

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, EBI/EMI, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	68
Program Memory Size	48KB (24K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f8585t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 4-1:	: CONFIG3L CONFIGURATION BYTE										
	R/P-1	U-0	U-0	U-0	U-0	U-0	R/P-1	R/P-1			
	WAIT	_	_	—	_	—	PM1	PM0			
	bit 7							bit 0			
bit 7	WAIT: Extern	al Bus Da	ta Wait Enal	ble bit							
 1 = Wait selections unavailable, device will not wait 0 = Wait programmed by WAIT1 and WAIT0 bits of MEMCOM register (MEMCOM<5: 											
bit 6-2	Unimplemented: Read as '0'										
bit 1-0	PM1:PM0: Processor Data Memory Mode Select bits										
	11 = Microcontroller mode										
	10 = Micropro	10 = Microprocessor mode									
	01 = Microco	ntroller wi	th Boot Bloc	k mode							
00 = Extended Microcontroller mode											
	Legend:										
	R = Readable	e bit	P = Prog	rammable bi	t U = Unim	plemented	bit, read as '	0'			
	- n = Value af	ter erase	'1' = Bit is	s set	'0' = Bit is	s cleared	x = Bit is u	nknown			

	Microprocessor Mode			Microprocessor with Boot Block Mode			Microc M	Extended Microcontroller Mode			
Program Space Execution	000000h	External Program Memory	On-Chip Program Memory (No access)	000000h 0007FFh 000800h	External Program Memory	On-Chip Program Memory	000000h 00BFFFh ⁽¹⁾ 00FFFh ⁽²⁾ 00C000h ⁽¹⁾ 010000h ⁽²⁾	On-Chip Program Memory Reads '0's	000000h 00BFFFh ⁽¹⁾ 00FFFh ⁽²⁾ 00C000h ⁽¹⁾ 010000h ⁽²⁾	External Program Memory	On-Chip Program Memory
	1FFFFh	External Memory	On-Chip Flash	1FFFFh	External Memory	On-Chip Flash	1FFFFFh	On-Chip Flash	1FFFFFh	External Memory	On-Chip Flash

						1				1
File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
B2CON ^(5, 7)	RXFUL/ TXBIF	RXM1/ TXABT	RTRRO/ TXLARB	FILHIT4/ TXERR	FILHIT3/ TXREQ	FILHIT2/ RTREN	FILHIT1/ TXPRI1	FILHIT0/ TXPRI0	0000 0000	45, 230
B1D7 ⁽⁷⁾	B1D77	B1D76	B1D75	B1D74	B1D73	B1D72	B1D71	B1D70	XXXX XXXX	45, 230
B1D6 ⁽⁷⁾	B1D67	B1D66	B1D65	B1D64	B1D63	B1D62	B1D61	B1D60	XXXX XXXX	45, 230
B1D5 ⁽⁷⁾	B1D57	B1D56	B1D55	B1D54	B1D53	B1D52	B1D51	B1D50	xxxx xxxx	45, 230
B1D4 ⁽⁷⁾	B1D47	B1D46	B1D45	B1D44	B1D43	B1D42	B1D41	B1D40	xxxx xxxx	45, 230
B1D3 ⁽⁷⁾	B1D37	B1D36	B1D35	B1D34	B1D33	B1D32	B1D31	B1D30	XXXX XXXX	45, 230
B1D2 ⁽⁷⁾	B1D27	B1D26	B1D25	B1D24	B1D23	B1D22	B1D21	B1D20	xxxx xxxx	45, 230
B1D1 ⁽⁷⁾	B1D17	B1D16	B1D15	B1D14	B1D13	B1D12	B1D11	B1D10	xxxx xxxx	46, 230
B1D0 ⁽⁷⁾	B1D07	B1D06	B1D05	B1D04	B1D03	B1D02	B1D01	B1D00	xxxx xxxx	46, 230
B1DLC ⁽⁷⁾	_	RXRTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0	-xxx xxxx	46, 230
B1EIDL ⁽⁷⁾	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	XXXX XXXX	46, 230
B1EIDH ⁽⁷⁾	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	xxxx xxxx	46, 230
B1SIDL ⁽⁷⁾	SID2	SID1	SID0	SRR	EXID	—	EID17	EID16	xxxx x-xx	46, 230
B1SIDH(7)	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	46, 230
B1CON ^(5, 7)	RXFUL/ TXBIF	RXM1/ TXABT	RTRRO/ TXLARB	FILHIT4/ TXERR	FILHIT3/ TXREQ	FILHIT2/ RTREN	FILHIT1/ TXPRI1	FILHIT0/ TXPRI0	0000 0000	46, 230
B0D7 ⁽⁷⁾	B0D77	B0D76	B0D75	B0D74	B0D73	B0D72	B0D71	B0D70	xxxx xxxx	46, 230
B0D6 ⁽⁷⁾	B0D67	B0D66	B0D65	B0D64	B0D63	B0D62	B0D61	B0D60	XXXX XXXX	46, 230
B0D5 ⁽⁷⁾	B0D57	B0D56	B0D55	B0D54	B0D53	B0D52	B0D51	B0D50	XXXX XXXX	46, 230
B0D4 ⁽⁷⁾	B0D47	B0D46	B0D45	B0D44	B0D43	B0D42	B0D41	B0D40	XXXX XXXX	46, 230
B0D3 ⁽⁷⁾	B0D37	B0D36	B0D35	B0D34	B0D33	B0D32	B0D31	B0D30	XXXX XXXX	46, 230
B0D2 ⁽⁷⁾	B0D27	B0D26	B0D25	B0D24	B0D23	B0D22	B0D21	B0D20	XXXX XXXX	46, 230
B0D1 ⁽⁷⁾	B0D17	B0D16	B0D15	B0D14	B0D13	B0D12	B0D11	B0D10	XXXX XXXX	46, 230
B0D0 ⁽⁷⁾	B0D07	B0D06	B0D05	B0D04	B0D03	B0D02	B0D01	B0D00	XXXX XXXX	46, 230
B0DLC ⁽⁷⁾	_	RTR	RB1	RB0	DLC3	DLC2	DLC1	DLC0	-xxx xxxx	46, 230
BOEIDL(7)	EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	xxxx xxxx	46, 230
BOEIDH(7)	EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8	XXXX XXXX	46, 230
B0SIDL ⁽⁷⁾	SID2	SID1	SID0	SRR	EXID	—	EID17	EID16	xxxx x-xx	46, 230
B0SIDH(7)	SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	XXXX XXXX	46, 230
B0CON ^(5, 7)	RXFUL/ TXBIF	RXM1/ TXABT	RTRRO/ TXLARB	FILHIT4/ TXERR	FILHIT3/ TXREQ	FILHIT2/ RTREN	FILHIT1/ TXPRI1	FILHIT0/ TXPRI0	0000 0000	46, 230
TXBIE ⁽⁷⁾	—	_	_	TXB2IE	TXB1IE	TXB0IE	_		0 00	46, 230
BIE0 ⁽⁷⁾	B5IE	B4IE	B3IE	B2IE	B1IE	BOIE	RXB1IE	RXB0IE	0000 0000	46, 230
BSEL0 ⁽⁷⁾	B5TXEN	B4TXEN	B3TXEN	B2TXEN	B1TXEN	B0TXEN	_	_	0000 00	46, 230
MSEL3(7)	FIL15_1	FIL15_0	FIL14_1	FIL14_0	FIL13_1	FIL13_0	FIL12_1	FIL12_0	0000 0000	46, 230
MSEL2(7)	FIL11_1	FIL11_0	FIL10_1	FIL10_0	FIL9_1	FIL9_0	FIL8_1	FIL8_0	0000 0000	46, 230
MSEL1(7)	FIL7_1	FIL7_0	FIL6_1	FIL6_0	FIL5_1	FIL5_0	FIL4_1	FIL4_0	0000 0101	46, 230
MSEL0 ⁽⁷⁾	FIL3_1	FIL3_0	FIL2_1	FIL2_0	FIL1_1	FIL1_0	FIL0_1	FIL0_0	0101 0000	46, 230
SDFLC ⁽⁷⁾	—	—	—	DFLC4	DFLC3	DFLC2	DFLC1	DFLC0	0 0000	46, 230
RXFCON1 ⁽⁷⁾	RXF15EN	RXF14EN	RXF13EN	RXF12EN	RXF11EN	RXF10EN	RXF9EN	RXF8EN	0000 0000	46, 230
RXFCON0(7)	RXF7EN	RXF6EN	RXF5EN	RXF4EN	RXF3EN	RXF2EN	RXF1EN	RXF0EN	0011 1111	47, 230

