

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	68-LCC (J-Lead)
Supplier Device Package	68-PLCC (24.23x24.23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f6680-e-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

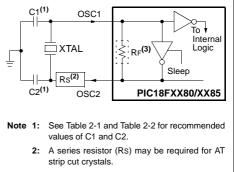
2.0 OSCILLATOR CONFIGURATIONS

2.1 Oscillator Types

The PIC18F6585/8585/6680/8680 devices can be operated in eleven different oscillator modes. The user can program four configuration bits (FOSC3, FOSC2, FOSC1 and FOSC0) to select one of these eleven modes:

- 1. LP Low-Power Crystal 2. XT Crvstal/Resonator 3. HS High-Speed Crystal/Resonator 4. RC External Resistor/Capacitor EC 5. External Clock ECIO External Clock with I/O 6. pin enabled
- 7. HS+PLL High-Speed Crystal/Resonator with PLL enabled
- 8. RCIO External Resistor/Capacitor with I/O pin enabled
- 9. ECIO+SPLL External Clock with software controlled PLL
- 10. ECIO+PLL External Clock with PLL and I/O pin enabled
- 11. HS+SPLL High-Speed Crystal/Resonator with software control

2.2 Crystal Oscillator/Ceramic Resonators


In XT, LP, HS, HS+PLL or HS+SPLL Oscillator modes, a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation. Figure 2-1 shows the pin connections.

The PIC18F6585/8585/6680/8680 oscillator design requires the use of a parallel cut crystal.

Note:	Use of a series cut crystal may give a fre-
	quency out of the crystal manufacturers
	specifications.

FIGURE 2-1:

CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP CONFIGURATION)

3: RF varies with the oscillator mode chosen.

TABLE 2-1: CAPACITOR SELECTION FOR CERAMIC RESONATORS

	Ranges Tested:									
Mode	Freq	C1	C2							
ХТ	455 kHz	68-100 pF	68-100 pF							
	2.0 MHz	15-68 pF	15-68 pF							
	4.0 MHz	15-68 pF	15-68 pF							
HS	8.0 MHz	10-68 pF	10-68 pF							
	16.0 MHz	10-22 pF	10-22 pF							

These values are for design guidance only. See notes following this table.

Resonators Used:							
2.0 MHz	Murata Erie CSA2.00MG	$\pm 0.5\%$					
4.0 MHz	Murata Erie CSA4.00MG	$\pm 0.5\%$					
8.0 MHz Murata Erie CSA8.00MT ± 0.5%							
16.0 MHz Murata Erie CSA16.00MX ± 0.5%							
All resonators used did not have built-in capacitors.							

Note 1: Higher capacitance increases the stability of the oscillator, but also increases the start-up time.

- 2: When operating below 3V VDD, or when using certain ceramic resonators at any voltage, it may be necessary to use high gain HS mode, try a lower frequency resonator, or switch to a crystal oscillator.
- Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components, or verify oscillator performance.

TABLE 3-1: TIME-OUT IN VARIOUS SITUATIO	NS
---	----

Oscillator	Power-up ^{(;}	2)	_	Wake-up from	
Configuration	PWRTE = 0PWRTE = 1		Brown-out	Sleep or Oscillator Switch	
HS with PLL enabled ⁽¹⁾	72 ms + 1024 Tosc + 2ms	1024 Tosc + 2 ms	1024 Tosc + 2 ms	1024 Tosc + 2 ms	
EC with PLL enabled ⁽¹⁾	72 ms + 2ms	1.5 μs + 2 ms	2 ms	1.5 μs + 2 ms	
HS, XT, LP	72 ms + 1024 Tosc	1024 Tosc	1024 Tosc	1024 Tosc	
EC	72 ms	1.5 μs	1.5 μs	1.5 μs ⁽³⁾	
External RC	72 ms	1.5 μs	1.5 μs	1.5 μs	

Note 1: 2 ms is the nominal time required for the 4x PLL to lock.

2: 72 ms is the nominal power-up timer delay if implemented.

3: 1.5 µs is the recovery time from Sleep. There is no recovery time from oscillator switch.

REGISTER 5-1. REGISTER BITS AND I OSTITIONS	REGISTER 3-1:	RCON REGISTER BITS AND POSITIONS
---	---------------	----------------------------------

R/W	-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0
IPE	Ν	—	—	RI	TO	PD	POR	BOR
bit 7								bit 0

Note: Refer to Section 4.14 "RCON Register" for bit definitions.

TABLE 3-2: STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR RCON REGISTER

Condition	Program Counter	RCON Register	RI	то	PD	POR	BOR	STKFUL	STKUNF
Power-on Reset	0000h	01 1100	1	1	1	0	0	u	u
MCLR Reset during normal operation	0000h	0u uuuu	u	u	u	u	u	u	u
Software Reset during normal operation	0000h	00 uuuu	0	u	u	u	u	u	u
Stack Full Reset during normal operation	0000h	0u uull	u	u	u	u	u	u	1
Stack Underflow Reset during normal operation	0000h	0u uull	u	u	u	u	u	1	u
MCLR Reset during Sleep	0000h	0u 10uu	u	1	0	u	u	u	u
WDT Reset	0000h	0u 01uu	1	0	1	u	u	u	u
WDT Wake-up	PC + 2	uu 00uu	u	0	0	u	u	u	u
Brown-out Reset	0000h	01 11u0	1	1	1	1	0	u	u
Interrupt wake-up from Sleep	PC + 2 ⁽¹⁾	uu 00uu	u	1	0	u	u	u	u

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the interrupt vector (000008h or 000018h).

