_{\text{OSC}}}}}{2^{n+3}}$$

 $f_{CLK_RTC_OSC}$ is the frequency of the internal prescaler clock CLK_RTC_OSC, and n is the position of the EVCTRL.PEREOn bit. For example, PER0 will generate an event every eight CLK_RTC_OSC cycles, PER1 every 16 cycles, etc. This is shown in the figure below.

Periodic events are independent of the prescaler setting used by the RTC counter, except if CTRLA.PRESCALER is zero. Then, no periodic events will be generated.

Figure 27-5. Example Periodic Events

27.6.8.2 Frequency Correction

The RTC Frequency Correction module employs periodic counter corrections to compensate for a tooslow or too-fast oscillator. Frequency correction requires that CTRLA.PRESCALER is greater than 1.

The digital correction circuit adds or subtracts cycles from the RTC prescaler to adjust the frequency in approximately 1ppm steps. Digital correction is achieved by adding or skipping a single count in the prescaler once every 8192 CLK_RTC_OSC cycles. The Value bit group in the Frequency Correction register (FREQCORR.VALUE) determines the number of times the adjustment is applied over 128 of these periods. The resulting correction is as follows:

Correction in ppm $= \frac{\text{FREQCORR.VALUE}}{8192 \cdot 128} \cdot 10^6 \text{ppm}$

This results in a resolution of 0.95367ppm.

The Sign bit in the Frequency Correction register (FREQCORR.SIGN) determines the direction of the correction. A positive value will add counts and increase the period (reducing the frequency), and a negative value will reduce counts per period (speeding up the frequency).

Digital correction also affects the generation of the periodic events from the prescaler. When the correction is applied at the end of the correction cycle period, the interval between the previous periodic event and the next occurrence may also be shortened or lengthened depending on the correction value.

27.6.8.3 General Purpose Registers

The RTC includes four General Purpose registers (GPn). These registers are reset only when the RTC is reset or when tamper detection occurs while CTRLA.GPTRST=1, and remain powered while the RTC is powered. They can be used to store user-defined values while other parts of the system are powered off.

The general purpose registers 2*n and 2*n+1 are enabled by writing a '1' to the General Purpose Enable bit n in the Control B register (CTRLB.GPnEN).

© 2018 Microchip Technology Inc.

RTC – Real-Time Counter

Name: Offset: Reset: Property:		SYNCBUSY 0x10 0x00000000 -						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
5.1	22	22	0.4	00	10	10	47	40
Bit	23	22	21	20	19	18	17	16
								[1:0]
Access							R	R
Reset							0	0
Bit		14	13	12	11	10	9	8
	COUNTSYNC							
Access	R							
Reset	0							
Bit	7	6	5	4	3	2	1	0
			COMP0		COUNT	FREQCORR	ENABLE	SWRST
Access			R		R	R	R	R
Reset			0		0	0	0	0

27.8.8 Synchronization Busy in COUNT32 mode (CTRLA.MODE=0)

Bits 17:16 - GPn[1:0] General Purpose n Synchronization Busy Status

Ν	/alue	Description
0)	Write synchronization for GPn register is complete.
1	-	Write synchronization for GPn register is ongoing.

Bit 15 – COUNTSYNC Count Read Sync Enable Synchronization Busy Status

Value	Description
0	Write synchronization for CTRLA.COUNTSYNC bit is complete.
1	Write synchronization for CTRLA.COUNTSYNC bit is ongoing.

Bit 5 – COMP0 Compare 0 Synchronization Busy Status

Value	Description
0	Write synchronization for COMP0 register is complete.
1	Write synchronization for COMP0 register is ongoing.

Bit 3 – COUNT Count Value Synchronization Busy Status

Value	Description
0	Read/write synchronization for COUNT register is complete.
1	Read/write synchronization for COUNT register is ongoing.

