

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	48KB (24K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f6585t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Number							
Pin Name	PIC18	F6X8X	PIC18F8X8X	Pin Type	Buffer Type	Description		
	TQFP	PLCC	TQFP	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,,,,,			
						PORTA is a bidirectional I/O port.		
RA0/AN0	24	34	30					
RA0				I/O	TTL	Digital I/O.		
AN0				I	Analog	Analog input 0.		
RA1/AN1	23	33	29					
RA1				I/O	TTL	Digital I/O.		
AN1				I	Analog	Analog input 1.		
RA2/AN2/VREF-	22	32	28					
RA2				I/O	TTL	Digital I/O.		
AN2				I	Analog	Analog input 2.		
VREF-				I	Analog	A/D reference voltage (Low) input.		
RA3/AN3/VREF+	21	31	27					
RA3				I/O	TTL	Digital I/O.		
AN3					Analog	Analog input 3.		
VREF+				I	Analog	A/D reference voltage (High) input.		
RA4/T0CKI	28	39	34					
RA4				I/O	ST/OD	Digital I/O – Open-drain when		
TOCKI					ST	configured as output.		
				I	51	Timer0 external clock input.		
RA5/AN4/LVDIN	27	38	33	1/0				
RA5 AN4				I/O	TTL	Digital I/O.		
LVDIN					Analog Analog	Analog input 4. Low-voltage detect input.		
				'	Analog			
RA6		I				See the OSC2/CLKO/RA6 pin.		
	L compatit					= CMOS compatible input or output		
		er input	with CMOS le	veis		= Analog input = Output		
I = Ing P = Pc					-	 Output Open-Drain (no P diode to VDD) 		
		- 0000	in all an and the		-	rocontroller – applies to PIC18F8X8X only		

TABLE 1-2: PIC18F6585/8585/6680/8680 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Alternate assignment for CCP2 in all operating modes except Microcontroller – applies to PIC18F8X8X only.
 2: Default assignment when CCP2MX is set.

External memory interface functions are only available on PIC18F8X8X devices.

4: CCP2 is multiplexed with this pin by default when configured in Microcontroller mode; otherwise, it is multiplexed with either RB3 or RC1.

5: PORTH and PORTJ are only available on PIC18F8X8X (80-pin) devices.

6: PSP is available in Microcontroller mode only.

7: On PIC18F8X8X devices, these pins can be multiplexed with RH7/RH6 by changing the ECCPMX configuration bit.

		Pin Number						
Pin Name	PIC18	F6X8X	PIC18F8X8X	Pin Type	Buffer Type	Description		
	TQFP	PLCC	TQFP	Type	Type			
						PORTD is a bidirectional I/O port. These		
						pins have TTL input buffers when externa memory is enabled.		
RD0/PSP0/AD0	58	3	72					
RD0				I/O	ST	Digital I/O.		
PSP0 ⁽⁶⁾				I/O	TTL	Parallel Slave Port data.		
AD0 ⁽³⁾				I/O	TTL	External memory address/data 0.		
RD1/PSP1/AD1	55	67	69					
RD1				I/O	ST	Digital I/O.		
PSP1 ⁽⁶⁾				I/O	TTL	Parallel Slave Port data.		
AD1 ⁽³⁾				I/O	TTL	External memory address/data 1.		
RD2/PSP2/AD2	54	66	68					
RD2				I/O	ST	Digital I/O.		
PSP2 ⁽⁶⁾				I/O	TTL	Parallel Slave Port data.		
AD2 ⁽³⁾				I/O	TTL	External memory address/data 2.		
RD3/PSP3/AD3	53	65	67					
RD3				I/O	ST	Digital I/O.		
PSP3 ⁽⁶⁾				I/O	TTL	Parallel Slave Port data.		
AD3 ⁽³⁾				I/O	TTL	External memory address/data 3.		
RD4/PSP4/AD4	52	64	66		-			
RD4				I/O	ST	Digital I/O.		
PSP4 ⁽⁶⁾ AD4 ⁽³⁾				I/O	TTL	Parallel Slave Port data.		
				I/O	TTL	External memory address/data 4.		
RD5/PSP5/AD5	51	63	65					
RD5				I/O	ST	Digital I/O.		
PSP5 ⁽⁶⁾ AD5 ⁽³⁾				I/O		Parallel Slave Port data.		
				I/O	TTL	External memory address/data 5.		
RD6/PSP6/AD6	50	62	64					
RD6				I/O	ST	Digital I/O.		
PSP6 ⁽⁶⁾ AD6 ⁽³⁾				I/O	TTL	Parallel Slave Port data.		
				I/O	TTL	External memory address/data 6.		
RD7/PSP7/AD7	49	61	63					
RD7				I/O	ST	Digital I/O.		
PSP7 ⁽⁶⁾ AD7 ⁽³⁾				I/O		Parallel Slave Port data.		
				I/O	TTL	External memory address/data 7.		
	L compatik					 CMOS compatible input or output 		
		er input	with CMOS le	vels	Analog	= Analog input		
I = Inj					0	= Output		
P = Pc	ower	0050			OD	= Open-Drain (no P diode to VDD)		

TABLE 1-2: PIC18F6585/8585/6680/8680 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Alternate assignment for CCP2 in all operating modes except Microcontroller - applies to PIC18F8X8X only.

2: Default assignment when CCP2MX is set.

3: External memory interface functions are only available on PIC18F8X8X devices.

4: CCP2 is multiplexed with this pin by default when configured in Microcontroller mode; otherwise, it is multiplexed with either RB3 or RC1.

5: PORTH and PORTJ are only available on PIC18F8X8X (80-pin) devices.

6: PSP is available in Microcontroller mode only.