TABLE 3-3:	INITIALIZA	TION CONDI	HUNS FUR ALL REC	GISTERS (CONTINU		
Register	Applicable Devices		Applicable Devices Power-on Reset, Brown-out Reset		Wake-up via WDT or Interrupt	
B5D7 ⁽⁷⁾	PIC18F6X8X	PIC18F8X8X	xxxx xxxx	uuuu uuuu	uuuu uuuu	
B5D6 ⁽⁷⁾	PIC18F6X8X	PIC18F8X8X	XXXX XXXX	uuuu uuuu	uuuu uuuu	
B5D5 ⁽⁷⁾	PIC18F6X8X	PIC18F8X8X	XXXX XXXX	uuuu uuuu	uuuu uuuu	
B5D4 ⁽⁷⁾	PIC18F6X8X	PIC18F8X8X	XXXX XXXX	uuuu uuuu	uuuu uuuu	
B5D3 ⁽⁷⁾	PIC18F6X8X	PIC18F8X8X	XXXX XXXX	uuuu uuuu	uuuu uuuu	
B5D2 ⁽⁷⁾	PIC18F6X8X	PIC18F8X8X	XXXX XXXX	uuuu uuuu	uuuu uuuu	
B5D1 ⁽⁷⁾	PIC18F6X8X	PIC18F8X8X	XXXX XXXX	uuuu uuuu	uuuu uuuu	
B5D0 ⁽⁷⁾	PIC18F6X8X	PIC18F8X8X	XXXX XXXX	uuuu uuuu	uuuu uuuu	
B5DLC ⁽⁷⁾	PIC18F6X8X	PIC18F8X8X	-xxx xxxx	-uuu uuuu	-uuu uuuu	
B5EIDL ⁽⁷⁾	PIC18F6X8X	PIC18F8X8X	XXXX XXXX	uuuu uuuu	uuuu uuuu	
B5EIDH ⁽⁷⁾	PIC18F6X8X	PIC18F8X8X	XXXX XXXX	uuuu uuuu	uuuu uuuu	
B5SIDL ⁽⁷⁾	PIC18F6X8X	PIC18F8X8X	xxxx x-xx	uuuu u-uu	uuuu u-uu	
B5SIDH ⁽⁷⁾	PIC18F6X8X	PIC18F8X8X	xxxx x-xx	uuuu u-uu	uuuu u-uu	
B5CON ⁽⁷⁾	PIC18F6X8X	PIC18F8X8X	0000 0000	0000 0000	uuuu uuuu	
B4D7 ⁽⁷⁾	PIC18F6X8X	PIC18F8X8X	XXXX XXXX	uuuu uuuu	uuuu uuuu	
B4D6 ⁽⁷⁾	PIC18F6X8X	PIC18F8X8X	XXXX XXXX	uuuu uuuu	uuuu uuuu	
B4D5 ⁽⁷⁾	PIC18F6X8X	PIC18F8X8X	XXXX XXXX	uuuu uuuu	uuuu uuuu	
B4D4 ⁽⁷⁾	PIC18F6X8X	PIC18F8X8X	XXXX XXXX	uuuu uuuu	uuuu uuuu	
B4D3 ⁽⁷⁾	PIC18F6X8X	PIC18F8X8X	XXXX XXXX	uuuu uuuu	uuuu uuuu	
B4D2 ⁽⁷⁾	PIC18F6X8X	PIC18F8X8X	XXXX XXXX	uuuu uuuu	uuuu uuuu	
B4D1 ⁽⁷⁾	PIC18F6X8X	PIC18F8X8X	XXXX XXXX	uuuu uuuu	uuuu uuuu	
B4D0 ⁽⁷⁾	PIC18F6X8X	PIC18F8X8X	XXXX XXXX	uuuu uuuu	uuuu uuuu	
B4DLC ⁽⁷⁾	PIC18F6X8X	PIC18F8X8X	-xxx xxxx	-uuu uuuu	-uuu uuuu	
B4EIDL ⁽⁷⁾	PIC18F6X8X	PIC18F8X8X	xxxx xxxx	uuuu uuuu	uuuu uuuu	
B4EIDH ⁽⁷⁾	PIC18F6X8X	PIC18F8X8X	XXXX XXXX	uuuu uuuu	uuuu uuuu	
B4SIDL ⁽⁷⁾	PIC18F6X8X	PIC18F8X8X	xxxx x-xx	uuuu u-uu	uuuu u-uu	
B4SIDH ⁽⁷⁾	PIC18F6X8X	PIC18F8X8X	xxxx xxxx	uuuu uuuu	uuuu uuuu	
B4CON ⁽⁷⁾	PIC18F6X8X	PIC18F8X8X	0000 0000	0000 0000	uuuu uuuu	
B3D7 ⁽⁷⁾	PIC18F6X8X	PIC18F8X8X	XXXX XXXX	uuuu uuuu	uuuu uuuu	
B3D6 ⁽⁷⁾	PIC18F6X8X	PIC18F8X8X	XXXX XXXX	uuuu uuuu	uuuu uuuu	
B3D5 ⁽⁷⁾	PIC18F6X8X	PIC18F8X8X	xxxx xxxx	uuuu uuuu	uuuu uuuu	
	*					

TABLE 3-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

- 2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).
- 3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.
- 4: See Table 3-2 for Reset value for specific condition.
- 5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other oscillator modes, they are disabled and read '0'.
- 6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they read '0'.
- 7: This register reads all '0's until ECAN is set up in Mode 1 or Mode 2.

5.5.2 WRITE VERIFY

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

5.5.3 UNEXPECTED TERMINATION OF WRITE OPERATION

If a write is terminated by an unplanned event, such as loss of power or an unexpected Reset, the memory location just programmed should be verified and reprogrammed if needed. The WRERR bit is set when a write operation is interrupted by a MCLR Reset or a WDT Time-out Reset during normal operation. In these situations, users can check the WRERR bit and rewrite the location.