27.10.4 Interrupt Enable Clear in COUNT16 mode (CTRLA.MODE=1)

Name:INTENCLROffset:0x08Reset:0x0000Property:PAC Write-Protection

This register allows the user to disable an interrupt without doing a read-modify-write operation. Changes in this register will also be reflected in the Interrupt Enable Set (INTENSET) register.

Bit	15	14	13	12	11	10	9	8
	OVF	TAMPER						
Access	R/W	R/W						
Reset	0	0						
Bit	7	6	5	4	3	2	1	0
	PER7	PER6	PER5	PER4	PER3	PER2	CMP1	CMP0
Access	PER7 R/W	PER6 R/W	PER5 R/W	PER4 R/W	PER3 R/W	PER2 R/W	CMP1 R/W	CMP0 R/W

Bit 15 – OVF Overflow Interrupt Enable

Writing a '0' to this bit has no effect. Writing a '1' to this bit will clear the Overflow Interrupt Enable bit, which disables the Overflow interrupt.

Value	Description
0	The Overflow interrupt is disabled.
1	The Overflow interrupt is enabled.

Bit 14 – TAMPER Tamper Interrupt Enable

Writing a '0' to this bit has no effect. Writing a '1' to this bit will clear the Tamper Interrupt Enable bit, which disables the Tamper interrupt.

Value	Description
0	The Tamper interrupt is disabled.
1	The Tamper interrupt is enabled.

Bits 0, 1 – CMPn Compare n Interrupt Enable [n = 1..0]

Writing a '0' to this bit has no effect. Writing a '1' to this bit will clear the Compare n Interrupt Enable bit, which disables the Compare n interrupt.

Value	Description
0	The Compare n interrupt is disabled.
1	The Compare n interrupt is enabled.

Bits 0, 1, 2, 3, 4, 5, 6, 7 – PERn Periodic Interval n Interrupt Enable [n = 7..0]

Writing a '0' to this bit has no effect. Writing a '1' to this bit will clear the Periodic Interval n Interrupt Enable bit, which disables the Periodic Interval n interrupt.

Va	lue	Description
0		Periodic Interval n interrupt is disabled.
1		Periodic Interval n interrupt is enabled.

28.10.5 Next Descriptor Address

Reset

Name:DESCADDROffset:0x0CProperty:-

The DESCADDR register offset is relative to (BASEADDR or WRBADDR) + Channel Number * 0x10

Bit	31	30	29	28	27	26	25	24
				DESCAD	DR[31:24]			
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
				DESCAD	DR[23:16]			
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
				DESCAL	DDR[15:8]			
Access	L							
Reset								
Bit	7	6	5	4	3	2	1	0
				DESCA	DDR[7:0]			
Access	L							

Bits 31:0 – DESCADDR[31:0] Next Descriptor Address

This bit group holds the SRAM address of the next descriptor. The value must be 128-bit aligned. If the value of this SRAM register is 0x00000000, the transaction will be terminated when the DMAC tries to load the next transfer descriptor.

To issue a command, the CTRLA.CMD bits must be written along with the CTRLA.CMDEX value. When a command is issued, STATUS.READY is cleared and rises again when the command has completed. INTFLAG.DONE is also set when a command completes. Any commands written while INTFLAG.READY is low will be ignored.

The CTRLB and CTRLC registers must be used to control the power reduction mode, read wait states, and the write mode.

30.6.4.1 NVM Read

Reading from the FLASH is performed via the AHB bus. Read data is available after the configured number of read wait states (CTRLB.RWS) set in the NVM Controller.

The number of cycles data are delayed to the AHB bus is determined by the read wait states.

Reading the NVM main address space while a programming or erase operation is ongoing on the NVM main array results in an AHB bus stall until the end of the operation. Reading the NVM main array does not stall the bus when the Data FLASH is being programmed or erased.

30.6.4.2 DATA FLASH Read

Reading from the Data FLASH is performed via the AHB bus by addressing the Data FLASH address space directly.

Read timings are increased by one cycle compared to regular FLASH read timings when access size is Byte or half-Word. The AHB data phase is twice as long in case of full-Word-size access.