7: On PIC18F8X8X devices, these pins can be multiplexed with RH7/RH6 by changing the ECCPMX configuration bit.

REGISTER 6-1: MEMCON REGISTER

R/W	/-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
EBD	IS ⁽¹⁾	_	WAIT1	WAIT0	—	—	WM1	WM0
bit 7								bit 0

bit 7 EBDIS: External Bus Disable bit⁽¹⁾

1 = External system bus disabled, all external bus drivers are mapped as I/O ports

0 = External system bus enabled and I/O ports are disabled

Note 1: This bit is ignored when device is accessing external memory either to fetch an instruction or perform TBLRD/TBLWT.

bit 6 Unimplemented: Read as '0'

bit 5-4 WAIT<1:0>: Table Reads and Writes Bus Cycle Wait Count bits

- 11 = Table reads and writes will wait 0 TCY
- 10 = Table reads and writes will wait 1 TCY
- 01 = Table reads and writes will wait 2 TCY
- 00 = Table reads and writes will wait 3 TCY

bit 3-2 Unimplemented: Read as '0'

bit 1-0 WM<1:0>: TBLWT Operation with 16-bit Bus bits

- 1x = Word Write mode: LSB and MSB word output, WRH active when MSB written
- 01 = Byte Select mode: TABLAT data copied on both MS and LS Byte, WRH and (UB or LB) will activate
- 00 = Byte Write mode: TABLAT data copied on both MS and LS Byte, WRH or WRL will activate

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

Note: The MEMCON register is held in Reset in Microcontroller mode.

7.0 DATA EEPROM MEMORY

The data EEPROM is readable and writable during normal operation over the entire VDD range. The data memory is not directly mapped in the register file space. Instead, it is indirectly addressed through the Special Function Registers (SFR).

There are five SFRs used to read and write the program and data EEPROM memory. These registers are:

- EECON1
- EECON2
- EEDATA
- EEADR
- EEADRH

The EEPROM data memory allows byte read and write. When interfacing to the data memory block, EEDATA holds the 8-bit data for read/write and EEADR holds the address of the EEPROM location being accessed. These devices have 1024 bytes of data EEPROM with an address range from 0h to 3FFh.

The EEPROM data memory is rated for high erase/ write cycles. A byte write automatically erases the location and writes the new data (erase-before-write). The write time is controlled by an on-chip timer. The write time will vary with voltage and temperature as well as from chip to chip. Please refer to parameter D122 (Electrical Characteristics, Section 27.0 "Electrical Characteristics") for exact limits.

7.1 EEADRH:EEADR

The address register pair, EEADRH:EEADR, can address up to a maximum of 1024 bytes of data EEPROM.

7.2 EECON1 and EECON2 Registers

EECON1 is the control register for EEPROM memory accesses.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the EEPROM write sequence.

Control bits RD and WR initiate read and write operations, respectively. These bits cannot be cleared, only set in software. They are cleared in hardware at the completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental or premature termination of a write operation.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a $\overline{\text{MCLR}}$ Reset or a WDT Time-out Reset during normal operation. In these situations, the user can check the WRERR bit and rewrite the location. It is necessary to reload the data and address registers (EEDATA and EEADR) due to the Reset condition forcing the contents of the registers to zero.

Note: Interrupt flag bit, EEIF in the PIR2 register, is set when write is complete. It must be cleared in software.

9.0 INTERRUPTS

The PIC18F6585/8585/6680/8680 devices have multiple interrupt sources and an interrupt priority feature that allows each interrupt source to be assigned a high or a low priority level. The high priority interrupt vector is at 000008h while the low priority interrupt vector is at 000018h. High priority interrupt events will override any low priority interrupts that may be in progress.

There are thirteen registers which are used to control interrupt operation. They are:

- RCON
- INTCON
- INTCON2
- INTCON3
- PIR1, PIR2, PIR3
- PIE1, PIE2, PIE3
- IPR1, IPR2, IPR3

It is recommended that the Microchip header files supplied with MPLAB[®] IDE be used for the symbolic bit names in these registers. This allows the assembler/ compiler to automatically take care of the placement of these bits within the specified register.

Each interrupt source (except INT0) has three bits to control its operation. The functions of these bits are:

- Flag bit to indicate that an interrupt event occurred
- Enable bit that allows program execution to branch to the interrupt vector address when the flag bit is set
- · Priority bit to select high priority or low priority

The interrupt priority feature is enabled by setting the IPEN bit (RCON<7>). When interrupt priority is enabled, there are two bits which enable interrupts globally. Setting the GIEH bit (INTCON<7>) enables all interrupts that have the priority bit set. Setting the GIEL bit (INTCON<6>) enables all interrupts that have the priority bit cleared. When the interrupt flag, enable bit and appropriate global interrupt enable bit are set, the interrupt will vector immediately to address 000008h or 000018h depending on the priority level. Individual interrupts can be disabled through their corresponding enable bits.

When the IPEN bit is cleared (default state), the interrupt priority feature is disabled and interrupts are compatible with $PIC^{\textcircled{m}}$ mid-range devices. In Compatibility mode, the interrupt priority bits for each source have no effect. INTCON<6> is the PEIE bit which enables/disables all peripheral interrupt sources. INTCON<7> is the GIE bit which enables/disables all interrupt sources. All interrupt sources banch to address 000008h in Compatibility mode.

When an interrupt is responded to, the global interrupt enable bit is cleared to disable further interrupts. If the IPEN bit is cleared, this is the GIE bit. If interrupt priority levels are used, this will be either the GIEH or GIEL bit. High priority interrupt sources can interrupt a low priority interrupt.