5.5.4 PROTECTION AGAINST SPURIOUS WRITES

To protect against spurious writes to Flash program memory, the write initiate sequence must also be followed. See Section 24.0 "Special Features of the CPU" for more detail.

5.6 Flash Program Operation During Code Protection

See Section 24.0 "Special Features of the CPU" for details on code protection of Flash program memory.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
TBLPTRU	_		bit 21	Program (TBLPTR		ble Pointer	Upper Byte		00 0000	00 0000
TBPLTRH	Program N	Program Memory Table Pointer High Byte (TBLPTR<15:8>)							0000 0000	0000 0000
TBLPTRL	Program Memory Table Pointer High Byte (TBLPTR<7:0>)								0000 0000	0000 0000
TABLAT	Program Memory Table Latch								0000 0000	0000 0000
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 0000	0000 0000
EECON2	EEPROM	EEPROM Control Register 2 (not a physical register)							—	—
EECON1	EEPGD	CFGS		FREE	WRERR	WREN	WR	RD	xx-0 x000	uu-0 u000
IPR2	—	CMIP	—	EEIP	BCLIP	LVDIP	TMR3IP	CCP2IP	-1-1 1111	-1-1 1111
PIR2	_	CMIF		EEIF	BCLIF	LVDIF	TMR3IF	CCP2IF	-0-0 0000	-0-0 0000
PIE2	_	CMIE	—	EEIE	BCLIE	LVDIE	TMR3IE	CCP2IE	-0-0 0000	-0-0 0000

TABLE 5-2: REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY

 $\label{eq:Legend: Legend: Legend: Legend: r = normalized are not used during Flash/EEPROM access.}$

8.0 8 x 8 HARDWARE MULTIPLIER

8.1 Introduction

An 8 x 8 hardware multiplier is included in the ALU of the PIC18F6585/8585/6680/8680 devices. By making the multiply a hardware operation, it completes in a single instruction cycle. This is an unsigned multiply that gives a 16-bit result. The result is stored in the 16-bit product register pair (PRODH:PRODL). The multiplier does not affect any flags in the ALUSTA register.

Making the 8 x 8 multiplier execute in a single cycle gives the following advantages:

- · Higher computational throughput
- Reduces code size requirements for multiply algorithms

The performance increase allows the device to be used in applications previously reserved for Digital Signal Processors.

Table 8-1 shows a performance comparison between enhanced devices using the single-cycle hardware multiply and performing the same function without the hardware multiply.

8.2 Operation

Example 8-1 shows the sequence to do an 8 x 8 unsigned multiply. Only one instruction is required when one argument of the multiply is already loaded in the WREG register.

Example 8-2 shows the sequence to do an 8 x 8 signed multiply. To account for the sign bits of the arguments, each argument's Most Significant bit (MSb) is tested and the appropriate subtractions are done.

EXAMPLE 8-1: 8 x 8 UNSIGNED MULTIPLY ROUTINE

MOVF	ARG1,	W	;
MULWF	ARG2		; ARG1 * ARG2 ->
			; PRODH:PRODL

EXAMPLE 8-2: 8 x 8 SIGNED MULTIPLY ROUTINE

MOVF	ARG1,	W	;
MULWF	ARG2		; ARG1 * ARG2 ->
			; PRODH:PRODL
BTFSC	ARG2,	SB	; Test Sign Bit
SUBWF	PRODH		; PRODH = PRODH
			; - ARG1
MOVF	ARG2,	W	;
BTFSC	ARG1,	SB	; Test Sign Bit
SUBWF	PRODH		; PRODH = PRODH
			; – ARG2

		Program	Cycles		Time	
Routine	Multiply Method	Memory (Words)	(Max)	@ 40 MHz	@ 10 MHz	@ 4 MHz
9 x 9 uppigpod	Without hardware multiply	13	69	6.9 μs	27.6 μs	69 μs
8 x 8 unsigned	Hardware multiply	1	1	100 ns	400 ns	1 μs
8 x 8 signed	Without hardware multiply	33	91	9.1 μs	36.4 μs	91 μs
o x o signed	Hardware multiply	6	6	600 ns	2.4 μs	6 μs
16 x 16 unsigned	Without hardware multiply	21	242	24.2 μs	96.8 μs	242 μs
16 x 16 unsigned	Hardware multiply	24	24	2.4 μs	9.6 μs	24 μs
16 x 16 signed	Without hardware multiply	52	254	25.4 μs	102.6 μs	254 μs
TO X TO SIGNED	Hardware multiply	36	36	3.6 μs	14.4 μs	36 µs

TABLE 8-1: PERFORMANCE COMPARISON

14.0 TIMER3 MODULE

The Timer3 module timer/counter has the following features:

- 16-bit timer/counter (two 8-bit registers; TMR3H and TMR3L)
- Readable and writable (both registers)
- Internal or external clock select
- Interrupt on overflow from FFFFh to 0000h
- Reset from CCP module trigger

Figure 14-1 is a simplified block diagram of the Timer3 module.

Register 14-1 shows the Timer3 Control register. This register controls the operating mode of the Timer3 module and sets the Enhanced CCP1 and CCP2 clock source.

