

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	26
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.25V
Data Converters	A/D - 14bit; D/A - 8bit
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c24533-24pvxit

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Analog System

The Analog system is composed of an 8-bit SAR ADC and four configurable blocks. The programmable 8-bit SAR ADC is an optimized ADC that runs up to 300 Ksps, with monotonic guarantee. It also has the features to support a motor control application.

Each analog block is comprised of an opamp circuit allowing the creation of complex analog signal flows. Analog peripherals are very flexible and can be customized to support specific application requirements. Some of the more common PSoC analog functions (most available as user modules) are:

- Filters (2 and 4 pole band pass, low-pass, and notch)
- Amplifiers (up to 2, with selectable gain to 48x)
- Instrumentation amplifiers (1 with selectable gain to 93x)
- Comparators (up to 2, with 16 selectable thresholds)
- DACs (up to 2, with 6- to 9-bit resolution)
- Multiplying DACs (up to 2, with 6- to 9-bit resolution)
- High current output drivers (two with 30 mA drive as a Core Resource)
- 1.3V reference (as a System Resource)
- DTMF dialer
- Modulators
- Correlators
- Peak detectors
- Many other topologies possible

Analog blocks are arranged in a column of three, which includes one CT (Continuous Time) and two SC (Switched Capacitor) blocks. The Analog Column 0 contains the SAR8 ADC block rather than the standard SC blocks.

Figure 2. Analog System Block Diagram

Additional System Resources

System Resources, some of which have been previously listed, provide additional capability useful to complete systems. Additional resources include a multiplier, decimator, low voltage detection, and power on reset. Brief statements describing the merits of each system resource follow:

- Digital clock dividers provide three customizable clock frequencies for use in applications. The clocks can be routed to both the digital and analog systems. Additional clocks can be generated using digital PSoC blocks as clock dividers.
- A multiply accumulate (MAC) provides a fast 8-bit multiplier with 32-bit accumulate, to assist in both general math as well as digital filters.
- The decimator provides a custom hardware filter for digital signal processing applications including the creation of Delta Sigma ADCs.
- The I2C module provides 100 and 400 kHz communication over two wires. Slave, master, and multi-master modes are all supported.
- Low Voltage Detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced POR (Power On Reset) circuit eliminates the need for a system supervisor.
- An internal 1.3V reference provides an absolute reference for the analog system, including ADCs and DACs.

PSoC Device Characteristics

Depending on your PSoC device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks and 12, 6, or 3 analog blocks. The following table lists the resources available for specific PSoC device groups.

PSoC Part Number	Digital IO	Digital Rows	Digital Blocks	Analog Inputs	Analog Outputs	Analog Columns	Analog Blocks	SAR8 ADC
CY8C29x66	up to 64	4	16	12	4	4	12	No
CY8C27x43	up to 44	2	8	12	4	4	12	No
CY8C24x94	56	1	4	48	2	2	6	No
CY8C24533	up to 26	1	4	12	2	2	4	Yes
CY8C24x23A	up to 24	1	4	12	2	2	6	No
CY8C21x34	up to 28	1	4	28	0	2	4 ^[1]	No
CY8C21x23	16	1	4	8	0	2	4 ^[1]	No
CY8C20x34	up to 28	0	0	28	0	0	3 ^[2]	No

Table 1. PSoC Device Characteristics

Getting Started

The quickest path to understanding the PSoC silicon is by reading this data sheet and using the PSoC Designer Integrated Development Environment (IDE). This data sheet is an overview of the PSoC integrated circuit and presents specific pin, register, and electrical specifications. For in-depth information, along with detailed programming information, reference the PSoC CY8C24533 Mixed-Signal Array Technical Reference Manual.

For up-to-date Ordering, Packaging, and Electrical Specification information, reference the latest PSoC device data sheets on the web at http://www.cypress.com/psoc.

To determine which PSoC device meets your requirements, navigate through the PSoC Decision Tree in the Application Note AN2209 at http://www.cypress.com and select Application Notes under the Design Resources.

Development Kits

Development Kits are available from the following distributors: Digi-Key, Avnet, Arrow, and Future. The Cypress Online Store contains development kits, **C** compilers, and all accessories for PSoC development. Go to the Cypress Online Store web site at http://www.cypress.com/onlinestore.

Technical Training Modules

Free PSoC technical training modules are available for users new to PSoC. Training modules cover designing, debugging, advanced analog and CapSense. Go to http://www.cypress.com.

Consultants

Certified PSoC Consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC Consultant go to http://www.cypress.com, click on Design Support located at the top of the web page, and select CYPros Consultants.

Technical Support

PSoC application engineers take pride in fast and accurate response. They can be reached with a 4-hour guaranteed response at http://www.cypress.com/support.

Application Notes

A long list of application notes can assist you in every aspect of your design effort. To view the PSoC application notes, go to http://www.cypress.com/psocapnotes.

Limited analog functionality.
 Two analog blocks and one CapSense.

The next step is to write your main program, and any sub-routines using PSoC Designer's Application Editor subsystem. The Application Editor includes a Project Manager that allows you to open the project source code files (including all generated code files) from a hierarchal view. The source code editor provides syntax coloring and advanced edit features for both C and assembly language. File search capabilities include simple string searches and recursive "grep-style" patterns. A single mouse click invokes the Build Manager. It employs a professional-strength "makefile" system to automatically analyze all file dependencies and run the compiler and assembler as necessary. Project-level options control optimization strategies used by the compiler and linker. Syntax errors are displayed in a console window. Double clicking the error message takes you directly to the offending line of source code. When all is correct, the linker builds a HEX file image suitable for programming.