The return address is pushed onto the stack and the PC is loaded with the interrupt vector address (000008h or 000018h). Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bits must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

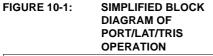
The "return from interrupt" instruction, RETFIE, exits the interrupt routine and sets the GIE bit (GIEH or GIEL if priority levels are used) which re-enables interrupts.

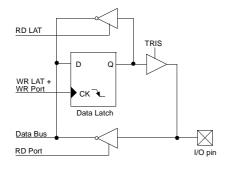
For external interrupt events, such as the INT pins or the PORTB input change interrupt, the interrupt latency will be three to four instruction cycles. The exact latency is the same for one- or two-cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding enable bit or the GIE bit.

R/W										
10/11	-0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
IRX	IE WAKIE	ERRIE	TXB2IE/ TXBnIE	TXB1IE ⁽¹⁾	TXB0IE ⁽¹⁾	RXB1IE/ RXBnIE	RXB0IE/ FIFOWMIE			
bit 7		1			I	I	bit 0			
bit 7 IRXIE	7 IRXIE: CAN Invalid Received Message Interrupt Enable bit									
	1 = Enable invalid message received interrupt									
0 = D	0 = Disable invalid message received interrupt									
bit 6 WAK	E: CAN bus Ac	tivity Wake	-up Interrup	t Enable bit						
	nable bus activi isable bus activ		•							
bit 5 ERRI	E: CAN bus Err	or Interrupt	Enable bit							
	nable CAN bus isable CAN bus		•							
	CAN is in Mod									
	IE: CAN Transr		•	nable bit						
	nable Transmit		•							
	isable Transmit CAN is in Mod		lenupi							
	IE: CAN Transr		nterrupts En	able bit						
	nable transmit b		•		s enabled b	v TXBIE and	BIE0			
	isable all transn					,				
bit 3 TXB1	IE: CAN Transr	nit Buffer 1	Interrupt Er	nable bit ⁽¹⁾						
	nable Transmit isable Transmit		•							
bit 2 TXB0	IE: CAN Transr	nit Buffer 0	Interrupt Er	nable bit ⁽¹⁾						
	nable Transmit isable Transmit		•							
	CAN is in Mod IE: CAN Receiv		Interrupt Er	able bit						
	nable Receive E		•							
	isable Receive		errupt							
RXBr	CAN is in Mod	ve Buffer Ir	•							
0 = D	nable receive bi isable all receiv	e buffer int	• •	al interrupt is	enabled by	BIE0				
RXB	CAN is in Mod	ve Buffer 0	•	able bit						
0 = D	nable Receive E isable Receive	Buffer 0 int	•							
	CAN is in Mod									
	plemented: Re									
	CAN is in Mod MIE: FIFO Wa		torrunt Engl	ole hit						
1 = E	nable FIFO wat isable FIFO wat	ermark inte	errupt							
	e 1: In CAN M		-	forced to '0'						
Lege	nd:									
R = F	eadable bit	W =	Writable bi	t U = U	nimplemente	ed bit, read	as '0'			
- n =	Value at POR	<u>'1</u> ' =	Bit is set	'0' = B	it is cleared	x = Bit i	s unknown			

REGISTER 9-9: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

10.0 I/O PORTS


Depending on the device selected, there are either seven or nine I/O ports available on PIC18F6X8X/8X8X devices. Some of their pins are multiplexed with one or more alternate functions from the other peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.


Each port has three registers for its operation. These registers are:

- TRIS register (data direction register)
- PORT register (reads the levels on the pins of the device)
- LAT register (output latch)

The Data Latch register (LAT) is useful for read-modify-write operations on the value that the I/O pins are driving.

A simplified version of a generic I/O port and its operation is shown in Figure 10-1.

10.1 PORTA, TRISA and LATA Registers

PORTA is a 7-bit wide, bidirectional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch.

The Data Latch register (LATA) is also memory mapped. Read-modify-write operations on the LATA register read and write the latched output value for PORTA.

The RA4 pin is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an opendrain output. All other RA port pins have TTL input levels and full CMOS output drivers.

The RA6 pin is only enabled as a general I/O pin in ECIO and RCIO Oscillator modes.

The other PORTA pins are multiplexed with analog inputs and the analog VREF+ and VREF- inputs. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register 1).

Note:	On a Power-on Reset, RA5 and RA3:RA0							
	are configured as analog inputs and read							
	as '0'. RA6 and RA4 are configured as							
	digital inputs.							

The TRISA register controls the direction of the RA pins even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 10-1: INITIALIZING PORTA

CLRF	PORTA		Initialize PORTA by clearing output
CLRF	LATA	;;	data latches Alternate method to clear output data latches
MOVLW MOVWF MOVLW MOVWF	0Fh ADCON1 0CFh TRISA	;;;;	Configure A/D for digital inputs Value used to initialize data direction Set RA<3:0> as inputs
		;	RA<5:4> as outputs

'0' = Bit is cleared

x = Bit is unknown

REGISTER 10-1:	PSPCON	REGISTER	ર						
	R-0	R-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
	IBF	OBF	IBOV	PSPMODE	_	—	—	_	
	bit 7							bit 0	
bit 7	IBF: Input Buffer Full Status bit 1 = A data byte has been received and is waiting to be read by the CPU 0 = No data byte has been received								
bit 6	OBF: Output Buffer Full Status bit 1 = The output buffer still holds a previously written data byte 0 = The output buffer has been read								
bit 5	 IBOV: Input Buffer Overflow Detect bit 1 = A write occurred when a previously input data byte has not been read (must be cleared in software) 0 = No overflow occurred 								
bit 4	PSPMODE: Parallel Slave Port Mode Select bit 1 = Parallel Slave Port mode 0 = General Purpose I/O mode								
bit 3-0	Unimplemented: Read as '0'								
	Legend:								
	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								