It is not possible to read the Data FLASH while the NVM main array is being written or erased (the read is stalled), whereas the Data FLASH can be written or erased while the main array is being read.

The Data FLASH address space is not cached, therefore it is recommended to limit access to this area for performance and power consumption considerations.

30.6.4.3 NVM Write

Data to be written to the NVM block are first written to and stored in an internal buffer called the page buffer. The page buffer contains the same number of bytes as an NVM page. Writes to the page buffer must be 16 or 32 bits. 8-bit writes to the page buffer are not allowed and will cause a bus error.

Both FLASH and DATA FLASH share the same page buffer. Writing to the NVM block via the AHB bus is performed by a load operation to the page buffer. For each AHB bus write, the address is stored in the ADDR register. After the page buffer has been loaded with the required number of bytes, the page can be written to the array pointed by ADDR by setting CTRLA.CMD to 'Write Page' and setting the key value to CMDEX. The LOAD bit in the STATUS register indicates whether the page buffer has been loaded or not.

If the NVMCTRL is busy processing a write command (STATUS.READY=0), then the AHB bus is stalled upon AHB write until the ongoing command completes.

The NVM Controller requires that an erase must be done before programming. Rows can be individually erased by the Erase Row command to erase a row.

Automatic page writes are enabled by writing the manual write bit to zero (CTRLB.MANW=0). This will trigger a write operation to the page addressed by ADDR when the last location of the page is written.

Because the address is automatically stored in ADDR during the APB bus write operation, the last given address will be present in the ADDR register. There is no need to load the ADDR register manually, unless a different page in memory is to be written. The page buffer is automatically cleared upon a 'Write Page' command completion.

SAM L10/L11 Family PORT - I/O Pin Controller

Writing a '1' to a bit will clear the corresponding bit in the DIR register, which configures the I/O pin as an input.

Value	Description
0	The corresponding I/O pin in the PORT group will keep its configuration.
1	The corresponding I/O pin in the PORT group is configured as input.

Bit 2 – RXC Receive Complete Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the Receive Complete Interrupt Enable bit, which disables the Receive Complete interrupt.

Value	Description
0	Receive Complete interrupt is disabled.
1	Receive Complete interrupt is enabled.

Bit 1 – TXC Transmit Complete Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the Transmit Complete Interrupt Enable bit, which disables the Receive Complete interrupt.

Value	Description
0	Transmit Complete interrupt is disabled.
1	Transmit Complete interrupt is enabled.

Bit 0 – DRE Data Register Empty Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the Data Register Empty Interrupt Enable bit, which disables the Data Register Empty interrupt.

Value	Description
0	Data Register Empty interrupt is disabled.
1	Data Register Empty interrupt is enabled.

Bit 0 – DRE Data Register Empty

This flag is cleared by writing new data to DATA.

This flag is set when DATA is empty and ready for new data to transmit.

Writing '0' to this bit has no effect.

Writing '1' to this bit has no effect.

The missing ACK response can indicate that the I^2C slave is busy with other tasks or sleeping. Therefore, it is not able to respond. In this event, the next step can be either issuing a stop condition (recommended) or resending the address packet by a repeated start condition. When using SMBus logic, the slave must ACK the address. If there is no response, it means that the slave is not available on the bus.

Case 3: Address packet transmit complete - Write packet, Master on Bus set

If the I²C master receives an acknowledge response from the I²C slave, INTFLAG.MB will be set and STATUS.RXNACK will be cleared. The clock hold is active at this point, preventing further activity on the bus.

In this case, the software implementation becomes highly protocol dependent. Three possible actions can enable the I²C operation to continue:

- Initiate a data transmit operation by writing the data byte to be transmitted into DATA.DATA.
- Transmit a new address packet by writing ADDR.ADDR. A repeated start condition will automatically be inserted before the address packet.
- Issue a stop condition, consequently terminating the transaction.