The last step in the development process takes place inside the PSoC Designer's Debugger subsystem. The Debugger downloads the HEX image to the In-Circuit Emulator (ICE) where it runs at full speed. Debugger capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint and watch-variable features, the Debugger provides a large trace buffer and allows you to define complex breakpoint events that include monitoring address and data bus values, memory locations, and external signals.

Document Conventions

Acronyms Used

The following table lists the acronyms that are used in this document.

Table 2. Acronyms Used

Acronym	Description
AC	alternating current
ADC	analog-to-digital converter
API	application programming interface
CPU	central processing unit
СТ	continuous time
DAC	digital-to-analog converter
DC	direct current
EEPROM	electrically erasable programmable read-only memory
FSR	full scale range
GPIO	general purpose IO
10	input/output
IPOR	imprecise power on reset
LSb	least-significant bit
LVD	low voltage detect
MSb	most-significant bit
PC	program counter
POR	power on reset
PPOR	precision power on reset
PSoC®	Programmable System-on-Chip™

Table 2. Acronyms Used (continued)

Acronym	Description
PWM	pulse width modulator
RAM	random access memory
ROM	read only memory
SC	switched capacitor

Units of Measure

A units of measure table is located in the Electrical Specifications section. Table 6 on page 13 lists all the abbreviations used to measure the PSoC devices.

Numeric Naming

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, 01010100b' or '01000011b'). Numbers not indicated by an 'h' or 'b' are decimal.

Register Reference

This chapter lists the registers of the CY8C24533 PSoC device by using mapping tables, in offset order. For detailed register information, refer the PSoC CY8C24533 Mixed-Signal Array Technical Reference Manual.

Register Conventions

Abbreviations Used

The register conventions specific to this section are listed in the following table.

Convention	Description
R	Read register or bit(s)
W	Write register or bit(s)
L	Logical register or bit(s)
С	Clearable register or bit(s)
#	Access is bit specific

Register Mapping Tables

The PSoC device has a total register address space of 512 bytes. The register space is referred to as IO space and is divided into two banks. The XOI bit in the Flag register (CPU_F) determines which bank the user is currently in. When the XOI bit is set the user is in Bank 1.

Note In the following register mapping tables, blank fields are reserved and must not be accessed.

Table 4. Register Map Bank 0 Table: User Space (continued)

Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
	3E			7E			BE		CPU_SCR1	FE	#
	3F			7F			BF		CPU_SCR0	FF	#

Gray fields are reserved. # Access is bit specific.

Table 5. Register Map Bank 1 Table: Configuration Space

Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access
PRT0DM0	00	RW		40			80			C0	
PRT0DM1	01	RW		41			81			C1	
PRT0IC0	02	RW		42			82			C2	
PRT0IC1	03	RW		43			83			C3	
PRT1DM0	04	RW		44		ASD11CR0	84	RW		C4	
PRT1DM1	05	RW		45		ASD11CR1	85	RW		C5	
PRIIICO	06	RW		46		ASD11CR2	86	RW		C6	
PRT1IC1	07	RW		47		ASD11CR3	87	RW		07	
PR12DM0	08	RW		48			88			60	
	09			49			89			C9 CA	
PRIZICU DRT2IC1				4A 4P			0A 0D			CA	
	00			4D 4C			0D 8C				
	00			40 4D			80				
PRT3IC0	00	RW/		40			85			CE	
PRT3IC1		RW/		4L /F			0∟ 8E			CE	
	10	1		50			90		GDL O IN		RW
	10			51			90		GDLE IN	D0	RW
	12			52			92			D1 D2	RW
	12			53			92			D2 D3	RW
	14			54		ASC21CR0	94	RW	001_2_00	D3	1.00
	15			55		ASC21CR1	95	RW		D4 D5	
	16			56		ASC21CR2	96	RW		D6	
	17			57		ASC21CR3	97	RW		D7	
	18			58			98			D8	
	19			59			99			D9	
	1A			5A			9A			DA	
	1B			5B			9B			DB	
	10			5C			9C			DC	
	1D			5D			9D		OSC GO EN	DD	RW
	1E			5E			9E		OSC CR4	DE	RW
	1F			5F			9F		OSC CR3	DF	RW
DBB00FN	20	RW	CLK CR0	60	RW		A0		OSC CR0	E0	RW
DBB00IN	21	RW	CLK CR1	61	RW		A1		OSC CR1	E1	RW
DBB00OU	22	RW	ABF_CR0	62	RW		A2		OSC_CR2	E2	RW
	23		AMD_CR0	63	RW		A3		VLT_CR	E3	RW
DBB01FN	24	RW		64			A4		VLT_CMP	E4	R
DBB01IN	25	RW		65			A5			E5	
DBB01OU	26	RW	AMD_CR1	66	RW		A6			E6	
	27		ALT_CR0	67	RW		A7			E7	
DCB02FN	28	RW		68		SARADC_TRS	A8	RW	IMO_TR	E8	W
DCB02IN	29	RW		69		SARADC_TRCL	A9	RW	ILO_TR	E9	W
DCB02OU	2A	RW		6A		SARADC_TRCH	AA	RW	BDG_TR	EA	RW
	2B			6B		SARADC_CR2	AB	#	ECO_TR	EB	W
DCB03FN	2C	RW	TMP_DR0	6C	RW	SARADC_LCR	AC	RW		EC	
DCB03IN	2D	RW	TMP_DR1	6D	RW		AD			ED	
DCB03OU	2E	RW	TMP_DR2	6E	RW		AE			EE	
	2F		TMP_DR3	6F	RW		AF			EF	
	30		ACB00CR3	70	RW	RDIORI	B0	RW		F0	
	31		ACB00CR0	71	RW	RDIOSYN	B1	RW		F1	
	32		ACB00CR1	72	RW	RDI0IS	B2	RW		F2	
	33		ACB00CR2	73	RW	RDI0LT0	B3	RW		F3	
	34		ACB01CR3	74	RW	RDI0LT1	B4	RW		F4	
	35		ACB01CR0	75	RW	RDI0RO0	B5	RW		F5	
	36		ACB01CR1	76	RW	RDI0RO1	B6	RW		F6	
Gray fields are reserved	d. # Acces	ss is bit speci	ific.								