TABLE 4-3: REGISTER FILE SUMMARY (CONTINUED)

 $\label{eq:Legend: Legend: Legend: Legend: u = unchanged, -= unimplemented, q = value depends on condition$

Note 1: RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read '0' in all other oscillator modes.

2: Bit 21 of the TBLPTRU allows access to the device configuration bits.

3: These registers are unused on PIC18F6X80 devices; always maintain these clear.

4: These bits have multiple functions depending on the CAN module mode selection.

5: Meaning of this register depends on whether this buffer is configured as transmit or receive.

6: RG5 is available as an input when MCLR is disabled.

7: This register reads all '0's until the ECAN module is set up in Mode 1 or Mode 2.

GISTER 5-1:	EECON1 F	REGISTER	₹ (ADDRE	SS FA6h)							
	R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0			
	EEPGD	CFGS	_	FREE	WRERR	WREN	WR	RD			
	bit 7							bit 0			
bit 7	EEPGD: FI	ash Progra	m or Data E	EPROM Me	mory Select bi	t					
	1 = Access 0 = Access	ঃ Flash proo ১ data EEPI	gram memo ROM memo	ry ory							
bit 6	CFGS: Flas 1 = Access 0 = Access	 CFGS: Flash Program/Data EEPROM or Configuration Select bit 1 = Access configuration registers 0 = Access Flash program or data EEPROM memory 									
bit 5	Unimplem	Unimplemented: Read as '0'									
bit 4	FREE: Flash Row Erase Enable bit										
	 1 = Erase the program memory row addressed by TBLPTR on the next WR command (cleared by completion of erase operation) 0 = Perform write only 										
bit 3	WRERR: Flash Program/Data EEPROM Error Flag bit										
	1 = A write (any R 0 = The wr	operation i eset during rite operatic	is premature self-timed pon complete	ely terminate programming d	ed g in normal ope	ration)					
	Note:	When a W tracing of t	RERR occu	rs, the EEP	GD and CFGS	bits are not	t cleared. T	his allows			
bit 2	WREN: Flash Program/Data EEPROM Write Enable bit										
	1 = Allows	write cycle	s								
	0 = Inhibits write to the EEPROM										
bit 1	WR: Write Control bit										
	 1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or cycle. (The operation is self-timed and the bit is cleared by hardware once w complete. The WR bit can only be set (not cleared) in software.) 0 = Write cycle to the EEPROM is complete 										
bit 0	RD: Read Control bit										
	 1 = Initiates an EEPROM read. (Read takes one cycle. RD is cleared in hardware. The R can only be set (not cleared) in software. RD bit cannot be set when EEPGD = 1.) 0 = Does not initiate an EEPROM read 										
	Legend:										
	R = Readat	ole bit	U = Unimr	plemented b	it. read as '0'						
	W = Writab	le bit	S = Settat	ole bit	,	- n = V	/alue after e	erase			

'0' = Bit is cleared

RE

'1' = Bit is set

x = Bit is unknown

Name	Bit#	Buffer	Function
RA0/AN0	bit 0	TTL	Input/output or analog input.
RA1/AN1	bit 1	TTL	Input/output or analog input.
RA2/AN2/VREF-	bit 2	TTL	Input/output or analog input or VREF
RA3/AN3/VREF+	bit 3	TTL	Input/output or analog input or VREF+.
RA4/T0CKI	bit 4	ST/OD	Input/output or external clock input for Timer0. Output is open-drain type.
RA5/AN4/LVDIN	bit 5	TTL	Input/output or slave select input for synchronous serial port or analog input, or Low-Voltage Detect input.
OSC2/CLKO/RA6	bit 6	TTL	OSC2 or clock output, or I/O pin.

TABLE 10-1: PORTA FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 10-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
PORTA	—	RA6	RA5	RA4	RA0	-x0x 0000	-u0u 0000			
LATA	—	LATA Da	ata Outpu	t Register		-xxx xxxx	-uuu uuuu			
TRISA	—	PORTA	Data Dire	ction Reg	ister		-111 1111	-111 1111		
ADCON1		—	VCFG1 VCFG0 PCFG3 PCFG2 PCFG1 PCFG0							00 0000

 $\label{eq:Legend: Legend: x = unknown, u = unchanged, - = unimplemented locations read as `0'. Shaded cells are not used by PORTA.$

10.6 PORTF, LATF and TRISF Registers

PORTF is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISF. Setting a TRISF bit (= 1) will make the corresponding PORTF pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISF bit (= 0) will make the corresponding PORTF pin an output (i.e., put the contents of the output latch on the selected pin).