Case 4: Address packet transmit complete – Read packet, Slave on Bus set

If the I²C master receives an ACK from the I²C slave, the I²C master proceeds to receive the next byte of data from the I²C slave. When the first data byte is received, the Slave on Bus bit in the Interrupt Flag register (INTFLAG.SB) will be set and STATUS.RXNACK will be cleared. The clock hold is active at this point, preventing further activity on the bus.

In this case, the software implementation becomes highly protocol dependent. Three possible actions can enable the I²C operation to continue:

- Let the I²C master continue to read data by acknowledging the data received. ACK can be sent by software, or automatically in smart mode.
- Transmit a new address packet.
- Terminate the transaction by issuing a stop condition.

Note: An ACK or NACK will be automatically transmitted if smart mode is enabled. The Acknowledge Action bit in the Control B register (CTRLB.ACKACT) determines whether ACK or NACK should be sent.

37.6.2.4.3 Transmitting Data Packets

When an address packet with direction Master Write (see Figure 37-3) was transmitted successfully, INTFLAG.MB will be set. The I²C master will start transmitting data via the I²C bus by writing to DATA.DATA, and monitor continuously for packet collisions. I

If a collision is detected, the I²C master will lose arbitration and STATUS.ARBLOST will be set. If the transmit was successful, the I²C master will receive an ACK bit from the I²C slave, and STATUS.RXNACK will be cleared. INTFLAG.MB will be set in both cases, regardless of arbitration outcome.

It is recommended to read STATUS.ARBLOST and handle the arbitration lost condition in the beginning of the I²C Master on Bus interrupt. This can be done as there is no difference between handling address and data packet arbitration.

STATUS.RXNACK must be checked for each data packet transmitted before the next data packet transmission can commence. The I²C master is not allowed to continue transmitting data packets if a NACK is received from the I²C slave.

37.9 Register Summary - I2C Master

Offset	Name	Bit Pos.								
		7:0	RUNSTDBY				MODE[2:0]		ENABLE	SWRST
0x00		15:8								
	CTRLA	23:16	SEXTTOEN	MEXTTOEN	SDAHC	LD[1:0]				PINOUT
		31:24		LOWTOUT	INACTO	UT[1:0]	SCLSM		SPEE	D[1:0]
		7:0								
004		15:8							QCEN	SMEN
0x04	CTRLB	23:16						ACKACT	CME	D[1:0]
		31:24								
0x08										
	Reserved									
0x0B										
		7:0				BAL	JD[7:0]			
0.000	BAUD	15:8				BAUD	LOW[7:0]			
0x0C	BAUD	23:16				HSBA	AUD[7:0]			
		31:24				HSBAU	DLOW[7:0]			
0x10										
	Reserved									
0x13										
0x14	INTENCLR	7:0	ERROR						SB	MB
0x15	Reserved									
0x16	INTENSET	7:0	ERROR						SB	MB
0x17	Reserved									
0x18	INTFLAG	7:0	ERROR						SB	MB
0x19	Reserved									
0.44	0747110	7:0	CLKHOLD	LOWTOUT	BUSSTA	ATE[1:0]		RXNACK	ARBLOST	BUSERF
0x1A	STATUS	15:8						LENERR	SEXTTOUT	MEXTTOL
		7:0						SYSOP	ENABLE	SWRST
		15:8								
0x1C	SYNCBUSY	23:16								
		31:24								
0x20										
	Reserved									
0x23										
		7:0				ADI	DR[7:0]			1
0.04	4000	15:8	TENBITEN	HS	LENEN				ADDR[10:8]	
0x24	ADDR	23:16				LE	N[7:0]			
		31:24								
0.00	D	7:0				DA	FA[7:0]			
0x28	DATA	15:8								
0x2A										
	Reserved									
0x2F										
0x30	DBGCTRL	7:0								DBGSTO

37.10.6 Interrupt Flag Status and Clear

Name: Offset: Reset: Property:		INTFLAG 0x18 0x00 -						
Bit	7	6	5	4	3	2	1	0
	ERROR						SB	MB
Access	R/W	ŀ					R/W	R/W
Reset	0						0	0

Bit 7 – ERROR Error

This flag is cleared by writing '1' to it.