Document Number: 001-14643 Rev. *D

Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Table 7. Absolute Maximum Ratings

Symbol	Description	Min	Тур	Max	Units	Notes
T _{STG}	Storage Temperature	-55	25	+100	°C	Higher storage temperatures reduces data retention time. Recommended storage temperature is +25°C ± 25°C. Extended duration storage tempera- tures above 65°C degrades reliability.
T _A	Ambient Temperature with Power Applied	-40	_	+85	°C	
Vdd	Supply Voltage on Vdd Relative to Vss	-0.5	-	+6.0	V	
V _{IO}	DC Input Voltage	Vss - 0.5	-	Vdd + 0.5	V	
V _{IOZ}	DC Voltage Applied to Tri-state	Vss - 0.5	_	Vdd + 0.5	V	
I _{MIO}	Maximum Current into any Port Pin	-25	_	+50	mA	
ESD	Electro Static Discharge Voltage	2000	_	-	V	Human Body Model ESD
LU	Latch-up Current	_	_	200	mA	

Operating Temperature

Table 8. Operating Temperature

Symbol	Description	Min	Тур	Max	Units	Notes
T _A	Ambient Temperature	-40	-	+85	°C	
Тյ	Junction Temperature	-40	_	+100	°C	The temperature rise from ambient to junction is package specific. See Thermal Impedances by Package on page 32. The user must limit the power consumption to comply with this requirement.

DC Electrical Characteristics

DC Chip-Level Specifications

The following table lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 9. DC Chip-Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
Vdd	Supply Voltage	3.0	-	5.25	V	See Table 19 on page 21.
I _{DD}	Supply Current	_	5	8	mA	Conditions are Vdd = $5.0V$, T _A = 25 °C, CPU = 3 MHz, SYSCLK doubler disabled, VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 93.75 kHz, analog power = off. SLIMO mode = 0. IMO = 24 MHz.
I _{DD3}	Supply Current	_	3.3	6.0	mA	Conditions are Vdd = $3.3V$, T _A = 25° C, CPU = 3 MHz, SYSCLK doubler disabled, VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 93.75 kHz, analog power = off. SLIMO mode = 0. IMO = 24 MHz.
I _{SB}	Sleep (Mode) Current with POR, LVD, Sleep Timer, and WDT. ^[6]	_	3	6.5	μA	Conditions are with internal slow speed oscillator, Vdd = $3.3V$, -40°C $\leq T_A \leq 55$ °C, analog power = off.
I _{SBH}	Sleep (Mode) Current with POR, LVD, Sleep Timer, and WDT at high temperature. ^[6]	_	4	25	μA	Conditions are with internal slow speed oscillator, Vdd = $3.3V$, $55^{\circ}C < T_A \le 85^{\circ}C$, analog power = off.
I _{SBXTL}	Sleep (Mode) Current with POR, LVD, Sleep Timer, WDT, and external crystal. ^[6]	_	4	7.5	μA	Conditions are with properly loaded, 1 μ W max, 32.768 kHz crystal. Vdd = 3.3V, -40°C \leq T _A \leq 55°C, analog power = off.
I _{SBXTLH}	Sleep (Mode) Current with POR, LVD, Sleep Timer, WDT, and external crystal at high temperature. ^[6]	-	5	26	μΑ	Conditions are with properly loaded, 1μ W max, 32.768 kHz crystal. Vdd = 3.3 V, 55°C < T _A \leq 85°C, analog power = off.
V _{REF}	Reference Voltage (Bandgap)	1.28	1.30	1.33	V	Trimmed for appropriate Vdd. Vdd > 3.0V

Note

^{6.} Standby current includes all functions (POR, LVD, WDT, Sleep Time) needed for reliable system operation. This must be compared with devices that have similar functions enabled.

DC Operational Amplifier Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

The Operational Amplifier is a component of both the Analog Continuous Time PSoC blocks and the Analog Switched Cap PSoC blocks. The guaranteed specifications are measured in the Analog Continuous Time PSoC block. Typical parameters apply to 5V at 25°C and are for design guidance only.