FIGURE 10-29:	PARALLEL SLAVE PORT WRITE WAVEFORMS
---------------	-------------------------------------

- n = Value at POR

	Q1 Q2 Q3 Q4 Q1 Q2 Q3	Q4	Q1 Q2 Q3 Q4
			1 1 1 1
WR		/ / 	1 1 1
RD		1 	
PORTD<7:0>		1 1 1	1 1 1 1
IBF		/	,
OBF		1 1 1	1 1 1 1
PSPIF		/	1

'1' = Bit is set

15.0 CAPTURE/COMPARE/PWM (CCP) MODULES

PIC18FXX80/XX85 devices contain a total of two CCP modules: CCP1 and CCP2. CCP1 is an enhanced version of the CCP2 module. CCP1 is fully backward compatible with the CCP2 module.

The CCP1 module differs from CCP2 in the following respect:

- CCP1 contains a special trigger event that may reset Timer1 or the Timer3 register pair
- CCP1 contains "CAN Message Time-Stamp Trigger"
- CCP1 contains enhanced PWM output with programmable dead band and auto-shutdown functionality

Additionally, the CCP2 special event trigger may be used to start an A/D conversion if the A/D module is enabled.

To avoid duplicate information, this section describes basic CCP module operation that applies to both CCP1 and CCP2. Enhanced CCP functionality of the CCP1 module is described in **Section 16.0 "Enhanced Capture/Compare/PWM (ECCP) Module"**.

The control registers for the CCP1 and CCP2 modules are shown in Register 15-1 and Register 15-2, respectively. Table 15-2 details the interactions of the CCP and ECCP modules.

REGISTER 15-1: CCP1CON REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0
bit 7	•			•			bit 0

bit 7-6 **P1M1:P1M0:** Enhanced PWM Output Configuration bits

<u>If CCP1M<3:2> = 00, 01, 10:</u>

xx =P1A assigned as capture/compare input; P1B, P1C, P1D assigned as port pins
If CCP1M<3:2> = 11:

00 = Single output; P1A modulated; P1B, P1C, P1D assigned as port pins

01 = Full-bridge output forward; P1D modulated; P1A active; P1B, P1C inactive

10 = Half-bridge output; P1A, P1B modulated with dead-band control; P1C, P1D assigned as port pins

11 = Full-bridge output reverse; P1B modulated; P1C active; P1A, P1D inactive

bit 5-4 DC1B1:DC1B0: PWM Duty Cycle bit 1 and bit 0

Capture mode:

Unused. Compare mode:

Unused.

PWM mode:

These bits are the two LSbs of the 10-bit PWM duty cycle. The eight MSbs of the duty cycle are found in CCPR1L.

bit 3-0 CCP1M3:CCP1M0: Enhanced CCP Mode Select bits

- 0000 = Capture/Compare/PWM off (resets CCP1 module)
- 0001 = Reserved
- 0010 = Compare mode, toggle output on match
- 0011 = Reserved
- 0100 = Capture mode, every falling edge
- 0101 = Capture mode, every rising edge
- 0110 = Capture mode, every 4th rising edge
- 0111 = Capture mode, every 16th rising edge
- 1000 = Compare mode, initialize CCP pin low, on compare match force CCP pin high
- 1001 = Compare mode, initialize CCP pin high, on compare match force CCP pin low
- 1010 = Compare mode, generate software interrupt only, CCP pin is unaffected
- 1011 = Compare mode, trigger special event, resets TMR1 or TMR3
- 1100 = PWM mode; P1A, P1C active-high; P1B, P1D active-high
- 1101 = PWM mode; P1A, P1C active-high; P1B, P1D active-low
- 1110 = PWM mode; P1A, P1C active-low; P1B, P1D active-high
- 1111 = PWM mode; P1A, P1C active-low; P1B, P1D active-low

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

15.1 CCP Module

Both CCP1 and CCP2 are comprised of two 8-bit registers: CCPRxL (low byte) and CCPRxH (high byte), $1 \le x \le 2$. The CCPxCON register controls the operation of CCPx. All are readable and writable.

Table 15-1 shows the timer resources of the CCP module modes.

TABLE 15-1: CCP MODE – TIMER RESOURCE

CCP Mode	Timer Resource			
Capture	Timer1 or Timer3			
Compare	Timer1 or Timer3			
PWM	Timer2			

15.2 Capture Mode

In Capture mode, CCPRxH:CCPRxL captures the 16-bit value of the TMR1 or TMR3 register when an event occurs on pin CCPn. An event is defined as:

- · every falling edge
- · every rising edge
- every 4th rising edge
- every 16th rising edge

An event is selected by control bits CCPxM3:CCPxM0 (CCPxCON<3:0>). When a capture is made, the interrupt request flag bit, CCPxIF (PIR registers), is set. It must be cleared in software. If another capture occurs before the value in register CCPRx is read, the old captured value will be lost.

15.2.1 CCP PIN CONFIGURATION

In Capture mode, the CCPx pin should be configured as an input by setting the appropriate TRIS bit.

Note:	If the CCPx is configured as an output, a									
	write to the port can cause a capture									
	condition.									

15.2.2 TIMER1/TIMER3 MODE SELECTION

The timer used with each CCP module is selected in the T3CCP2:T3CCP1 bits of the T3CON register. The timers used with the capture feature (either Timer1 or Timer3) must be running in Timer mode or Synchronized Counter mode. In Asynchronous Counter mode, the capture operation may not work.