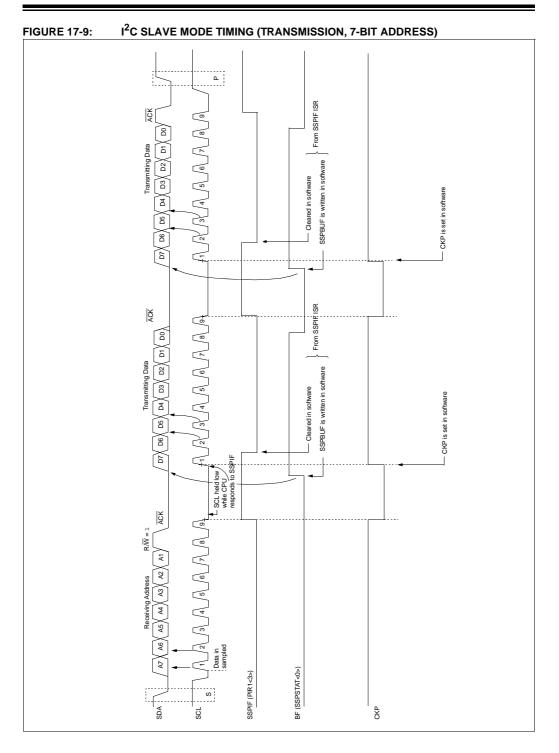
Register 12-1 shows the Timer1 Control register. This register controls the operating mode of the Timer1 module, as well as containing the Timer1 oscillator enable bit (T1OSCEN) which can be a clock source for Timer3.

REGISTER 14-1: T3CON: TIMER3 CONTROL REGISTER

- n = Value at POR

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON				
	bit 7							bit 0				
bit 7			ite Mode En	able bit Timer3 in one	a 16-bit oper	ation						
		0		Timer3 in two								
bit 6, 3	T3CCP2:T	3CCP1: Tir	ner3 and Tim	ner1 to CCP	Enable bits							
	01 = Timer Timer	 1x = Timer3 is the clock source for compare/capture of CCP1 and CCP2 modules 1 = Timer3 is the clock source for compare/capture of CCP2 module, Timer1 is the clock source for compare/capture of CCP1 module 0 = Timer1 is the clock source for compare/capture of CCP1 and CCP2 modules 										
bit 5-4	T3CKPS1:	T3CKPS0:	Timer3 Inpu	t Clock Prese	cale Select b	oits						
	•	rescale valu										
	•	rescale valu rescale valu										
		rescale valu										
bit 2	T3SYNC:	Timer3 Exte	rnal Clock Ir	nput Synchro	nization Cor	ntrol bit						
			em clock cor	nes from Tim	er1/Timer3.)						
	<u>When TMF</u> 1 = Do not		e external cl	ock input								
			nal clock inp	•								
	When TMF											
		0		e internal clo	ck when TM	R3CS = 0.						
bit 1			ck Source Se									
	(on the		e after the fir	er1 oscillator st falling edg								
bit 0	TMR3ON:	Timer3 On	bit									
	1 = Enable 0 = Stops											
	Legend:											
	R = Reada	able bit	W = W	/ritable bit	U = Unin	nplemented	bit, read as	'0'				

'1' = Bit is set


x = Bit is unknown

'0' = Bit is cleared

						/		
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0
	bit 7							bit 0
bit 7	WCOL: Wr	ite Collision	Detect bit (T	ransmit mo	de only)			
	cleare	SPBUF regi d in software		en while it is	s still transm	nitting the p	revious wor	d (must be
	0 = No col							
bit 6		eceive Overf	low Indicato	r bit				
	SPI Slave							
	of ove must r	byte is recei rflow, the da ead the SSF d in software erflow	ta in SSPSF PBUF, even i	R is lost. Ov	erflow can o	only occur in	Slave mod	le.The user
	Note:		mode, the n) is initiated					eption (and
bit 5	SSPEN: S	ynchronous	Serial Port E	nable bit				
		s serial port es serial port	0	,	, ,		ial port pins	
	Note:	When enab	led, these p	ins must be	properly cor	nfigured as i	nput or outp	out.
bit 4	CKP: Cloc	k Polarity Se	lect bit					
	1 = Idle sta	te for clock i	s a high leve	el				
	0 = Idle sta	te for clock i	s a low leve	l				
bit 3-0	SSPM3:SS	SPM0: Synch	nronous Seri	al Port Mod	e Select bits			
	0100 = SP	I Slave mod I Slave mod I Master mod	e, clock = S	CK pin, SS p	oin control e		can be used	d as I/O pin
		I Master mo	,					
		I Master mo						
		I Master mo						
	Note:	Bit combina I ² C mode o	ations not sp nly.	ecifically list	ed here are	either rese	rved or impl	emented in

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 17-2: SSPCON1: MSSP CONTROL REGISTER 1 (SPI MODE)

22.1 Control Register

bit 5

The Low-Voltage Detect Control register controls the operation of the Low-Voltage Detect circuitry.

REGISTER 22-1: LVDCON REGISTER

U-0	U-0	R-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1
—	—	IRVST	LVDEN	LVDL3	LVDL2	LVDL1	LVDL0
bit 7							bit 0

bit 7-6 Unimplemented: Read as '0'

IRVST: Internal Reference Voltage Stable Flag bit

- 1 = Indicates that the Low-Voltage Detect logic will generate the interrupt flag at the specified voltage range
- 0 = Indicates that the Low-Voltage Detect logic will not generate the interrupt flag at the specified voltage range and the LVD interrupt should not be enabled
- bit 4 LVDEN: Low-Voltage Detect Power Enable bit

1 = Enables LVD, powers up LVD circuit

0 = Disables LVD, powers down LVD circuit

bit 3-0 LVDL3:LVDL0: Low-Voltage Detection Limit bits

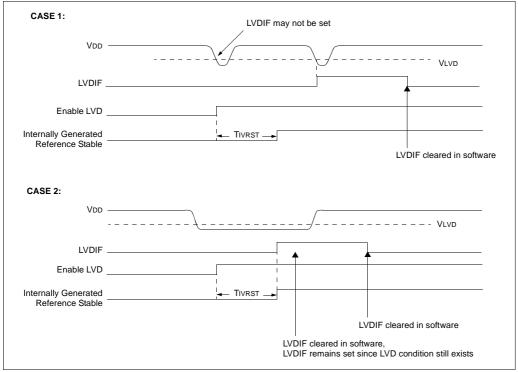
1111 = External analog input is used (input comes from the LVDIN pin)