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input Offset Voltage (absolute value) Power = Low, Opamp Bias = High Power = Medium, Opamp Bias = High Power = High, Opamp Bias = High		1.6 1.3 1.2	10 8 7.5	mV mV mV	
TCV _{OSOA}	Average Input Offset Voltage Drift	1	7.0	35.0	μV/°C	
I _{EBOA}	Input Leakage Current (Port 0 Analog Pins)	-	20	-	рА	Gross tested to 1 μ A
C _{INOA}	Input Capacitance (Port 0 Analog Pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25°C
V _{CMOA}	Common Mode Voltage Range Common Mode Voltage Range (high power or high opamp bias)	0.0 0.5		Vdd Vdd - 0.5	V	The common-mode input voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the character- istics of the analog output buffer.
G _{OLOA}	Open Loop Gain Power = Low, Opamp Bias = High Power = Medium, Opamp Bias = High Power = High, Opamp Bias = High	60 60 80	-	-	dB	Specification is applicable at high power. For all other bias modes (except high power, high opamp bias), minimum is 60 dB.
Vohighoa	High Output Voltage Swing (internal signals) Power = Low, Opamp Bias = High Power = Medium, Opamp Bias = High Power = High, Opamp Bias = High	Vdd - 0.2 Vdd - 0.2 Vdd - 0.5		_ _ _	V V V	
V _{OLOWOA}	Low Output Voltage Swing (internal signals) Power = Low, Opamp Bias = High Power = Medium, Opamp Bias = High Power = High, Opamp Bias = High			0.2 0.2 0.5	V V V	
I _{SOA}	Supply Current (including associated AGND buffer) Power = Low, Opamp Bias = High Power = Medium, Opamp Bias = Low Power = Medium, Opamp Bias = High Power = High, Opamp Bias = Low Power = High, Opamp Bias = High Supply Voltage Rejection Ratio	- - - - 52	300 600 1200 2400 4600 80	400 800 1600 3200 6400	μΑ μΑ μΑ μΑ μΑ dB	Vss ≤ VIN ≤ (Vdd - 2.25) or
						$(Vdd - 1.25V) \le VIN \le Vdd$

Table 11. 5V DC Operational Amplifier Specifications

Table 12. 3.3V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input Offset Voltage (absolute value) Power = Low, Opamp Bias = High Power = Medium, Opamp Bias = High High Power is 5 Volts Only		1.65 1.32	10 8	mV mV	
TCV _{OSOA}	Average Input Offset Voltage Drift	_	7.0	35.0	μV/° C	
I _{EBOA}	Input Leakage Current (Port 0 Analog Pins)	-	20	-	pА	Gross tested to 1 µA
C _{INOA}	Input Capacitance (Port 0 Analog Pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25°C
V _{CMOA}	Common Mode Voltage Range	0.2	_	Vdd - 0.2	V	The common-mode input voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the character- istics of the analog output buffer.
G _{OLOA}	Open Loop Gain Power = Low, Opamp Bias = Low Power = Medium, Opamp Bias = Low Power = High, Opamp Bias = Low	60 60 80	-	_	dB	Specification is applicable at high power. For all other bias modes (except high power, high opamp bias), minimum is 60 dB.
V _{OHIGHOA}	High Output Voltage Swing (internal signals) Power = Low, Opamp Bias = Low Power = Medium, Opamp Bias = Low Power = High is 5V only	Vdd - 0.2 Vdd - 0.2 Vdd - 0.2	_ _ _	_ _ _	V V V	
V _{OLOWOA}	Low Output Voltage Swing (internal signals) Power = Low, Opamp Bias = Low Power = Medium, Opamp Bias = Low Power = High, Opamp Bias = Low	- - -	_ _ _	0.2 0.2 0.2	V V V	
I _{SOA}	Supply Current (including associated AGND buffer) Power = Low, Opamp Bias = High Power = Medium, Opamp Bias = Low Power = Medium, Opamp Bias = High Power = High, Opamp Bias = Low Power = High, Opamp Bias = High	- - - - -	300 600 1200 2400 4600	400 800 1600 3200 6400	μΑ μΑ μΑ μΑ	
PSRR _{OA}	Supply Voltage Rejection Ratio	52	80	-	dB	$Vss \le VIN \le (Vdd - 2.25)$ or (Vdd - 1.25V) $\le VIN \le Vdd$

DC Low Power Comparator Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 13. DC Low Power Comparator Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{REFLPC}	Low power comparator (LPC) reference voltage range	0.2	-	Vdd - 1	V	
I _{SLPC}	LPC supply current	-	10	40	μΑ	
V _{OSLPC}	LPC voltage offset	-	2.5	30	mV	

DC Analog Reference Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

The guaranteed specifications are measured through the Analog Continuous Time PSoC blocks. The power levels for AGND refer to the power of the Analog Continuous Time PSoC block. The power levels for RefHi and RefLo refer to the Analog Reference Control register. The limits stated for AGND include the offset error of the AGND buffer local to the Analog Continuous Time PSoC block. Reference control power is high.

Symbol	Description	Min	Тур	Max	Units
BG	Bandgap Voltage Reference	1.28	1.30	1.33	V
_	AGND = Vdd/2	Vdd/2 - 0.04	Vdd/2 - 0.01	Vdd/2 + 0.007	V
_	AGND = 2 x BandGap	2 x BG - 0.048	2 x BG - 0.030	2 x BG + 0.024	V
_	AGND = P2[4] (P2[4] = Vdd/2)	P2[4] - 0.011	P2[4]	P2[4] + 0.011	V
_	AGND = BandGap	BG - 0.009	BG + 0.008	BG + 0.016	V
_	AGND = 1.6 x BandGap	1.6 x BG - 0.022	1.6 x BG - 0.010	1.6 x BG + 0.018	V
-	AGND Block to Block Variation (AGND = Vdd/2)	-0.034	0.000	0.034	V
-	RefHi = Vdd/2 + BandGap	Vdd/2 + BG - 0.10	Vdd/2 + BG	Vdd/2 + BG + 0.10	V
_	RefHi = 3 x BandGap	3 x BG - 0.06	3 x BG	3 x BG + 0.06	V
_	RefHi = 2 x BandGap + P2[6] (P2[6] = 1.3V)	2 x BG + P2[6] - 0.113	2 x BG + P2[6] - 0.018	2 x BG + P2[6] + 0.077	V
_	RefHi = P2[4] + BandGap (P2[4] = Vdd/2)	P2[4] + BG - 0.130	P2[4] + BG - 0.016	P2[4] + BG + 0.098	V
-	RefHi = P2[4] + P2[6] (P2[4] = Vdd/2, P2[6] = 1.3V)	P2[4] + P2[6] - 0.133	P2[4] + P2[6] - 0.016	P2[4] + P2[6]+ 0.100	V
_	RefHi = 3.2 x BandGap	3.2 x BG - 0.112	3.2 x BG	3.2 x BG + 0.076	V
_	RefLo = Vdd/2 – BandGap	Vdd/2 - BG - 0.04	Vdd/2 - BG + 0.024	Vdd/2 - BG + 0.04	V
_	RefLo = BandGap	BG - 0.06	BG	BG + 0.06	V
_	RefLo = 2 x BandGap - P2[6] (P2[6] = 1.3V)	2 x BG - P2[6] - 0.084	2 x BG - P2[6] + 0.025	2 x BG - P2[6] + 0.134	V
_	RefLo = P2[4] – BandGap (P2[4] = Vdd/2)	P2[4] - BG - 0.056	P2[4] - BG + 0.026	P2[4] - BG + 0.107	V
-	RefLo = P2[4]-P2[6] (P2[4] = Vdd/2, P2[6] = 1.3V)	P2[4] - P2[6] - 0.057	P2[4] - P2[6] + 0.026	P2[4] - P2[6] + 0.110	V