CCP1 Mode	CCP2 Mode	Interaction
Capture	Capture	TMR1 or TMR3 time base. Time base can be different for each CCP.
Capture	Compare	The compare could be configured for the special event trigger which clears either TMR1 or TMR3 depending upon which time base is used.
Compare	Compare	The compare(s) could be configured for the special event trigger which clears TMR1 or TMR3 depending upon which time base is used.
PWM	PWM	The PWMs will have the same frequency and update rate (TMR2 interrupt).
PWM	Capture	None.
PWM	Compare	None.

TABLE 15-2: INTERACTION OF CCP MODULES

		SYNC = 0, BRGH = 0, BRG16 = 1												
BAUD RATE	Fosc = 40.000 MHz			Fosc = 20.000 MHz		Fosc = 10.000 MHz			Fosc = 8.000 MHz					
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)		
0.3	0.300	0.00	8332	0.300	0.02	4165	0.300	0.02	2082	300	-0.04	1665		
1.2	1.200	0.02	2082	1.200	-0.03	1041	1.200	-0.03	520	1201	-0.16	415		
2.4	2.402	0.06	1040	2.399	-0.03	520	2.404	0.16	259	2403	-0.16	207		
9.6	9.615	0.16	259	9.615	0.16	129	9.615	0.16	64	9615	-0.16	51		
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19230	-0.16	25		
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55555	3.55	8		
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	—	_	—		

BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

		SYNC = 0, BRGH = 0, BRG16 = 1										
BAUD	Fosc = 4.000 MHz			Fosc = 2.000 MHz			Fosc = 1.000 MHz					
RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)			
0.3	0.300	0.04	832	300	-0.16	415	300	-0.16	207			
1.2	1.202	0.16	207	1201	-0.16	103	1201	-0.16	51			
2.4	2.404	0.16	103	2403	-0.16	51	2403	-0.16	25			
9.6	9.615	0.16	25	9615	-0.16	12	_	_	_			
19.2	19.231	0.16	12	—	_	—	_	_	_			
57.6	62.500	8.51	3	_	_	_	_	_	_			
115.2	125.000	8.51	1	—	_	_	—	—	—			

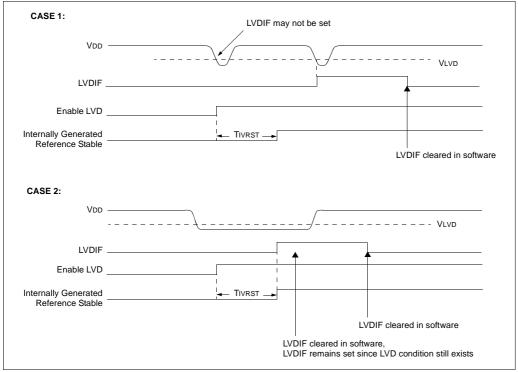
	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1												
BAUD	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz			
RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	0.300	0.00	33332	0.300	0.00	16665	0.300	0.00	8332	300	-0.01	6665	
1.2	1.200	0.00	8332	1.200	0.02	4165	1.200	0.02	2082	1200	-0.04	1665	
2.4	2.400	0.02	4165	2.400	0.02	2082	2.402	0.06	1040	2400	-0.04	832	
9.6	9.606	0.06	1040	9.596	-0.03	520	9.615	0.16	259	9615	-0.16	207	
19.2	19.193	-0.03	520	19.231	0.16	259	19.231	0.16	129	19230	-0.16	103	
57.6	57.803	0.35	172	57.471	-0.22	86	58.140	0.94	42	57142	0.79	34	
115.2	114.943	-0.22	86	116.279	0.94	42	113.636	-1.36	21	117647	-2.12	16	

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1										
BAUD	Fosc = 4.000 MHz			Fosc = 2.000 MHz			Fosc = 1.000 MHz					
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)			
0.3	0.300	0.01	3332	300	-0.04	1665	300	-0.04	832			
1.2	1.200	0.04	832	1201	-0.16	415	1201	-0.16	207			
2.4	2.404	0.16	415	2403	-0.16	207	2403	-0.16	103			
9.6	9.615	0.16	103	9615	-0.16	51	9615	-0.16	25			
19.2	19.231	0.16	51	19230	-0.16	25	19230	-0.16	12			
57.6	58.824	2.12	16	55555	3.55	8	_	_	_			
115.2	111.111	-3.55	8	_	-	_	_	_	_			

© 2003-2013 Microchip Technology Inc.

TABLE 18-3:

22.2 Operation


Depending on the power source for the device voltage, the voltage normally decreases relatively slowly. This means that the LVD module does not need to be constantly operating. To decrease the current requirements, the LVD circuitry only needs to be enabled for short periods where the voltage is checked. After doing the check, the LVD module may be disabled.

Each time that the LVD module is enabled, the circuitry requires some time to stabilize. After the circuitry has stabilized, all status flags may be cleared. The module will then indicate the proper state of the system.

The following steps are needed to set up the LVD module:

- Write the value to the LVDL3:LVDL0 bits (LVDCON register) which selects the desired LVD trip point.
- 2. Ensure that LVD interrupts are disabled (the LVDIE bit is cleared or the GIE bit is cleared).
- 3. Enable the LVD module (set the LVDEN bit in the LVDCON register).
- 4. Wait for the LVD module to stabilize (the IRVST bit to become set).
- Clear the LVD interrupt flag which may have falsely become set until the LVD module has stabilized (clear the LVDIF bit).
- 6. Enable the LVD interrupt (set the LVDIE and the GIE bits).

Figure 22-4 shows typical waveforms that the LVD module may be used to detect.