1110 = 4.5V-4.77V
1101 = 4.2V-4.45V
1100 = 4.0V-4.24V
1011 = 3.8V-4.03V
1010 = 3.6V-3.82V
1001 = 3.5V-3.71V
1000 = 3.3 V - 3.50 V
0111 = 3.0V-3.18V
0110 = 2.8V-2.97V
0101 = 2.7V-2.86V
0100 = 2.5V-2.65V
0011 = 2.4 V - 2.54 V
0010 = 2.2V-2.33V
0001 = 2.0V-2.12V
0000 = Reserved

Note: LVDL3:LVDL0 modes which result in a trip point below the valid operating voltage of the device are not tested.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

22.2 Operation


Depending on the power source for the device voltage, the voltage normally decreases relatively slowly. This means that the LVD module does not need to be constantly operating. To decrease the current requirements, the LVD circuitry only needs to be enabled for short periods where the voltage is checked. After doing the check, the LVD module may be disabled.

Each time that the LVD module is enabled, the circuitry requires some time to stabilize. After the circuitry has stabilized, all status flags may be cleared. The module will then indicate the proper state of the system.

The following steps are needed to set up the LVD module:

- Write the value to the LVDL3:LVDL0 bits (LVDCON register) which selects the desired LVD trip point.
- 2. Ensure that LVD interrupts are disabled (the LVDIE bit is cleared or the GIE bit is cleared).
- 3. Enable the LVD module (set the LVDEN bit in the LVDCON register).
- 4. Wait for the LVD module to stabilize (the IRVST bit to become set).
- Clear the LVD interrupt flag which may have falsely become set until the LVD module has stabilized (clear the LVDIF bit).
- 6. Enable the LVD interrupt (set the LVDIE and the GIE bits).

Figure 22-4 shows typical waveforms that the LVD module may be used to detect.

FIGURE 22-4: LOW-VOLTAGE DETECT WAVEFORMS

FER 23-49:	MSEL1: M	ASK SELE	CT REGIS	TER 1'''				
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1
	FIL7_1	FIL7_0	FIL6_1	FIL6_0	FIL5_1	FIL5_0	FIL4_1	FIL4_0
	bit 7							bit 0
bit 7-6	11 = No mas 10 = Filter 1 01 = Accept		elect bits 1	and 0				
bit 5-4	•							
bit 3-2	11 = No mas 10 = Filter 1 01 = Accept		elect bits 1	and 0				
bit 1-0	11 = No mas 10 = Filter 1 01 = Accept 00 = Accept				nd 2 only.			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	oit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 23-49: MSEL1: MASK SELECT REGISTER 1⁽¹⁾

- n = Value at POR

LIX 20 00.	BROOONL	DAOD IN									
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0			
	bit 7							bit 0			
bit 7	SEG2PHTS:	Phase Se	gment 2 Tim	e Select bit							
	1 = Freely pr	0									
	0 = Maximur	n of PHEG	1 or Informa	tion Process	sing Time (IF	PT), whichev	er is greate	r			
bit 6	SAM: Sampl	e of the CA	N bus Line	bit							
	1 = Bus line is sampled three times prior to the sample point										
	0 = Bus line	is sampled	once at the	sample poir	nt						
bit 5-3	SEG1PH2:S	EG1PH0:	Phase Segm	ent 1 bits							
	111 = Phase	•									
		110 = Phase Segment 1 time = $7 \times TQ$									
	101 = Phase Segment 1 time = 6 x TQ										
		100 = Phase Segment 1 time = 5 x TQ 011 = Phase Segment 1 time = 4 x TQ									
	011 = Phase Segment 1 time = 4 x TQ 010 = Phase Segment 1 time = 3 x TQ										
	001 = Phase Segment 1 time = 2 x TQ										
	000 = Phase	e Segment	1 time = 1 x	ΤQ							
bit 2-0	PRSEG2:PRSEG0: Propagation Time Select bits										
	111 = Propa	gation time	= 8 x TQ								
	110 = Propagation time = $7 \times TQ$										
	$101 = Propagation time = 6 \times TQ$										
	$100 = Propagation time = 5 \times TQ$										
	011 = Propagation time = 4 x TQ 010 = Propagation time = 3 x TQ										
	$0.01 = \text{Propagation time} = 2 \times \text{TQ}$										
	000 = Propa	gation time	= 1 x TQ								
	Legend:							,			
	R = Readabl	o hit	W = Writab	la hit	II – I Inim	nlamanted	oit, read as '	<u></u> 0'			
	IX - IXeauabl	e Dir			0 = 01111	piementeur	n, ieau as	0			