Table 16.	5V DC Analog	Reference	Specifications
-----------	--------------	-----------	----------------

Table 17. 3.3V DC Analog Reference Specifications

Symbol	Description	Min	Тур	Мах	Units		
BG	Bandgap Voltage Reference	1.28	1.30	1.33	V		
_	AGND = Vdd/2	Vdd/2 - 0.03	Vdd/2 - 0.01	Vdd/2 + 0.005	V		
_	AGND = 2 x BandGap		Not Allowed				
_	AGND = P2[4] (P2[4] = Vdd/2)	P2[4] - 0.008	P2[4] + 0.001	P2[4] + 0.009	V		
-	AGND = BandGap	BG - 0.009	BG + 0.005	BG + 0.015	V		
_	AGND = 1.6 x BandGap	1.6 x BG - 0.027	1.6 x BG - 0.010	1.6 x BG + 0.018	V		
_	AGND Column to Column Variation (AGND = Vdd/2)	-0.034	0.000	0.034	mV		
_	RefHi = Vdd/2 + BandGap		Not Allowed				
-	RefHi = 3 x BandGap		Not Allowed				
_	RefHi = 2 x BandGap + P2[6] (P2[6] = 0.5V)		Not Allowed				
_	RefHi = P2[4] + BandGap (P2[4] = Vdd/2)	Not Allowed					
_	RefHi = P2[4] + P2[6] (P2[4] = Vdd/2, P2[6] = 0.5V)	P2[4] + P2[6] - 0.075	P2[4] + P2[6] - 0.009	P2[4] + P2[6] + 0.057	V		

AC Electrical Characteristics

AC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Symbol	Description	Min	Тур	Max	Units	Notes
F _{IMO24}	Internal Main Oscillator Frequency for 24 MHz	22.8	24	25.2 ^{[12],[13],[14]}	MHz	Trimmed for 5V or 3.3V operation using factory trim values. See Figure 7 on page 13. SLIMO mode = 0.
F _{IMO6}	Internal Main Oscillator Frequency for 6 MHz	5.75	6	6.35 ^{[12],[13],[14]}	MHz	Trimmed for 5V or 3.3V operation using factory trim values. See Figure 7 on page 13. SLIMO mode = 1.
F _{CPU1}	CPU Frequency (5V Nominal)	0.093	24	24.6 ^{[12],[13]}	MHz	
F _{CPU2}	CPU Frequency (3.3V Nominal)	0.093	12	12.3 ^{[13],[14]}	MHz	
F _{48M}	Digital PSoC Block Frequency	0	48	49.2 ^{[12],[13],[15]}	MHz	Refer to the AC Digital Block Specifica- tions.
F _{24M}	Digital PSoC Block Frequency	0	24	24.6 ^{[13],[15]}	MHz	
F _{32K1}	Internal Low Speed Oscillator Frequency	15	32	75	kHz	
F _{32K2}	External Crystal Oscillator	-	32.76 8	-	kHz	Accuracy is capacitor and crystal dependent. 50% duty cycle.
F _{PLL}	PLL Frequency	-	23.98 6	_	MHz	Is a multiple (x732) of crystal frequency.
Jitter24M2	24 MHz Period Jitter (PLL)	-	-	600	ps	
T _{PLLSLEW}	PLL Lock Time	0.5	-	10	ms	
T _{PLLSLEWSLOW}	PLL Lock Time for Low Gain Setting	0.5	-	50	ms	
T _{OS}	External Crystal Oscillator Startup to 1%	-	1700	2620	ms	
T _{OSACC}	External Crystal Oscillator Startup to 100 ppm	_	2800	3800	ms	The crystal oscillator frequency is within 100 ppm of its final value by the end of the T_{osacc} period. Correct operation assumes a properly loaded 1 uW maximum drive level 32.768 kHz crystal. $3.0V \le Vdd \le 5.5V$, $-40^{\circ}C \le T_A \le 85^{\circ}C$
Jitter32k	32 kHz Period Jitter	-	100		ns	
T _{XRST}	External Reset Pulse Width	10	-	_	μS	
DC24M	24 MHz Duty Cycle	40	50	60	%	
Step24M	24 MHz Trim Step Size	-	50	_	kHz	
Fout48M	48 MHz Output Frequency	46.8	48.0	49.2 ^{[12],[14]}	MHz	Trimmed. Using factory trim values.
Jitter24M1R	24 MHz Period Jitter (IMO) Root Mean Squared	-	-	600	ps	
F _{MAX}	Maximum frequency of signal on row input or row output.	-	-	12.3	MHz	
T _{RAMP}	Supply Ramp Time	0	-	-	μS	

Notes

12. 4.75V < Vdd < 5.25V.