Read-modify-write operations on the LATF register read and write the latched output value for PORTF.

PORTF is multiplexed with several analog peripheral functions, including the A/D converter inputs and comparator inputs, outputs, and voltage reference.

- **Note 1:** On a Power-on Reset, the RF6:RF0 pins are configured as inputs and read as '0'.
 - 2: To configure PORTF as digital I/O, turn off comparators and set ADCON1 value.

	LE 10-0.							
CLRF	PORTF	; Initialize PORTF by						
		; clearing output						
		; data latches						
CLRF	LATF	; Alternate method						
		; to clear output						
		; data latches						
MOVLW	07h	;						
MOVWF	CMCON	; Turn off comparators						
MOVLW	0Fh	;						
MOVWF	ADCON1	; Set PORTF as digital I/O						
MOVLW	0CFh	; Value used to						
		; initialize data						
		; direction						
MOVWF	TRISF	; Set RF3:RF0 as inputs						
		; RF5:RF4 as outputs						
		; RF7:RF6 as inputs						
0		-						

INITIAL IZING DODTE

FIGURE 10-13: PORTF RF1/AN6/C2OUT AND RF2/AN7/C1OUT PINS BLOCK DIAGRAM

	CCP1CON <7:6>	SIGNAL	Cycle	-► Period	
00	(Single Output)	P1A Modulated	 ļ		
		P1A Modulated			
10	(Half-Bridge)	P1B Modulated	 Delay	Delay	
		P1A Active	 1 1 1	- - - - -	-
0.1	(Full-Bridge, Forward)	P1B Inactive	 1 1 1	1 1 1	1 1 1
ΟI		P1C Inactive	 -		
		P1D Modulated	 , ,		1 1 1
		P1A Inactive	 	1 1 1	
11	(Full-Bridge,	P1B Modulated	 ļ		
	Reverse)	P1C Active	 1 1 1	1 1	
		P1D Inactive	 1 1 1		
			•	•	

FIGURE 16-4: PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)

Relationships:

- Period = 4 * Tosc * (PR2 + 1) * (TMR2 prescale value)
- Duty Cycle = Tosc * (CCPR1L<7:0>:CCP1CON<5:4>) * (TMR2 prescale value)
- Delay = 4 * Tosc * (PWM1CON<6:0>)

17.3.3 ENABLING SPI I/O

To enable the serial port, SSP Enable bit, SSPEN (SSPCON1<5>), must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, reinitialize the SSPCON registers and then set the SSPEN bit. This configures the SDI, SDO, SCK and SS pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed as follows:

- · SDI is automatically controlled by the SPI module
- SDO must have TRISC<5> bit cleared
- SCK (Master mode) must have TRISC<3> bit cleared
- SCK (Slave mode) must have TRISC<3> bit set
- SS must have TRISF<7> bit set

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value.

17.3.4 TYPICAL CONNECTION

Figure 17-2 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge and latched on the opposite edge of the clock. Both processors should be programmed to the same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

- · Master sends data Slave sends dummy data
- · Master sends data Slave sends data
- · Master sends dummy data Slave sends data

18.2.2 USART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 18-5. The data is received on the RC7/RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc. This mode would typically be used in RS-232 systems.

To set up an asynchronous reception:

- Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, set enable bit RCIE.
- 4. If 9-bit reception is desired, set bit RX9.
- 5. Enable the reception by setting bit CREN.
- Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the 9th bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

18.2.3 SETTING UP 9-BIT MODE WITH ADDRESS DETECT

This mode would typically be used in RS-485 systems. To set up an asynchronous reception with address detect enable:

 Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate..

Note:	When BRGH and BRG16 bits are set,
	SPBRGH:SPBRG must be more than '1'.

- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If interrupts are required, set the RCEN bit and select the desired priority level with the RCIP bit.
- 4. Set the RX9 bit to enable 9-bit reception.
- 5. Set the ADDEN bit to enable address detect.
- 6. Enable reception by setting the CREN bit.
- The RCIF bit will be set when reception is complete. The interrupt will be Acknowledged if the RCIE and GIE bits are set.
- Read the RCSTA register to determine if any error occurred during reception, as well as read bit 9 of data (if applicable).
- 9. Read RCREG to determine if the device is being addressed.
- 10. If any error occurred, clear the CREN bit.
- 11. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and interrupt the CPU.

FIGURE 18-5: USART RECEIVE BLOCK DIAGRAM

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (AVDD and AVSS) or the voltage level on the RA3/AN3/ VREF+ and RA2/AN2/VREF- pins.

The A/D converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the converter which generates the result via successive approximation.

CHS3:CHS0 1..... 1111 AN15(1) 1110 AN14⁽¹⁾ 1101 AN13⁽¹⁾ 1100 AN12⁽¹⁾ 1011 AN11 1010 AN10 1001 AN9 1000 AN8 0111 AN7 0110 AN6 0101 AN5 0100 AN4 VAIN 0011 (Input Voltage) 10-bit AN3 Converter A/D 0010 AN2 0001 VCFG1:VCFG0 AN1 0000 AN0 VDD VREF+ Ō Reference Voltage VREF-0 Vss Note 1: Channels AN15 through AN12 are not available on the PIC18F6X8X. 2: I/O pins have diode protection to VDD and VSS.

FIGURE 19-1: A/D BLOCK DIAGRAM

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion in progress is aborted.

Each port pin associated with the A/D converter can be configured as an analog input or as a digital I/O. The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH/ADRESL registers, the GO/DONE bit (ADCON0 register) is cleared and A/D interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in Figure 19-1.

20.7 Comparator Operation During Sleep

When a comparator is active and the device is placed in Sleep mode, the comparator remains active and the interrupt is functional if enabled. This interrupt will wake-up the device from Sleep mode when enabled. While the comparator is powered up, higher Sleep currents than shown in the power-down current specification will occur. Each operational comparator will consume additional current as shown in the comparator specifications. To minimize power consumption while in Sleep mode, turn off the comparators (CM<2:0> = 111) before entering Sleep. If the device wakes up from Sleep, the contents of the CMCON register are not affected.

20.8 Effects of a Reset

A device Reset forces the CMCON register to its Reset state, causing the comparator module to be in the Comparator Reset mode (CM<2:0> = 000). This ensures that all potential inputs are analog inputs. Device current is minimized when analog inputs are present at Reset time. The comparators will be powered down during the Reset interval.