'0' = Bit is cleared

'1' = Bit is set

REGISTER 23-53: BRGCON2: BAUD RATE CONTROL REGISTER 2

x = Bit is unknown

TABLE 23-1: CAN CONTROLLER REGISTER MAP

Address ⁽¹⁾	Name	Address	Name	Address	Name	Address	Name
F7Fh	SPBRGH ⁽³⁾	F5Fh	CANCON_RO0	F3Fh	CANCON_RO2	F1Fh	RXM1EIDL
F7Eh	BAUDCON ⁽³⁾	F5Eh	CANSTAT_RO0	F3Eh	CANSTAT_RO2	F1Eh	RXM1EIDH
F7Dh	(4)	F5Dh	RXB1D7	F3Dh	TXB1D7	F1Dh	RXM1SIDL
F7Ch	(4)	F5Ch	RXB1D6	F3Ch	TXB1D6	F1Ch	RXM1SIDH
F7Bh	(4)	F5Bh	RXB1D5	F3Bh	TXB1D5	F1Bh	RXM0EIDL
F7Ah	(4)	F5Ah	RXB1D4	F3Ah	TXB1D4	F1Ah	RXM0EIDH
F79h	ECCP1DEL ⁽³⁾	F59h	RXB1D3	F39h	TXB1D3	F19h	RXM0SIDL
F78h	(4)	F58h	RXB1D2	F38h	TXB1D2	F18h	RXM0SIDH
F77h	ECANCON	F57h	RXB1D1	F37h	TXB1D1	F17h	RXF5EIDL
F76h	TXERRCNT	F56h	RXB1D0	F36h	TXB1D0	F16h	RXF5EIDH
F75h	RXERRCNT	F55h	RXB1DLC	F35h	TXB1DLC	F15h	RXF5SIDL
F74h	COMSTAT	F54h	RXB1EIDL	F34h	TXB1EIDL	F14h	RXF5SIDH
F73h	CIOCON	F53h	RXB1EIDH	F33h	TXB1EIDH	F13h	RXF4EIDL
F72h	BRGCON3	F52h	RXB1SIDL	F32h	TXB1SIDL	F12h	RXF4EIDH
F71h	BRGCON2	F51h	RXB1SIDH	F31h	TXB1SIDH	F11h	RXF4SIDL
F70h	BRGCON1	F50h	RXB1CON	F30h	TXB1CON	F10h	RXF4SIDH
F6Fh	CANCON	F4Fh	CANCON_RO1 ⁽²⁾	F2Fh	CANCON_RO3(2)	F0Fh	RXF3EIDL
F6Eh	CANSTAT	F4Eh	CANSTAT_RO1 ⁽²⁾	F2Eh	CANSTAT_RO3 ⁽²⁾	F0Eh	RXF3EIDH
F6Dh	RXB0D7	F4Dh	TXB0D7	F2Dh	TXB2D7	F0Dh	RXF3SIDL
F6Ch	RXB0D6	F4Ch	TXB0D6	F2Ch	TXB2D6	F0Ch	RXF3SIDH
F6Bh	RXB0D5	F4Bh	TXB0D5	F2Bh	TXB2D5	F0Bh	RXF2EIDL
F6Ah	RXB0D4	F4Ah	TXB0D4	F2Ah	TXB2D4	F0Ah	RXF2EIDH
F69h	RXB0D3	F49h	TXB0D3	F29h	TXB2D3	F09h	RXF2SIDL
F68h	RXB0D2	F48h	TXB0D2	F28h	TXB2D2	F08h	RXF2SIDH
F67h	RXB0D1	F47h	TXB0D1	F27h	TXB2D1	F07h	RXF1EIDL
F66h	RXB0D0	F46h	TXB0D0	F26h	TXB2D0	F06h	RXF1EIDH
F65h	RXB0DLC	F45h	TXB0DLC	F25h	TXB2DLC	F05h	RXF1SIDL
F64h	RXB0EIDL	F44h	TXB0EIDL	F24h	TXB2EIDL	F04h	RXF1SIDH
F63h	RXB0EIDH	F43h	TXB0EIDH	F23h	TXB2EIDH	F03h	RXF0EIDL
F62h	RXB0SIDL	F42h	TXB0SIDL	F22h	TXB2SIDL	F02h	RXF0EIDH
F61h	RXB0SIDH	F41h	TXB0SIDH	F21h	TXB2SIDH	F01h	RXF0SIDL
F60h	RXB0CON	F40h	TXB0CON	F20h	TXB2CON	F00h	RXF0SIDH

Note 1: Shaded registers are available in Access Bank low area while the rest are available in Bank 15.

2: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given for each instance of the controller register due to the Microchip header file requirement.

3: These registers are not CAN registers.

4: Unimplemented registers are read as '0'.

23.5.3 PROGRAMMABLE TRANSMIT/ RECEIVE BUFFERS

The ECAN module implements six new buffers: B0-B5. These buffers are individually programmable as either transmit or receive buffers. These buffers are available only in Mode 1 and 2. As with dedicated transmit and receive buffers, each of these programmable buffers occupies 14 bytes of SRAM and are mapped into SFR memory map.

Each buffer contains one Control register (BnCON), four Identifier registers (BnSIDL, BnSIDH, BnEIDL, BnEIDH), one Data Length Count register (BnDLC) and eight Data Byte registers (BnDm). Each of these registers contains two sets of control bits. Depending on whether the buffer is configured as transmit or receive, one would use the corresponding control bit set. By default, all buffers are configured as receive buffers. Each buffer can be individually configured as transmit or receive buffers by setting the corresponding TXENn bit in the BSEL0 register.

When configured as transmit buffers, user firmware may access transmit buffers in any order similar to accessing dedicated transmit buffers. In receive configuration, with Mode 1 enabled, user firmware may also access receive buffers in any order required. But in Mode 2, all receive buffers are combined to form a single FIFO. Actual FIFO length is programmable by user firmware. Access to FIFO must be done through the FIFO pointer bits (FP<4:0>) in the CANCON register. It must be noted that there is no hardware protection against out of order FIFO reads.