FIGURE 22-4: LOW-VOLTAGE DETECT WAVEFORMS

FER 23-50:	MSEL2: M	ASK SELE	CT REGIS	TER 2('')				
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	FIL11_1	FIL11_0	FIL10_1	FIL10_0	FIL9_1	FIL9_0	FIL8_1	FIL8_0
	bit 7							bit 0
bit 7-6	-	11_0: Filter 1	1 Select bits	s 1 and 0				
	11 = No mas 10 = Filter 1							
		o ance Mask 1						
		ance Mask 0						
bit 5-4	FIL10_1:FIL	.10_0: Filter 1	0 Select bit	s 1 and 0				
	11 = No mas	sk						
	10 = Filter 1	5						
	•	ance Mask 1						
		ance Mask 0						
bit 3-2	—	_0: Filter 9 S	elect bits 1	and 0				
	11 = No mas							
	10 = Filter 1	5 ance Mask 1						
	•	ance Mask 0						
bit 1-0		0: Filter 8 S	elect bits 1	and 0				
	11 = No mas	sk						
	10 = Filter 1	5						
		ance Mask 1						
	00 = Accept	ance Mask 0						
	Note 1:	This register is	s available i	n Mode 1 ar	nd 2 only.			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 23-50: MSEL2: MASK SELECT REGISTER 2⁽¹⁾

23.15.2 TRANSMIT INTERRUPT

When the transmit interrupt is enabled, an interrupt will be generated when the associated transmit buffer becomes empty and is ready to be loaded with a new message. In Mode 0, there are separate interrupt enable/disable and flag bits for each of the three dedicated transmit buffers. The TXBnIF bit will be set to indicate the source of the interrupt. The interrupt is cleared by the MCU resetting the TXBnIF bit to a '0'. In Mode 1 and 2, all transmit buffers share one interrupt enable/disable and flag bits. In Mode 1 and 2, TXBIE in PIE3 and TXBIF in PIR3 indicate when a transmit buffer has completed transmission of its message. TXBnIF, TXBnIE and TXBnIP in PIR3, PIE3 and IPR3, respectively, are not used in Mode 1 and 2. Individual transmit buffer interrupts can be enabled or disabled by setting or clearing TXBIE and BnIE register bits. When a shared interrupt occurs, user firmware must poll the TXREQ bit of all transmit buffers to detect the source of interrupt.

23.15.3 RECEIVE INTERRUPT

When the receive interrupt is enabled, an interrupt will be generated when a message has been successfully received and loaded into the associated receive buffer. This interrupt is activated immediately after receiving the End Of Frame (EOF) field.

In Mode 0, the RXBnIF bit is set to indicate the source of the interrupt. The interrupt is cleared by the MCU resetting the RXBnIF bit to a '0'.

In Mode 1 and 2, all receive buffers share one interrupt. Individual receive buffer interrupts can be controlled by the RXBnIE and BIEn registers. In Mode 1, when a shared receive interrupt occurs, user firmware must poll the RXFUL bit of each receive buffer to detect the source of interrupt. In Mode 2, a receive interrupt indicates that the new message is loaded into FIFO. FIFO can be read by using FIFO pointer bits, FP.

In Mode 2, the FIFOWMIF bit indicates if the FIFO high watermark is reached. The FIFO high watermark is defined by the FIFOWM bit in the ECANCON register.

23.15.4 MESSAGE ERROR INTERRUPT

When an error occurs during transmission or reception of a message, the message error flag, IRXIF, will be set and if the IRXIE bit is set, an interrupt will be generated. This is intended to be used to facilitate baud rate determination when used in conjunction with Listen Only mode.

23.15.5 BUS ACTIVITY WAKE-UP INTERRUPT

When the PIC18F6585/8585/6680/8680 devices are in Sleep mode and the bus activity wake-up interrupt is enabled, an interrupt will be generated and the WAKIF bit will be set when activity is detected on the CAN bus. This interrupt causes the PIC18F6585/8585/6680/ 8680 devices to exit Sleep mode. The interrupt is reset by the MCU, clearing the WAKIF bit.

23.15.6 ERROR INTERRUPT

When the error interrupt is enabled, an interrupt is generated if an overflow condition occurs or if the error state of the transmitter or receiver has changed. The error flags in COMSTAT will indicate one of the following conditions.

23.15.6.1 Receiver Overflow

An overflow condition occurs when the MAB has assembled a valid received message (the message meets the criteria of the acceptance filters) and the receive buffer associated with the filter is not available for loading of a new message. The associated COMSTAT.RXnOVFL bit will be set to indicate the overflow condition. This bit must be cleared by the MCU.

23.15.6.2 Receiver Warning

The receive error counter has reached the MCU warning limit of 96.

23.15.6.3 Transmitter Warning

The transmit error counter has reached the MCU warning limit of 96.

23.15.6.4 Receiver Bus Passive

The receive error counter has exceeded the errorpassive limit of 127 and the device has gone to error-passive state.

23.15.6.5 Transmitter Bus Passive

The transmit error counter has exceeded the errorpassive limit of 127 and the device has gone to error-passive state.

23.15.6.6 Bus-Off

The transmit error counter has exceeded 255 and the device has gone to bus-off state.

23.15.6.7 Interrupt Acknowledge

Interrupts are directly associated with one or more status flags in the PIR register. Interrupts are pending as long as one of the flags is set. Once an interrupt flag is set by the device, the flag can not be reset by the microcontroller until the interrupt condition is removed.