20.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 20-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and VSS. The analog input, therefore, must be between VSS and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up condition may occur. A maximum source impedance of 10 k Ω is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

FIGURE 20-4: COMPARATOR ANALOG INPUT MODEL

21.0 COMPARATOR VOLTAGE REFERENCE MODULE

The comparator voltage reference is a 16-tap resistor ladder network that provides a selectable voltage reference. The resistor ladder is segmented to provide two ranges of CVREF values and has a power-down function to conserve power when the reference is not being used. The CVRCON register controls the operation of the reference as shown in Register 21-1. The block diagram is given in Figure 21-1.

The comparator reference supply voltage can come from either VDD or VSS, or the external VREF+ and VREF- that are multiplexed with RA3 and RA2. The comparator reference supply voltage is controlled by the CVRSS bit.

CVRCON REGISTER

REGISTER 21-1:

bit

bit

bit

bit

bit

21.1 Configuring the Comparator Voltage Reference

The comparator voltage reference can output 16 distinct voltage levels for each range. The equations used to calculate the output of the comparator voltage reference are as follows:

<u>If CVRR = 1:</u> CVREF = (CVR<3:0>/24) x CVRSRC <u>If CVRR = 0:</u> CVREF = (CVDD x 1/4) + (CVR<3:0>/32) x CVRSRC

The settling time of the comparator voltage reference must be considered when changing the CVREF output (Section 27.0 "Electrical Characteristics").

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0				
	bit 7							bit 0				
	CVREN: C	omparator V	oltage Refe	rence Enab	le bit							
	1 = CVREF 0 = CVREF	circuit pow	ered on ered down									
	CVROE : Comparator VREF Output Enable bit ⁽¹⁾ 1 = CVREF voltage level is also output on the RF5/AN10/C1IN+/CVREF pin											
	0 = CVREF voltage is disconnected from the RF5/AN10/C1IN+/CVREF pin											
	CVRR: Co	mparator VR	EF Range S	election bit								
	1 = 0.00 C	VRSRC to 0.	625 CVRSR	C with CVRS	RC/24 step s	size						
	0 = 0.25 C	VRSRC to 0.	71875 CVR	SRC with CV	RSRC/32 ste	p size						
	CVRSS: C	omparator V	REF Source	Selection b	it							
	1 = Compa 0 = Compa	arator refere arator refere	nce source, nce source,	CVRSRC = '	VREF+ – VRE VDD – VSS	EF-						
	Note:	To select (N reference c set to '11'.	/REF+ – VRE onfiguration	F-) as the co bits in the A	mparator vo DCON1 reg	iltage refere ister (ADCC	nce source,)N1<5:4>) m	the voltage lust also be				
0	CVR3:CVF	to: Compara	ator VREF Va	alue Selectio	on bits ($0 \le V$	/R3:VR0 ≤ 1	5)					
	When CVR	<u>R = 1:</u>										
	CVREF = (C	2VR<3:0>/24	4) • (CVRSR	C)								
	CVPEE - 1	$\frac{ \mathbf{R} = 0}{ \mathbf{A} \bullet (\mathbf{C}) _{PSP}}$	~) + (C\/B3·	C\/R0/32)								
	OVREF = 1/	4 • (0 VR3R	<i>)</i> + (CVI(3.	CVI(0/32) •	(CVRSRC)							
	Note 1:	If enabled for to '1'.	or output, R	F5 must also) be configur	ed as an inp	ut by setting	TRISF<5>				
	Legend:											

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	oit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

23.2.6 CAN INTERRUPT REGISTERS

The registers in this section are the same as described in **Section 9.0 "Interrupts"**. They are duplicated here for convenience.

REGISTER 23-56: PIR3: PERIPHERAL INTERRUPT FLAG REGISTER

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	IRXIF	WAKIF	ERRIF	TXB2IF/ TXBnIF	TXB1IF ⁽¹⁾	TXB0IF ⁽¹⁾	RXB1IF/ RXBnIF	RXB0IF/ FIFOWMIF	
	bit 7							bit 0	
bit 7	IRXIF: CAN Invalid Received Message Interrupt Flag bit 1 = An invalid message has occurred on the CAN bus 0 = No invalid message on CAN bus								
bit 6	WAKIF: CAN bus Activity Wake-up Interrupt Flag bit 1 = Activity on CAN bus has occurred 0 = No activity on CAN bus								
bit 5	ERRIF: CAN bus Error Interrupt Flag bit 1 = An error has occurred in the CAN module (multiple sources) 0 = No CAN module errors								
bit 4	When CAN is in Mode 0: TXB2IF: CAN Transmit Buffer 2 Interrupt Flag bit 1 = Transmit Buffer 2 has completed transmission of a message and may be reloaded 0 = Transmit Buffer 2 has not completed transmission of a message When CAN is in Mode 1 or 2: TXBnIF: Any Transmit Buffer Interrupt Flag bit 1 = One or more transmit buffers has completed transmission of a message and may be reloaded								
bit 3	 TXB1IF: CAN Transmit Buffer 1 Interrupt Flag bit⁽¹⁾ 1 = Transmit Buffer 1 has completed transmission of a message and may be reloaded Transmit Buffer 1 has not completed transmission of a message 								
bit 2	TXBOIF: CAN Transmit Buffer 0 Interrupt Flag bit ⁽¹⁾ 1 = Transmit Buffer 0 has completed transmission of a message and may be reloaded 0 = Transmit Buffer 0 has not completed transmission of a message								
bit 1	When CAN is in Mode 0: RXB1IF: CAN Receive Buffer 1 Interrupt Flag bit 1 = Receive Buffer 1 has received a new message 0 = Receive Buffer 1 has not received a new message When CAN is in Mode 1 or 2: RXBnIF: Any Receive Buffer Interrupt Flag bit 1 = One or more receive buffers has received a new message 0 = No receive buffer shas received a new message								
bit 0	 0 = No receive buffer has received a new message When CAN is in Mode 0: RXB0IF: CAN Receive Buffer 0 Interrupt Flag bit 1 = Receive Buffer 0 has received a new message 0 = Receive Buffer 0 has not received a new message When CAN is in Mode 1: Unimplemented: Read as '0' When CAN is in Mode 2: FIFOWMIF: FIFO Watermark Interrupt Flag bit 1 = FIFO high watermark is reached 0 = FIFO high watermark is not reached Note 1: In CAN Mode 1 and 2, this bit is forced to '0'. 								
	Legend:]	
	R = Reada	able bit	W = Writ	able bit	U = Uni	implemented	d bit, read a	s '0'	

- n = Value at POR

'1' = Bit is set

x = Bit is unknown

'0' = Bit is cleared

In Mode 1 and 2, there are a total of 16 acceptance filters available and each can be dynamically assigned to any of the receive buffers. A buffer with a lower number has higher priority. Given this, if an incoming message matches with two or more receive buffer acceptance criteria, the buffer with the lower number will be loaded with that message.