23.5.4 PROGRAMMABLE AUTO-RTR BUFFERS

In Mode 1 and 2, any of six programmable transmit/ receive buffers may be programmed to automatically respond to predefined RTR messages without user firmware intervention. Automatic RTR handling is enabled by setting the TXnEN bit in the BSEL0 register and the RTREN bit in the BnCON register. After this setup, when an RTR request is received, the TXREQ bit is automatically set and current buffer content is automatically queued for transmission as a RTR response. As with all transmit buffers, once the TXREQ bit is set, buffer registers become read-only and any writes to them will be ignored. The following outlines the steps required to automatically handle RTR messages:

- 1. Set buffer to Transmit mode by setting TXnEN bit to '1' in BSEL0 register.
- At least one acceptance filter must be associated with this buffer and preloaded with expected RTR identifier.
- 3. Bit RTREN in BnCON register must be set to '1'.
- 4. Buffer must be preloaded with the data to be sent as a RTR response.

Normally, user firmware will keep Buffer Data registers up to date. If firmware attempts to update buffer while an automatic RTR response is in process of transmission, all writes to buffers are ignored.

23.6 CAN Message Transmission

23.6.1 INITIATING TRANSMISSION

For the MCU to have write access to the message buffer, the TXREQ bit must be clear, indicating that the message buffer is clear of any pending message to be transmitted. At a minimum, the SIDH, SIDL, and DLC registers must be loaded. If data bytes are present in the message, the data registers must also be loaded. If the message is to use extended identifiers, the EIDH:EIDL registers must also be loaded and the EXIDE bit set.

To initiate message transmission, the TXREQ bit must be set for each buffer to be transmitted. When TXREQ is set, the TXABT, TXLARB and TXERR bits will be cleared. To successfully complete the transmission, there must be at least one node with matching baud rate on the network.

Setting the TXREQ bit does not initiate a message transmission, it merely flags a message buffer as ready for transmission. Transmission will start when the device detects that the bus is available. The device will then begin transmission of the highest priority message that is ready.

When the transmission has completed successfully, the TXREQ bit will be cleared, the TXBnIF bit will be set, and an interrupt will be generated if the TXBnIE bit is set.

If the message transmission fails, the TXREQ will remain set, indicating that the message is still pending for transmission and one of the following condition flags will be set. If the message started to transmit but encountered an error condition, the TXERR and the IRXIF bits will be set and an interrupt will be generated. If the message lost arbitration, the TXLARB bit will be set.

REGISTER 24-2: CONFIG2L: CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS 300002h)

	U-0	U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1
	_	—	—	—	BORV1	BORV0	BOREN	PWRTEN
k	oit 7							bit 0

bit 7-4 Unimplemented: Read as '0'

- bit 3-2 BORV1:BORV0: Brown-out Reset Voltage bits
 - 11 = VBOR set to 2.0V
 - 10 = VBOR set to 2.7V
 - 01 = VBOR set to 4.2V
 - 00 = VBOR set to 4.5V

bit 1 BOREN: Brown-out Reset Enable bit

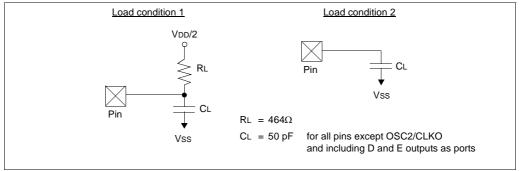
- 1 = Brown-out Reset enabled
- 0 = Brown-out Reset disabled

bit 0 **PWRTEN:** Power-up Timer Enable bit

- 1 = PWRT disabled
 - 0 = PWRT enabled

Legend:

R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
 n = Value when device is unprogrammed 		u = Unchanged from programmed state


27.4.2 TIMING CONDITIONS

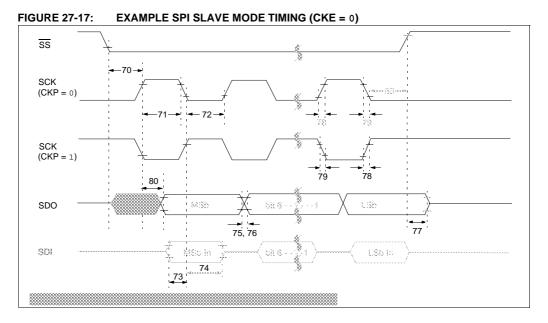

The temperature and voltages specified in Table 27-5 apply to all timing specifications unless otherwise noted. Figure 27-5 specifies the load conditions for the timing specifications.

TABLE 27-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

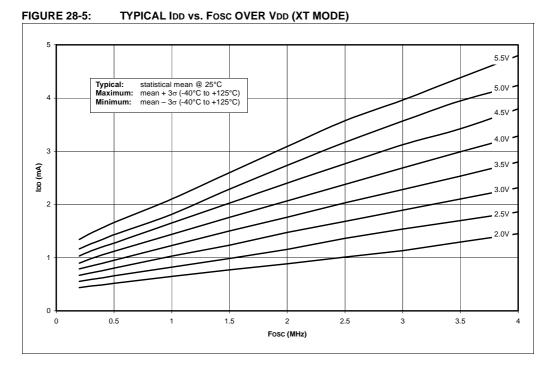
	Standard Operating Conditions (unless otherwise stated)				
	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended				
AC CHARACTERISTICS	Operating voltage VDD range as described in DC spec Section 27.1 and Section 27.3. LC parts operate for industrial temperatures only.				