^{13.} Accuracy derived from Internal Main Oscillator with appropriate trim for Vdd range.

^{14. 3.0}V < Vdd < 3.6V. See Application Note AN2012 "Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation" for information on trimming for operation at 3.3V.

^{15.} See the individual user module data sheets for information on maximum frequencies for user modules.

Figure 12. 32 kHz Period Jitter (ECO) Timing Diagram

AC Operational Amplifier Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Settling times, slew rates, and gain bandwidth are based on the Analog Continuous Time PSoC block.

Power = High and Opamp Bias = High is not supported at 3.3V.

Table 24.	5V AC O	perational	Amplifier	Specifications

Symbol	Description	Min	Тур	Max	Units
T _{ROA}	Rising Settling Time from 80% of ΔV to 0.1% of ΔV (10 pF load, Unity Gain)				
	Power = Low, Opamp Bias = Low	-	-	3.9	μS
	Power = Medium, Opamp Bias = High	-	-	0.72	μS
	Power = High, Opamp Bias = High	_	_	0.62	μs
T _{SOA}	Falling Settling Time from 20% of ΔV to 0.1% of ΔV (10 pF load, Unity Gain)				
	Power = Low, Opamp Bias = Low	-	-	5.9	μS
	Power = Medium, Opamp Bias = High	—	-	0.92	μS
	Power = High, Opamp Bias = High	-	-	0.72	μs
SR _{ROA}	Rising Slew Rate (20% to 80%)(10 pF load, Unity Gain)				
	Power = Low, Opamp Bias = Low	0.15	-	-	V/µs
	Power = Medium, Opamp Bias = High	1.7	-	-	V/µs
	Power = High, Opamp Bias = High	6.5	-	-	V/µs
SR _{FOA}	Falling Slew Rate (20% to 80%)(10 pF load, Unity Gain)				
	Power = Low, Opamp Bias = Low	0.01	-	-	V/µs
	Power = Medium, Opamp Bias = High	0.5	-	-	V/µs
	Power = High, Opamp Bias = High	4.0	-	-	V/µs
BW _{OA}	Gain Bandwidth Product				
	Power = Low, Opamp Bias = Low	0.75	-	-	MHz
	Power = Medium, Opamp Bias = High	3.1	-	-	MHz
	Power = High, Opamp Bias = High	5.4	-	-	MHz

Table 25. 3.3V AC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units
T _{ROA}	Rising Settling Time from 80% of ΔV to 0.1% of ΔV (10 pF load, Unity Gain)				
	Power = Low, Opamp Bias = Low	-	-	3.92	μS
	Power = Medium, Opamp Bias = High	-	-	0.72	μS
T _{SOA}	Falling Settling Time from 20% of ΔV to 0.1% of ΔV (10 pF load, Unity Gain)				
	Power = Low, Opamp Bias = Low	-	-	5.41	μS
	Power = Medium, Opamp Bias = High	-	-	0.72	μS
SR _{ROA}	Rising Slew Rate (20% to 80%) (10 pF load, Unity Gain)				
	Power = Low, Opamp Bias = Low	0.31	-	-	V/µs
	Power = Medium, Opamp Bias = High	2.7	-	-	V/µs
SR _{FOA}	Falling Slew Rate (20% to 80%) (10 pF load, Unity Gain)				
_	Power = Low, Opamp Bias = Low	0.24	-	-	V/μs
	Power = Medium, Opamp Bias = High	1.8	-	-	V/µs
BW _{OA}	Gain Bandwidth Product				
5/1	Power = Low, Opamp Bias = Low	0.67	-	-	MHz
	Power = Medium, Opamp Bias = High	2.8	-	_	MHz

When bypassed by a capacitor on P2[4], the noise of the analog ground signal distributed to each block is reduced by a factor of up to 5 (14 dB). This is at frequencies above the corner frequency defined by the on-chip 8.1k resistance and the external capacitor.

At low frequencies, the opamp noise is proportional to 1/f, power independent, and determined by device geometry. At high frequencies, increased power level reduces the noise spectrum level.

Figure 15. Typical Opamp Noise

AC Low Power Comparator Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 26. AC Low Power Comparator Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{RLPC}	LPC response time	-	-	50	μS	\geq 50 mV overdrive comparator