23.7.3 ENHANCED FIFO MODE

When configured for Mode 2, two of the dedicated receive buffers, in combination with one or more programmable transmit/receive buffers, are used to create a maximum of 8 buffers deep FIFO (First In First Out) buffer. In this mode, there is no direct correlation between filters and receive buffer registers. Any filter that has been enabled can generate an acceptance. When a message has been accepted, it is stored in the next available receive buffer register and an internal write pointer is incremented. The FIFO can be a maximum of 8 buffers deep. The entire FIFO must consist of contiguous receive buffers. The FIFO head begins at RXB0 buffer and its tail spans toward B5. The maximum length of the FIFO is limited by the presence or absence of the first transmit buffer starting from B0. If a buffer is configured as a transmit buffer, the FIFO length is reduced accordingly. For instance, if B3 is configured as transmit buffer, the actual FIFO will consist of RXB0, RXB1, B0, B1 and B2, a total of 5 buffers. If B0 is configured as a transmit buffer, the FIFO length will be 2. If none of the programmable buffers are configured as a transmit buffer, the FIFO will be 8 buffers deep. A system that requires more transmit buffers should try to locate transmit buffers at the very end of B0-B5 buffers to maximize available FIFO length.

When a message is received in FIFO mode, the Interrupt Flag Code bits (EICODE<4:0>) in the CANSTAT register will have a value of '10000', indicating the FIFO has received a message. FIFO pointer bits FP<3:0> in the CANCON register point to the buffer that contains data not yet read. The FIFO pointer bits, in this sense, serve as the FIFO read pointer. The user should use FP bits and read corresponding buffer data. When receive data is no longer needed, the RXFUL bit in the current buffer must be cleared, causing FP<3:0> to be updated by the module.

To determine whether FIFO is empty or not, the user may use FP<3:0> bits to access RXFUL bit in the current buffer. If RXFUL is cleared, the FIFO is considered to be empty. If it is set, the FIFO may contain one or more messages. In Mode 2, the module also provides a bit called FIFO High Water Mark (FIFOWM) in the ECANCON register. This bit can be used to cause an interrupt whenever the FIFO contains only one or four empty buffers. The FIFO high water mark interrupt can serve as an early warning to a full FIFO condition.

23.7.4 TIME-STAMPING

The CAN module can be programmed to generate a time-stamp for every message that is received. When enabled, the module generates a capture signal for CCP1, which in turn captures the value of either Timer1 or Timer3. This value can be used as the message time-stamp.

To use the time-stamp capability, the CANCAP bit (CIOCAN<4>) must be set. This replaces the capture input for CCP1 with the signal generated from the CAN module. In addition, CCP1CON<3:0> must be set to '0011' to enable the CCP special event trigger for CAN events.

23.8 Message Acceptance Filters and Masks

The message acceptance filters and masks are used to determine if a message in the message assembly buffer should be loaded into any of the receive buffers. Once a valid message has been received into the MAB. the identifier fields of the message are compared to the filter values. If there is a match, that message will be loaded into the appropriate receive buffer. The filter masks are used to determine which bits in the identifier are examined with the filters. A truth table is shown below in Table 23-2 that indicates how each bit in the identifier is compared to the masks and filters to determine if a message should be loaded into a receive buffer. The mask essentially determines which bits to apply the acceptance filters to. If any mask bit is set to a zero, then that bit will automatically be accepted regardless of the filter bit.

TABLE 23-2:	FILTER/MASK TRUTH TABLE
-------------	-------------------------

Mask bit n	Filter bit n	Message Identifier bit n001	Accept or Reject bit n
0	х	x	Accept
1	0	0	Accept
1	0	1	Reject
1	1	0	Reject
1	1	1	Accept

Legend: x = don't care

In Mode 0, acceptance filters RXF0 and RXF1 and filter mask RXM0 are associated with RXB0. Filters RXF2, RXF3, RXF4 and RXF5 and mask RXM1 are associated with RXB1.

NOTES:

FIGURE 27-11: BROWN-OUT RESET TIMING

TABLE 27-11: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
30	TMCL	MCLR Pulse Width (low)	2	_	_	μS	
31	TWDT	Watchdog Timer Time-out Period (No Postscaler)	7	18	33	ms	
32	Tost	Oscillation Start-up Timer Period	1024 Tosc		1024 Tosc		Tosc = OSC1 period
33	TPWRT	Power up Timer Period	28	72	132	ms	
34	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	—	2	—	μS	
35	TBOR	Brown-out Reset Pulse Width	200		_	μS	$VDD \le BVDD$ (see)
36	TIVRST	Time for Internal Reference Voltage to become stable	—	20	50	μS	
37	TLVD	Low-Voltage Detect Pulse Width	200	—	—	μS	$VDD \leq VLVD$