	Branch if	Zero		С				
tax:	[label] B	Zn		S				
rands:	-128 ≤ n ≤	-128 ≤ n ≤ 127						
ration:	if Zero bit i	is '1'						
				0				
us Affected:	None							
oding:	1110	0000 nn	nn nnnn					
cription:	program w The 2's co added to tl have incre instruction PC+2+2n.	If the Zero bit is '1', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC+2+2n. This instruction is then a two-cycle instruction.						
Words: 1								
es:	1(2)							
Cycle Activity ump:	:							
Q1	Q2	Q3	Q4					
Decode	Read literal 'n'	Process Data	Write to PC					
No	No	No	No					
	operation	operation	operation	14				
-	0.0	0.0	<u>.</u>	N				
	1			С				
Decode	Read literal 'n'	Process Data	No operation	C				
PC	= address tion = 1; = address = 0;	(HERE)	,	Ē				
	rands: ration: us Affected: oding: cription: ds: les: Cycle Activity ump: Q1 Decode No operation o Jump: Q1 Decode No operation o Jump: Q1 Decode No operation o Jump: Q1 Decode	tax: [label] B rands: -128 \leq n \leq ration: if Zero bit i (PC) + 2 + us Affected: None bding: 1110 cription: If the Zero program w The 2's co added to th have incre instruction PC+2+2n. a two-cycle ds: 1 les: 1(2) Cycle Activity: ump: Q1 Q2 Decode Read literal 'n' No No operation operation o Jump: Q1 Q2 Decode Read literal 'n' No No operation operation o Jump: Q1 Q2 Decode Read literal 'n' No No operation o Jump: Q1 Q2 Decode Read literal 'n' Mole Read literal 'n'	rands: -128 ≤ n ≤ 127 ration: if Zero bit is '1' (PC) + 2 + 2n → PC us Affected: None oding: 1110 0000 nn cription: If the Zero bit is '1', the program will branch. The 2's complement n added to the PC. Since have incremented to fn instruction, the new acc PC+2+2n. This instru a two-cycle instruction ds: 1 les: 1(2) Cycle Activity: Junp: Q1 Q2 Q3 Decode Read literal 'n' Process Data No No No operation operation operation 0 Jump: Q1 Q2 Q3 Decode Read literal 'n' Process Data mple: HERE BZ Jump Q1 Q2 Q3 Decode Read literal 'n' Process Data Process Data Mple: HERE BZ Jump Before Instruction If Zero = 1; PC = address (HERE) After Instruction If Zero = 1; PC = address (Jump)	tax: [<i>label</i>] BZ n rands: -128 \leq n \leq 127 ration: if Zero bit is '1' (PC) + 2 + 2n \rightarrow PC us Affected: None oding: 1110 0000 nnnn nnn cription: If the Zero bit is '1', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC+2+2n. This instruction is then a two-cycle instruction. ds: 1 les: 1(2) Cycle Activity: ump: Q1 Q2 Q3 Q4 Decode Read literal Process Write to PC 'n' Data Vrite to PC 'n' Data Operation operation operation operation o Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No operation operation operation o Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No operation operation operation o Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No operation operation o Jump: Q1 Q2 Q3 Q4 Decode Read literal Process No in' Data Operation MD4 Decode Read literal Process No in' Data Operation Data Operation PC = address (HERE) After Instruction If Zero = 1; PC = address (Jump) If Zero = 0;				

CAL	L	Subrouti	ne Call						
Synt	ax:	[label]	CALL k	: [,s]					
Ope	rands:	$0 \le k \le 10$ s $\in [0,1]$	0 ≤ k ≤ 1048575 s ∈ [0,1]						
Ope	ration:	$\begin{array}{l} (PC) + 4 \rightarrow TOS, \\ k \rightarrow PC < 20:1>, \\ \text{if } s = 1 \\ (W) \rightarrow WS, \\ (STATUS) \rightarrow STATUSS, \\ (BSR) \rightarrow BSRS \end{array}$							
Statu	us Affected:	None							
1st v	oding: vord (k<7:0>) word(k<19:8		110s k ₁₉ kkk	k ₇ kkk kkkk	kkkk ₀ kkkk ₈				
memory range. First, ret address (PC+ 4) is pushe return stack. If 's' = 1, th Status and BSR registers pushed into their respect shadow registers, WS, S and BSRS. If 's' = 0, no occurs (default). Then, th value 'k' is loaded into Pt CALL is a two-cycle instr					onto the W, are also e ATUSS odate 20-bit <20:1>.				
Wor	ds:	2							
Cycl	es:	2							
QC	ycle Activity:								
	Q1	Q2	Q3	3	Q4				
	Decode	Read literal 'k'<7:0>,	Push P stac	k 'k'	ad literal <19:8>, ite to PC				
	No	No	No		No				
	operation	operation	operat	ion op	peration				
<u>Exar</u>	<u>mple</u> :	HERE	CALL	THERE,	1				
Before Instruction PC = address (HERE)									
	After Instruction PC = address (THERE) TOS = address (HERE + 4) WS = W BSRS = BSR STATUSS = STATUS								

GOT	о	Unconditional Branch						INC	=	
Synta	ax:	[label]	GOTO	k			•	Synt	ax:	
Oper	rands:	$0 \le k \le 10$)48575					Ope	rands:	
Oper	ration:	$k \rightarrow PC < 2$	20:1>							
Statu	us Affected:	None	None					Operation:		
1st w	oding: vord (k<7:0>) word(k<19:8>	1110) 1111	1111 k ₁₉ kkk	k ₇ kl kkk		kkkk ₀ kkkk ₈		Statu	us Affected: oding:	
Desc	pription:	GOTO allows an unconditional Description: branch anywhere within entire 2-Mbyte memory range. The 20-bit value 'k' is loaded into PC<20:1>. GOTO is always a two-cycle instruction. Instruction.								
Word	ds:	2								
Cycle	es:	2								
QC	ycle Activity:							Wor	ds:	
	Q1	Q2	Q	3		Q4	-	Cvcl	es.	
	Decode	Read literal 'k'<7:0>,	No operat		'k'•	ad literal <19:8>, te to PC			ycle Activity Q1	y:
	No operation	No operation	No operat		ор	No eration			Decode	1