AC Digital Block Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 27. 5V and 3.3V AC Digital Block Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
Timer	Capture Pulse Width	50 ^[16]	_	_	ns	
	Maximum Frequency, No Capture	-	_	49.2	MHz	4.75V < Vdd < 5.25V
	Maximum Frequency, With Capture	-	-	24.6	MHz	
Counter	Enable Pulse Width	50 ^[16]	_	_	ns	
	Maximum Frequency, No Enable Input	-	-	49.2	MHz	4.75V < Vdd < 5.25V
	Maximum Frequency, Enable Input	-	-	24.6	MHz	
Dead Band	Kill Pulse Width:					
	Asynchronous Restart Mode	20	-	-	ns	
	Synchronous Restart Mode	50 ^[16]	_	_	ns	
	Disable Mode	50 ^[16]	_	_	ns	
	Maximum Frequency	-	_	49.2	MHz	4.75V < Vdd < 5.25V
CRCPRS (PRS Mode)	Maximum Input Clock Frequency	-	-	49.2	MHz	4.75V < Vdd < 5.25V
CRCPRS (CRC Mode)	Maximum Input Clock Frequency	-	-	24.6	MHz	
SPIM	Maximum Input Clock Frequency	-	-	8.2	MHz	Maximum data rate at 4.1 MHz due to 2 x over clocking.
SPIS	Maximum Input Clock Frequency	_	_	4.1	MHz	
	Width of SS_ Negated Between Transmis- sions	50 ^[16]	_	_	ns	
Transmitter	Maximum Input Clock Frequency	-	-	24.6	MHz	Maximum data rate at 3.08 MHz due to 8 x over clocking.
	Maximum Input Clock Frequency with Vdd \geq 4.75V, 2 Stop Bits	-	-	49.2	MHz	Maximum data rate at 6.15 MHz due to 8 x over clocking.
Receiver	Maximum Input Clock Frequency	_	_	24.6	MHz	Maximum data rate at 3.08 MHz due to 8 x over clocking.
	Maximum Input Clock Frequency with Vdd \geq 4.75V, 2 Stop Bits	-	_	49.2	MHz	Maximum data rate at 6.15 MHz due to 8 x over clocking.

Note

16.50 ns minimum input pulse width is based on the input synchronizers running at 24 MHz (42 ns nominal period).

AC Analog Output Buffer Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 28. 5V AC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Units
Τ _{ROB}	Rising Settling Time to 0.1%, 1V Step, 100 pF Load Power = Low Power = High			2.5 2.5	μs μs
Т _{SOB}	Falling Settling Time to 0.1%, 1V Step, 100 pF Load Power = Low Power = High			2.2 2.2	μs μs
SR _{ROB}	Rising Slew Rate (20% to 80%), 1V Step, 100 pF Load Power = Low Power = High	0.65 0.65			V/μs V/μs
SR _{FOB}	Falling Slew Rate (80% to 20%), 1V Step, 100 pF Load Power = Low Power = High	0.65 0.65			V/μs V/μs
BW _{OB}	Small Signal Bandwidth, 20mV _{pp} , 3dB BW, 100 pF Load Power = Low Power = High	0.8 0.8			MHz MHz
BW _{OB}	Large Signal Bandwidth, 1V _{pp} , 3dB BW, 100 pF Load Power = Low Power = High	300 300	-	-	kHz kHz

Table 29. 3.3V AC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Units
T _{ROB}	Rising Settling Time to 0.1%, 1V Step, 100 pF Load Power = Low Power = High			3.8 3.8	μs μs
Т _{SOB}	Falling Settling Time to 0.1%, 1V Step, 100 pF Load Power = Low Power = High			2.6 2.6	μs μs
SR _{ROB}	Rising Slew Rate (20% to 80%), 1V Step, 100 pF Load Power = Low Power = High	0.5 0.5			V/μs V/μs
SR _{FOB}	Falling Slew Rate (80% to 20%), 1V Step, 100 pF Load Power = Low Power = High	0.5 0.5			V/μs V/μs
BW _{OB}	Small Signal Bandwidth, 20mV _{pp} , 3dB BW, 100pF Load Power = Low Power = High	0.7 0.7			MHz MHz
BW _{OB}	Large Signal Bandwidth, 1V _{pp} , 3dB BW, 100pF Load Power = Low Power = High	200 200	_	-	kHz kHz

AC External Clock Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 30. 5V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units
F _{OSCEXT}	Frequency	0.093	-	24.6	MHz
-	High Period	20.6	-	5300	ns
-	Low Period	20.6	-	-	ns
_	Power Up IMO to Switch	150	-	-	μS

Table 31. 3.3V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units
F _{OSCEXT}	Frequency with CPU Clock divide by 1 ^[17]	0.093	-	12.3	MHz
F _{OSCEXT}	Frequency with CPU Clock divide by 2 or greater ^[18]	0.186	-	24.6	MHz
_	High Period with CPU Clock divide by 1	41.7	-	5300	ns
_	Low Period with CPU Clock divide by 1	41.7	-	-	ns
_	Power Up IMO to Switch	150	_	_	μS

AC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 32. AC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{RSCLK}	Rise Time of SCLK	1	-	20	ns	
T _{FSCLK}	Fall Time of SCLK	1	-	20	ns	
T _{SSCLK}	Data Set up Time to Falling Edge of SCLK	40	-	-	ns	
T _{HSCLK}	Data Hold Time from Falling Edge of SCLK	40	-	-	ns	
F _{SCLK}	Frequency of SCLK	0	-	8	MHz	
T _{ERASEB}	Flash Erase Time (Block)	-	20	-	ms	
T _{WRITE}	Flash Block Write Time	-	20	-	ms	
T _{DSCLK}	Data Out Delay from Falling Edge of SCLK	-	-	45	ns	Vdd > 3.6
T _{DSCLK3}	Data Out Delay from Falling Edge of SCLK	-	-	50	ns	$3.0 \leq Vdd \leq 3.6$

SAR8 ADC AC Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 33.	SAR8	ADC A	C Spe	cifications
-----------	------	-------	-------	-------------

Symbol	Description	Min	Тур	Max	Units
Freq ₃	Input clock frequency 3V	-	-	3.0	MHz
Freq ₅	Input clock frequency 5V	-	-	3.0	MHz

Notes

^{17.} Maximum CPU frequency is 12 MHz at 3.3V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements. 18. If the frequency of the external clock is greater than 12 MHz, the CPU clock divider must be set to 2 or greater. In this case, the CPU clock divider ensures that the

fifty percent duty cycle requirement is met.