FIGURE 27-12: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

100 THIGH Clock High Time 400 kHz mode 100 kHz mode 2(Tosc)(BRG + 1) ms 101 TLow Clock Low Time 100 kHz mode 2(Tosc)(BRG + 1) ms 101 TLow Clock Low Time 100 kHz mode 2(Tosc)(BRG + 1) ms 101 TLow Clock Low Time 100 kHz mode 2(Tosc)(BRG + 1) ms 102 TR SDA and SCL Rise Time 100 kHz mode 2(Tosc)(BRG + 1) ms 102 TR SDA and SCL Fall Time 100 kHz mode 2(1osc)(BRG + 1) ms 103 TF SDA and SCL Fall Time 100 kHz mode 20 + 0.1 CB 300 ns 10 to 400 pF 104 kHz mode ⁽¹⁾ 300 ns 10 to 400 pF 100 kHz mode 20 + 0.1 CB 300 ns 10 to 400 pF 108 TSU:STA Start Condition Setup Time 100 kHz mode 2(Tosc)(BRG + 1) ms Only relevant for 100 kHz mode 100 kHz mode 2(Tosc)(BRG + 1) ms	Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
400 kHz mode 2(Tosc)(BRG + 1) ms 101 TLOW Clock Low Time 100 kHz mode 2(Tosc)(BRG + 1) ms 101 TLOW Clock Low Time 100 kHz mode 2(Tosc)(BRG + 1) ms 102 TLOW Clock Low Time 100 kHz mode 2(Tosc)(BRG + 1) ms 102 TR SDA and SCL Rise Time 100 kHz mode 1000 ns 103 TF SDA and SCL Fall Time 100 kHz mode 300 ns 104 HZ mode 300 ns 100 kHz 100 hdv ft 105 TF SDA and SCL Fall Time 100 kHz mode 20 + 0.1 CB 300 ns 10 to 400 pF 108 Pata Input 104 kHz mode 2(Tosc)(BRG + 1) ms ms 90 Tsu:stra Start Condition 100 kHz mode 2(Tosc)(BRG + 1) ms ms	100 T	THIGH	Clock High Time	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	
Image: Normal and the second				400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
101 TLOW Clock Low Time 400 kHz mode 1 MHz mode 1 MHz mode 400 kHz mode 400 kHz mode 400 kHz mode 400 kHz mode 400 kHz mode 400 kHz mode 1 MHz mode 400 kHz mode 400 kHz mode 1 MHz mode 400 kHz mode 1 MHz mode 400 kHz mode				1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
Image: book of the section of the sectin of the sectin of the section of the section of the section of	101	TLOW	Clock Low Time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
Image: biology of the section of the sectio				400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
102 TR SDA and SCL Rise Time 100 kHz mode — 1000 ns Ca is specified to be from 10 to 400 pF 103 TF SDA and SCL Fall Time 100 kHz mode — 300 ns Ca is specified to be from 10 to 400 pF 103 TF SDA and SCL Fall Time 100 kHz mode — 300 ns Ca is specified to be from 10 to 400 pF 90 Tsu:STA Start Condition Setup Time 100 kHz mode 20 + 0.1 CB 300 ns Ca is specified to be from 10 to 400 pF 90 Tsu:STA Start Condition Setup Time 100 kHz mode 2(Tosc)(BRG + 1) — ms Only relevant for Repeated Start condition 91 ThD:STA Start Condition Hold Time 100 kHz mode 2(Tosc)(BRG + 1) — ms After this period, the first clock pulse is generated 104 HD:DAT Data Input Hold Time 100 kHz mode 2(Tosc)(BRG + 1) — ms 106 Hz mode ⁽¹⁾ TBD — ns Input 100 kHz mode 2(Tosc)(BRG + 1) — ms 107 <td></td> <td></td> <td></td> <td>1 MHz mode⁽¹⁾</td> <td>2(Tosc)(BRG + 1)</td> <td>_</td> <td>ms</td> <td></td>				1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	ms	
Rise Time 400 kHz mode 20 + 0.1 CB 300 ns 10 to 400 pF 103 TF SDA and SCL Fall Time 100 kHz mode — 300 ns CB is specified to be from 103 TF SDA and SCL Fall Time 100 kHz mode 20 + 0.1 CB 300 ns CB is specified to be from 90 TSU:STA Start Condition 100 kHz mode 2(Tosc)(BRG + 1) — ms Only relevant for 90 TSU:STA Start Condition 100 kHz mode 2(Tosc)(BRG + 1) — ms After this period, the first condition 91 THD:STA Start Condition 100 kHz mode 2(Tosc)(BRG + 1) — ms 104 VHz mode 2(Tosc)(BRG + 1) — ms After this period, the first condition 106 THD:DAT Data Input 100 kHz mode 0 — ms 106 TSU:DAT Data Input 100 kHz mode 0 — ns 107 TSU:DAT Data Input 100 kHz mode 2(Tosc)(BRG + 1) —<	102	TR	SDA and SCL	100 kHz mode	—	1000	ns	CB is specified to be from
Image: Note of the second se			Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
103 TF SDA and SCL Fall Time 100 kHz mode 300 ns CB is specified to be from 10 to 400 pF 90 TSU:STA Start Condition Setup Time 100 kHz mode 20 + 0.1 CB 300 ns 0 10 to 400 pF 90 TSU:STA Start Condition Setup Time 100 kHz mode 2(Tosc)(BRG + 1) ms Only relevant for Repeated Start condition 91 THD:STA Start Condition Hold Time 100 kHz mode 2(Tosc)(BRG + 1) ms After this period, the first condition 91 THD:STA Start Condition Hold Time 100 kHz mode 2(Tosc)(BRG + 1) ms After this period, the first condition 106 THD:DAT Data Input Hold Time 100 kHz mode 0 ms clock pulse is generated 107 TSU:DAT Data Input Setup Time 100 kHz mode 0 ns (Note 2) 107 TSU:DAT Stop Condition Setup Time 100 kHz mode 2(Tosc)(BRG + 1) ms 108 TMA Outpu				1 MHz mode ⁽¹⁾	_	300	ns	-
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	103	TF	SDA and SCL	100 kHz mode	_	300	ns	CB is specified to be from
90 TSU:STA Start Condition Setup Time Start Condition Mok Hz mode 100 kHz mode 2(Tosc)(BRG + 1)			Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