FIGURE 27-5: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

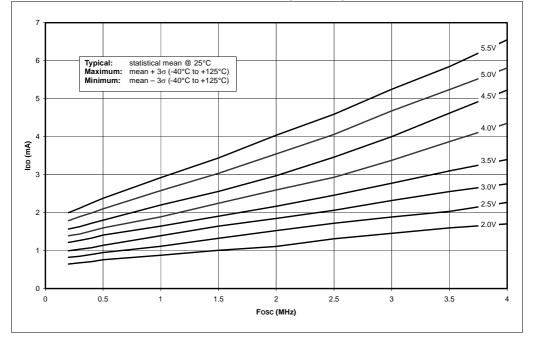
Param. No.	Symbol	Characteristic	Min	Max	Units	Conditions	
70	TssL2scH, TssL2scL	$\overline{\text{SS}}\downarrow$ to SCK \downarrow or SCK \uparrow Input	Тсү		ns		
71	TscH	SCK Input High Time (Slave mode)	Continuous	1.25 TCY + 30		ns	
71A			Single Byte	40		ns	(Note 1)
72	TscL	SCK Input Low Time (Slave mode)	Continuous	1.25 TCY + 30	-	ns	
72A			Single Byte	40		ns	(Note 1)
73	TDIV2SCH, TDIV2SCL	Setup Time of SDI Data Input to SCK E	100		ns		
73A	Тв2в	Last Clock Edge of Byte 1 to the First Cloc	k Edge of Byte 2	1.5 TCY + 40		ns	(Note 2)
74	TscH2diL, TscL2diL	Hold Time of SDI Data Input to SCK Edg	100		ns		
75	75 TDOR SDO Data Output Rise Time		PIC18FXX8X	_	25	ns	
			PIC18LFXX8X		45	ns	
76	TDOF	SDO Data Output Fall Time		—	25	ns	
77	TssH2doZ	SS ↑ to SDO Output High-Impedance		10	50	ns	
78 TSCR SCK oUtput Rise Tim		SCK oUtput Rise Time (Master mode)	PIC18FXX8X	_	25	ns	
			PIC18LFXX8X		45	ns	
79	TSCF	SCK Output Fall Time (Master mode)		—	25	ns	
80	TSCH2DOV,	SDO Data Output Valid after SCK Edge	PIC18FXX8X	—	50	ns	
	TSCL2DOV		PIC18LFXX8X		100	ns	1
83	TSCH2SSH, TSCL2SSH	SS ↑ after SCK Edge		1.5 TCY + 40		ns	

Note 1: Requires the use of Parameter #73A.

2: Only if Parameter #71A and #72A are used.


TABLE 27-25: A/D CONVERTER CHARACTERISTICS: PIC18F6585/8585/6680/8680 (INDUSTRIAL, EXTENDED) PIC18LF6585/8585/6680/8680 (INDUSTRIAL)

Param No.	Symbol	Charact	eristic	Min	Тур	Max	Units	Conditions
A01	NR	Resolution			10 TBD	bit bit	$\label{eq:VREF} \begin{array}{l} VREF = VDD \geq 3.0V \\ VREF = VDD < 3.0V \end{array}$	
A03	EIL	Integral Linearity	_		<±1 TBD	LSb LSb	$\begin{array}{l} VREF = VDD \geq 3.0V \\ VREF = VDD < 3.0V \end{array}$	
A04	EDL	Differential Linea	_		<±1 TBD	LSb LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD \geq 3.0V \\ VREF = VDD < 3.0V \end{array}$	
A05	Efs	Full-Scale Error	_		<±1 TBD	LSb LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD \geq 3.0V \\ VREF = VDD < 3.0V \end{array}$	
A06	EOFF	Offset Error	_		<±1 TBD	LSb LSb	$\label{eq:VREF} \begin{array}{l} VREF = VDD \geq 3.0V \\ VREF = VDD < 3.0V \end{array}$	
A10	—	Monotonicity	guaranteed ⁽³⁾			—	$VSS \leq VAIN \leq VREF$	
A20 A20A	VREF	Reference Voltage (VREFH – VREFL)		0V 3V		_	V V	For 10-bit resolution
A21	VREFH	Reference Voltage High		AVss	_	AVDD + 0.3V	V	
A22	VREFL	Reference Voltage Low		AVss-0.3V	-	AVdd	V	
A25	VAIN	Analog Input Voltage		AVss-0.3V	_	VREF + 0.3V	V	
A30	ZAIN	Recommended Impedance of Analog Voltage Source		—		10.0	kΩ	
A40	IAD	A/D Conversion	PIC18FXX8X	_	180	—	μΑ	Average current
		Current (VDD)	PIC18LFXX8X	_	90	_	μΑ	consumption when A/D is on (Note 1)
A50	IREF VREF Input Current (Note 2)			_	5 150	μΑ μΑ	During VAIN acquisition. During A/D conversion cycle.	


Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module. VREF current is from RA2/AN2/VREF- and RA3/AN3/VREF+ pins or AVDD and AVSS pins, whichever is selected as reference input.

 $\textbf{2:} \quad Vss \leq VAIN \leq VREF$

3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

FIGURE 28-6: MAXIMUM IDD vs. Fosc OVER VDD (XT MODE)

© 2003-2013 Microchip Technology Inc.

DS30491D-page 451

PIC18F6585/8585/6680/8680 PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	– X /XX XXX Temperature Package Pattern Range	 Examples: PIC18LF6680 - I/PT 301 = Industrial temp., TQFP package, Extended VDD limits, QTP pattern #301. D) PIC18F8585 - I/PT = Industrial temp.,
Device	PIC18FXX8X ⁽¹⁾ , PIC18FXX8XT ⁽²⁾ ; VDD range 4.2V to 5.5V PIC18LFXX8X ⁽¹⁾ , PIC18LFXX8XT ⁽²⁾ ; VDD range 2.0V to 5.5V	 TQFP package, normal VDD limits. c) PIC18F8680 - E/PT = Extended temp., TQFP package, standard VDD limits.
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial) E = -40° C to $+125^{\circ}$ C (Extended)	
Package	PT = TQFP (Thin Quad Flatpack)	Note 1: F = Standard Voltage Range LF = Extended Voltage Range
Pattern	QTP, SQTP, Code or Special Requirements (blank otherwise)	2: T = in tape and reel