This bit is set when any error is detected. Errors that will set this flag have corresponding status bits in the STATUS register. These status bits are LENERR, SEXTTOUT, MEXTTOUT, LOWTOUT, ARBLOST, and BUSERR.

Writing '0' to this bit has no effect.

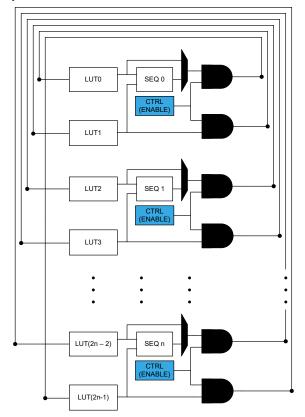
Writing '1' to this bit will clear the flag.

Bit 1 – SB Slave on Bus

The Slave on Bus flag (SB) is set when a byte is successfully received in master read mode, i.e., no arbitration lost or bus error occurred during the operation. When this flag is set, the master forces the SCL line low, stretching the I²C clock period. The SCL line will be released and SB will be cleared on one of the following actions:

- Writing to ADDR.ADDR
- Writing to DATA.DATA
- Reading DATA.DATA when smart mode is enabled (CTRLB.SMEN)
- Writing a valid command to CTRLB.CMD

Writing '1' to this bit location will clear the SB flag. The transaction will not continue or be terminated until one of the above actions is performed.


Writing '0' to this bit has no effect.

Bit 0 – MB Master on Bus

This flag is set when a byte is transmitted in master write mode. The flag is set regardless of the occurrence of a bus error or an arbitration lost condition. MB is also set when arbitration is lost during sending of NACK in master read mode, or when issuing a start condition if the bus state is unknown. When this flag is set and arbitration is not lost, the master forces the SCL line low, stretching the I²C clock period. The SCL line will be released and MB will be cleared on one of the following actions:

- Writing to ADDR.ADDR
- Writing to DATA.DATA
- Reading DATA.DATA when smart mode is enabled (CTRLB.SMEN)
- Writing a valid command to CTRLB.CMD

Figure 40-5. Linked LUT Input Selection

Internal Events Inputs Selection (EVENT)

Asynchronous events from the Event System can be used as input selection, as shown in Figure 40-6. For each LUT, one event input line is available and can be selected on each LUT input. Before enabling the event selection by writing LUTCTRLx.INSELy=EVENT, the Event System must be configured first.

By default CCL includes an edge detector. When the event is received, an internal strobe is generated when a rising edge is detected. The pulse duration is one GCLK_CCL clock cycle. Writing the LUTCTRLx.INSELy=ASYNCEVENT will disable the edge detector. In this case, it is possible to combine an asynchronous event input with any other input source. This is typically useful with event levels inputs (external IO pin events, as example). The following steps ensure proper operation:

- 1. Enable the GCLK_CCL clock.
- 2. Configure the Event System to route the event asynchronously.
- 3. Select the event input type (LUTCTRLx.INSEL).
- 4. If a strobe must be generated on the event input falling edge, write a '1' to the Inverted Event Input Enable bit in LUT Control register (LUTCTRLx.INVEI).
- 5. Enable the event input by writing the Event Input Enable bit in LUT Control register (LUTCTRLx.LUTEI) to '1'.

Bit 0 – SWRST Software Reset

Writing a '0' to this bit has no effect.

Writing a '1' to this bit resets all registers in the ADC, except DBGCTRL, to their initial state, and the ADC will be disabled.

Writing a '1' to CTRL.SWRST will always take precedence, meaning that all other writes in the same write-operation will be discarded.

Due to synchronization there is a delay from writing CTRLA.SWRST until the reset is complete. CTRLA.SWRST and SYNCBUSY.SWRST will both be cleared when the reset is complete.

Value	Description
0	There is no reset operation ongoing.
1	The reset operation is ongoing.