90 Tsu:sta Start Condition Setup Time 100 kHz mode 2(Tosc)(BRG + 1) ms Only relevant for Repeated Start condition 91 THD:STA Start Condition Hold Time 100 kHz mode ⁽¹⁾ 2(Tosc)(BRG + 1) ms After this period, the first condition 91 THD:STA Start Condition Hold Time 100 kHz mode 2(Tosc)(BRG + 1) ms After this period, the first clock pulse is generated 106 THD:DAT Data Input Hold Time 100 kHz mode 0 ms 107 TSU:DAT Data Input Hold Time 100 kHz mode 0 0.9 ms 108 THJ:DAT Data Input Hold Time 100 kHz mode 0 ns 107 TSU:DAT Data Input Setup Time 100 kHz mode 250 ns 108 THZ:OR Data Input Setup Time 100 kHz mode 2(Tosc)(BRG + 1) ms 109 TSU:STO Stop Condition Setup Time 100 kHz mode 2(Tosc)(BRG + 1) ms 108 <td></td> <td></td> <td></td> <td>1 MHz mode⁽¹⁾</td> <td>_</td> <td>100</td> <td>ns</td> <td>-</td>				1 MHz mode ⁽¹⁾	_	100	ns	-
Setup Time 400 kHz mode 2(Tosc)(BRG + 1) ms Repeated Start condition 91 THD:STA Start Condition Hold Time 100 kHz mode 2(Tosc)(BRG + 1) ms After this period, the first condition 91 THD:STA Start Condition Hold Time 100 kHz mode 2(Tosc)(BRG + 1) ms After this period, the first clock pulse is generated 106 THD:DAT Data Input Hold Time 100 kHz mode 0 ms After this period, the first clock pulse is generated 106 THD:DAT Data Input Hold Time 100 kHz mode 0 ms 107 TSU:DAT Data Input Setup Time 100 kHz mode 250 ns 108 TMLz mode ⁽¹⁾ TBD ns (Note 2) 92 TSU:STO Stop Condition Setup Time 100 kHz mode 2(Tosc)(BRG + 1) ms 109 TAA Output Valid from Clock 100 kHz mode 2(Tosc)(BRG + 1) ms 109 TAA Output Valid	90	TSU:STA	Start Condition Setup Time	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	Only relevant for Repeated Start condition
Image: Mark Start Condition 1 MHz mode ⁽¹⁾ 2(Tosc)(BRG + 1) - ms condition 91 THD:STA Start Condition 100 kHz mode 2(Tosc)(BRG + 1) - ms After this period, the first clock pulse is generated 106 THD:DAT Data Input Hold Time 100 kHz mode 0 - ms After this period, the first clock pulse is generated 106 THD:DAT Data Input Hold Time 100 kHz mode 0 - ms After this period, the first clock pulse is generated 107 TSU:DAT Data Input Setup Time 100 kHz mode 0 - ns (Note 2) 92 TSU:STO Stop Condition Setup Time 100 kHz mode 2(Tosc)(BRG + 1) - ms 109 TAA Output Valid from Clock 100 kHz mode 2(Tosc)(BRG + 1) - ms 109 TAA Output Valid from Clock 100 kHz mode - 100 ns 110 TBUF Bus Free Time 100 kHz mode - ms Time the bus must be free before a new transmission can start </td <td></td> <td></td> <td>400 kHz mode</td> <td>2(Tosc)(BRG + 1)</td> <td>_</td> <td>ms</td>				400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
91 THD:STA Start Condition Hold Time 100 kHz mode 2(TOSC)(BRG + 1) ms After this period, the first clock pulse is generated 106 THD:DAT Data Input Hold Time 100 kHz mode 0 ms After this period, the first clock pulse is generated 106 THD:DAT Data Input Hold Time 100 kHz mode 0 ms After this period, the first clock pulse is generated 107 TSU:DAT Data Input Setup Time 100 kHz mode 0 ns (Note 2) 92 TSU:STO Data Input Setup Time 100 kHz mode 100 kHz mode 0 ns 92 TSU:STO Stop Condition Setup Time 100 kHz mode 2(TOSC)(BRG + 1) ms 109 TAA Output Valid from Clock 100 kHz mode 2(TOSC)(BRG + 1) ms 110 TBUF Bus Free Time Augustance 100 kHz mode 3500 ns 110 TBUF Bus Capacitive Loading 100 kHz mode ms Time the				1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
Hold Time 400 kHz mode 2(Tosc)(BRG + 1) — ms clock pulse is generated 106 THD:DAT Data Input Hold Time 100 kHz mode 0 — nss 106 THD:DAT Data Input Hold Time 100 kHz mode 0 — nss 107 TSU:DAT Data Input Setup Time 100 kHz mode 250 — ns 107 TSU:DAT Data Input Setup Time 100 kHz mode 100 — ns 107 TSU:DAT Data Input Setup Time 100 kHz mode 250 — ns 92 TSU:STO Stop Condition Setup Time 100 kHz mode 2(Tosc)(BRG + 1) — ms 108 TAA Output Valid from Clock 100 kHz mode 2(Tosc)(BRG + 1) — ms 109 TAA Output Valid from Clock 100 kHz mode — 3500 ns 110 TBUF Bus Free Time 100 kHz mode — ms Time the bus must be free before a new transmission can start 1012	91	THD:STA	Start Condition Hold Time	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	After this period, the first clock pulse is generated
$ \frac{1 \text{ MHz mode}^{(1)} 2(\text{TOSC})(\text{BRG + 1}) - \text{ms}}{1 \text{ MHz mode}} $ $ \frac{1 \text{ MHz mode}^{(1)} 2(\text{TOSC})(\text{BRG + 1}) - \text{ms}}{400 \text{ kHz mode}} $ $ \frac{100 \text{ kHz mode}}{400 \text{ kHz mode}} $ $ \frac{100 \text{ kHz mode}}{1 \text{ MHz mode}^{(1)}} $ $ \frac{100 \text{ kHz mode}}{1 \text{ Mz} \text{ Mz}} $ $ \frac{100 \text{ kHz mode}}{1 \text{ Mz} \text{ Mz}} $ $ \frac{100 \text{ kHz mode}}{1 \text{ Mz} \text{ Mz}} $ $ \frac{100 \text{ kHz mode}}{1 \text{ Mz}} $ $ \frac{100 \text{ kHz}}{1 \text{ Mz}} $ $ 100 \text$				400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