Example: GOTO THERE

After Instruction

PC = Address (THERE)

INCF	Incremen	t f					
Syntax:	[label]	INCF	f [,d [,a	a]]			
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	• • •					
Operation:	(f) + 1 \rightarrow 0	dest					
Status Affected:	C, DC, N	C, DC, N, OV, Z					
Encoding:	0010	10da ffi		f ffff			
		n W. If ' back in f 'a' is ' be selec alue. If be selec	d' is '1 registe D', the cted, o 'a' = 1 cted as	Access verriding , then the			
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q Cycle Activity: Q1	Q2	Q	3	Q4			
		Q3 Proce Data	ss	Q4 Write to destination			
Q1	Q2 Read	Proce Data	ss	Write to			

RRNCF	Rotate Ri	ight f (no ca	rry)	SET	F	Set f		
Syntax:	[label]	RRNCF f[,d [,a]]	Synt	ax:	[label] S	ETF f[,a]	
Operands:	$0 \le f \le 25$ $d \in [0,1]$	5		Ope	rands:	0 ≤ f ≤ 255 a ∈ [0,1]	5	
	a ∈ [0,1]			Ope	ration:	$FFh\tof$		
Operation:		dest <n-1>, dest<7></n-1>		State	us Affected:	None		
Status Affected:	(f<0>) → dest<7> N, Z 0100 00da ffff ffff		Enco	oding:	0110	100a ff:	ff ffff	
Encoding:			Des	Description:		The contents of the specified		
Description:' The contents of register 'f' are rotated one bit to the right. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in				register are set to FFh. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value (default).				
	register 'f' (default). If 'a' is 'o', the Access Bank will be selected, overriding the BSR value. If 'a' is			Wor	ds:	1		
				Cycl	es:	1		
'1', the		1', then the bank will be selected		QC	ycle Activity	:		
	as per the	BSR value	<u> </u>		Q1	Q2	Q3	Q4
		 registe 	r f		Decode	Read register 'f'	Process Data	Write register 'f'
Words:	1							
Cycles:	1			Exa	<u>mple</u> :	SETF	REG,1	
Q Cycle Activity:					Before Instru			
Q1	Q2	Q3	Q4		REG After Instruc			
Decode	Read register 'f'	Process Data	Write to destination		REG	= 0xFF		
Example 1:	RRNCF	REG, 1, 0						
Before Instru REG	iction = 1101	0111						
After Instruc REG	tion = 1110 :	1011						
Example 2:	RRNCF	REG, 0, 0						
Before Instru	iction							
W REG	= ? = 1101	0111						
After Instruc								
w REG	= 1110 : = 1101 :							
REG	- 1101							

NOTES:

APPENDIX C: CONVERSION CONSIDERATIONS

This appendix discusses the considerations for converting from previous versions of a device to the ones listed in this data sheet. Typically, these changes are due to the differences in the process technology used. An example of this type of conversion is from a PIC17C756 to a PIC18F8720.

Not Applicable

APPENDIX D: MIGRATION FROM MID-RANGE TO ENHANCED DEVICES

A detailed discussion of the differences between the mid-range MCU devices (i.e., PIC16CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in AN716, "Migrating Designs from PIC16C74A/74B to PIC18C442." The changes discussed, while device specific, are generally applicable to all mid-range to enhanced device migrations.

This Application Note is available as Literature Number DS00716.

F

Firmware Instructions	. 365
Flash Program Memory	83
Associated Registers	92
Control Registers	84
Erase Sequence	88
Erasing	88
Operation During Code	
Protection	92
Reading	87
Table Pointer	
Boundaries Based on Operation	86
Table Pointer Boundaries	86
Table Reads and Table Writes	83
Write Sequence	90
Writing to	89
Protection Against Spurious	
Writes	92
Unexpected Termination	92
Write Verify	
G	
General Call Address Support	.212

General Call Address Support	212
GOTO	386

Н

Hardware Multiplier)7
Introduction)7
Operation10)7
Performance Comparison	
(table))7
1	
I/O Ports12	25
I ² C Bus Data Requirements	
(Slave Mode) 44	2
I ² C Bus Start/Stop Bits Requirements	
(Slave Mode) 44	1
I ² C Mode	
General Call Address Support21	2
Master Mode	
Operation21	4
Read/Write Bit Information	
(R/W Bit))3
Serial Clock (RC3/SCK/SCL))3
ID Locations	52
INCF	36
INCFSZ	37
In-Circuit Debugger	52
Resources (table)	52
In-Circuit Serial Programming	
(ICSP)	52
Indirect Addressing	
INDF and FSR Registers7	' 9
Operation7	
Indirect File Operand5	
INFSNZ	
Instruction Flow/Pipelining	
Instruction Format	

Instruction Set	 365
	 271
ADDWFC	 372
	 372
BC	 373
BCE	 374
BNC	 375
BNN	 375
BNZ	 376
BOV	 379
BTFSC	 378
BTESS	 378
BZ	 380
CALL	380
CLRWDT	 381
COME	 382
CPFSGT	 383
CPESI T	 383
DCFSNZ	 385
DECF	 384
GOTO	 386
INCF	 386
IORLW	 388
MOVF	 389
MOVEE	 390
MOVLW	 391
MOVWF	 391
NEGF	 393
NOP	 393
PUSH	 394
RCALL	 395
RETFIE	 396
RETI W	 396
RLCF	 397
RLNCF	 398
SETF	 399