AC I²C Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 34.	AC Characteristics of the I ²	C SDA and SCL Pins for Vdd > 3.0V
-----------	--	-----------------------------------

Symbol	Description	Standa	rd Mode	Fast	Unite	
Symbol	Description	Min	Max	Min	Max	Units
F _{SCLI2C}	SCL Clock Frequency	0	100	0	400	kHz
T _{HDSTAI2C}	Hold Time (repeated) START Condition. After this period, the first clock pulse is generated.	4.0	-	0.6	-	μS
T _{LOWI2C}	LOW Period of the SCL Clock	4.7	-	1.3	-	μS
T _{HIGHI2C}	HIGH Period of the SCL Clock	4.0	-	0.6	-	μS
T _{SUSTAI2C}	Setup Time for a Repeated START Condition	4.7	-	0.6	-	μs
T _{HDDATI2C}	Data Hold Time	0	-	0	-	μS
T _{SUDATI2C}	Data Setup Time	250	-	100 ^[19]	-	ns
T _{SUSTOI2C}	Setup Time for STOP Condition	4.0	-	0.6	-	μS
T _{BUFI2C}	Bus Free Time Between a STOP and START Condition	4.7	-	1.3	_	μs
T _{SPI2C}	Pulse Width of spikes are suppressed by the input filter.	_	_	0	50	ns

Table 35. AC Characteristics of the I²C SDA and SCL Pins for Vdd < 3.0V (Fast Mode Not Supported)

Symbol	Description	Standa	rd Mode	Fast	Unite	
Symbol	Description	Min	Max	Min	Max	Units
F _{SCLI2C}	SCL Clock Frequency	0	100	-	-	kHz
T _{HDSTAI2C}	Hold Time (repeated) START Condition. After this period, the first clock pulse is generated.	4.0	-	-	-	μS
T _{LOWI2C}	LOW Period of the SCL Clock	4.7	-	-	-	μS
T _{HIGHI2C}	HIGH Period of the SCL Clock	4.0	-	-	-	μS
T _{SUSTAI2C}	Setup Time for a Repeated START Condition	4.7	-	-	-	μS
T _{HDDATI2C}	Data Hold Time	0	-	-	-	μS
T _{SUDATI2C}	Data Setup Time	250	-	-	-	ns
T _{SUSTOI2C}	Setup Time for STOP Condition	4.0	-	-	-	μS
T _{BUFI2C}	Bus Free Time Between a STOP and START Condition	4.7	-	-	-	μS
T _{SPI2C}	Pulse Width of spikes are suppressed by the input filter.	_	_	-	_	ns

Figure 16. Definition for Timing for Fast/Standard Mode on the I²C Bus

Note

19. A Fast-Mode I2C-bus device can be used in a Standard-Mode I2C-bus system, but the requirement t_{SU:DAT} ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{rmax} + t_{SU:DAT} = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.

Ordering Information

The following table lists the CY8C24533 PSoC device family key package features and ordering codes.

Table 39. CY8C24533 PSoC Device Family Key Features and Ordering Information

Package	Ordering Code	Flash (Kbytes)	RAM (Bytes)	Temperature Range	Digital Blocks (Rows of 4)	Analog Blocks (Columns of 3)	Digital IO Pins	Analog Inputs	Analog Outputs	XRES Pin
28 Pin (210 Mil) SSOP	CY8C24533-24PVXI	8	256	-40°C to +85°C	4	4	26	12	2	No
28 Pin (210 Mil) SSOP (Tape and Reel)	CY8C24533-24PVXIT	8	256	-40°C to +85°C	4	4	26	12	2	No

Document History Page

Docur Docur	Document Title: CY8C24533 PSoC [®] Programmable System-on-Chip™ Document Number: 001-14643									
Rev	ECN	Orig. of Change	Submission Date	Description of Change						
**	998721	VED	See ECN	New spec.						
*A	1149184	HMT	See ECN	Update Advance to Preliminary. Update features, pinouts, registers, specs., packages, package data, and order information. Convert to new Cypress template.						
*В	1411003	HMT	See ECN	Update formatting edits. Split out device. Update registers and electrical specs. Convert Table Notes to Cypress template style.						
*C	1648723	HMT	See ECN	Update SAR ADC electrical specs. Update INL, DNL, and VOL specs. Finetune specs. Make data sheet Final.						
*D	2616862	OGNE/AESA	12/05/2008	Changed title to: "CY8C24533 PSoC [®] Programmable System-on-Chip™" Changed names of registers on page 10. "SARADC_C0" to "SARADC_CR0" "SARADC_C1" to "SARADC_CR1"						

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at cypress.com/sales.

Products		PSoC Solutions	
PSoC	psoc.cypress.com	General	psoc.cypress.com/solutions
Clocks & Buffers	clocks.cypress.com	Low Power/Low Voltage	psoc.cypress.com/low-power
Wireless	wireless.cypress.com	Precision Analog	psoc.cypress.com/precision-analog
Memories	memory.cypress.com	LCD Drive	psoc.cypress.com/lcd-drive
Image Sensors	image.cypress.com	CAN 2.0b	psoc.cypress.com/can
		USB	psoc.cypress.com/usb

© Cypress Semiconductor Corporation, 2007-2008. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-14643 Rev. *D

Revised December 05, 2008

Page 34 of 34

PSoC Designer[™], Programmable System-on-Chip[™], and PSoC Express[™] are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are property of the respective corporations. Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips. All products and company names mentioned in this document may be the trademarks of their respective holders.