$ \begin{array}{ c c c c c c } \mbox{Hold Time} & \begin{tabular}{ c c c c c } \hline \mbox{Hold Time} & \begin{tabular}{ c c c c c c } \hline \mbox{Hold Time} & \begin{tabular}{ c c c c c c } \hline \mbox{Hold Time} & \begin{tabular}{ c c c c c c } \hline \mbox{Hold Time} & \begin{tabular}{ c c c c c c c } \hline \mbox{Hold Time} & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	106	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	ns	
$ \begin{array}{ c c c c c c } \hline 1 \mbox{ MHz mode}^{(1)} & \mbox{TBD} & - & \mbox{ns} \\ \hline 1 \mbox{MHz mode} & \mbox{250} & - & \mbox{ns} \\ \hline 400 \mbox{ MHz mode} & \mbox{100} & - & \mbox{ns} \\ \hline 400 \mbox{ MHz mode} & \mbox{100} & - & \mbox{ns} \\ \hline 400 \mbox{ MHz mode}^{(1)} & \mbox{TBD} & - & \mbox{ns} \\ \hline 1 \mbox{ MHz mode}^{(1)} & \mbox{TBD} & - & \mbox{ns} \\ \hline 1 \mbox{ MHz mode}^{(1)} & \mbox{TBD} & - & \mbox{ns} \\ \hline 1 \mbox{ MHz mode}^{(1)} & \mbox{TBD} & - & \mbox{ns} \\ \hline 1 \mbox{ MHz mode}^{(1)} & \mbox{2(TOSC)(BRG + 1)} & - & \mbox{ms} \\ \hline 1 \mbox{ MHz mode}^{(1)} & \mbox{2(TOSC)(BRG + 1)} & - & \mbox{ms} \\ \hline 1 \mbox{ MHz mode}^{(1)} & \mbox{2(TOSC)(BRG + 1)} & - & \mbox{ms} \\ \hline 1 \mbox{ MHz mode}^{(1)} & \mbox{2(TOSC)(BRG + 1)} & - & \mbox{ms} \\ \hline 1 \mbox{ MHz mode}^{(1)} & \mbox{2(TOSC)(BRG + 1)} & - & \mbox{ms} \\ \hline 1 \mbox{ MHz mode}^{(1)} & \mbox{2(TOSC)(BRG + 1)} & - & \mbox{ms} \\ \hline 1 \mbox{ MHz mode}^{(1)} & \mbox{2(TOSC)(BRG + 1)} & - & \mbox{ms} \\ \hline 1 \mbox{ MHz mode}^{(1)} & \mbox{2(TOSC)(BRG + 1)} & - & \mbox{ms} \\ \hline 1 \mbox{ MHz mode}^{(1)} & \mbox{2(TOSC)(BRG + 1)} & - & \mbox{ms} \\ \hline 1 \mbox{ MHz mode}^{(1)} & \mbox{mod} & \mbox{ms} \\ \hline 1 \mbox{ MHz mode}^{(1)} & \mbox{ms} & \mbox{ms} \\ \hline 1 \mbox{ MHz mode}^{(1)} & \mbox{ms} & \mbox{ms} \\ \hline 1 \mbox{ MHz mode}^{(1)} & \mbox{ms} & \mbox{ms} \\ \hline 1 \mbox{ MHz mode}^{(1)} & \mbox{ms} & \mbox{ms} \\ \hline 1 \mbox{ MHz mode}^{(1)} & \mbox{ms} & \mbox{ms} \\ \hline 1 \mbox{ MHz mode}^{(1)} & \mbox{ms} \\ \hline 1 \mbox{ MHz mode}^{(1)} & \mbox{ms} & \mbox{ms} \\ \hline 1 \mbox{ms} & \mbox{ms} \\ \hline 1 \mbox{ MHz mode}^{(1)} & \mbox{ms} \\ \hline 1 \mbox{ms} & \mbox{ms} \\ \hline 1 \mbox{ MHz mode}^{(1)} & \mbox{ms} \\ \hline 1 \mbox{ms} & \mbox{ms} \\ \hline 1 \mbox{ MHz mode}^{(1)} & \mbox{ms} \\ \hline 1 \mbox{ms} \\ \hline 1 \mbox{ MHz mode}^{(1)} & \mbox{ms} \\ \hline 1 \mbox{ms} \\ \hline 1 \mbox{ms} \\ \hline 1 \mbox{ MHz mode}^{(1)} & \mbox{ms} \\ \hline 1 $				400 kHz mode	0	0.9	ms	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1 MHz mode ⁽¹⁾	TBD	—	ns	-
Setup Time 400 kHz mode 100 ns92TSU:STOStop Condition Setup Time $100 \text{ kHz mode}^{(1)}$ TBDns92TSU:STOStop Condition Setup Time 100 kHz mode $2(\text{TOSC})(\text{BRG + 1})$ ms 400 kHz mode $2(\text{TOSC})(\text{BRG + 1})$ ms 400 kHz mode $2(\text{TOSC})(\text{BRG + 1})$ ms 109 TAAOutput Valid from Clock 100 kHz mode 3500 ns 100 kHz mode 1000 ns $100 \text{ kHz mode}^{(1)}$ ns 110 TBUFBus Free Time 100 kHz mode 4.7 ms 100 kHz mode 1.3 ms $101 \text{ LT mode}^{(1)}$ TBDms 102 CBBus Capacitive Loading400pF	107	TSU:DAT	DAT Data Input Setup Time	100 kHz mode	250	—	ns	(Note 2)
Image: Market				400 kHz mode	100	—	ns	-
92TSU:STOStop Condition Setup Time100 kHz mode $2(TOSC)(BRG + 1)$ ms109TAAOutput Valid from Clock100 kHz mode $2(TOSC)(BRG + 1)$ ms109TAAOutput Valid from Clock100 kHz mode3500ns110TBUFBus Free Time 1 MHz mode100 kHz modens110TBUFBus Free Time 1 MHz mode100 kHz modems110CBBus Capacitive LoadingmsTime the bus must be free before a new transmission can start				1 MHz mode ⁽¹⁾	TBD	—	ns	-
$ \begin{array}{ c c c c c c c c } \hline Setup Time & \hline 400 \ kHz \ mode & 2(TOSC)(BRG + 1) & - & ms \\ \hline 1 \ MHz \ mode^{(1)} & 2(TOSC)(BRG + 1) & - & ms \\ \hline 1 \ MHz \ mode^{(1)} & 2(TOSC)(BRG + 1) & - & ms \\ \hline 100 \ kHz \ mode & - & 3500 & ns \\ \hline 400 \ kHz \ mode & - & 1000 & ns \\ \hline 1 \ MHz \ mode^{(1)} & - & - & ns \\ \hline 1 \ MHz \ mode^{(1)} & - & - & ms \\ \hline 100 \ kHz \ mode & 4.7 & - & ms \\ \hline 100 \ kHz \ mode & 1.3 & - & ms \\ \hline 1 \ MHz \ mode^{(1)} \ TBD & - & ms \\ \hline 1 \ MHz \ mode^{(1)} \ TBD & - & ms \\ \hline 100 \ kHz \ mode & - & 400 \ pF \\ \hline \end{array} $	92	TSU:STO	Stop Condition Setup Time	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	
I MHz mode ⁽¹⁾ 2(TOSC)(BRG + 1) ms 109 TAA Output Valid from Clock 100 kHz mode 3500 ns 109 TAA Output Valid from Clock 100 kHz mode 1000 ns 110 TBUF Bus Free Time 400 kHz mode 100 kHz mode 4.7 ms 110 TBUF Bus Free Time 100 kHz mode 1.3 ms before a new transmission can start D102 CB Bus Capacitive Loading 400 pF				400 kHz mode	2(Tosc)(BRG + 1)	—	ms	-
109 TAA Output Valid from Clock 100 kHz mode — 3500 ns 100 hrs 400 kHz mode — 1000 ns 110 TBUF Bus Free Time 400 kHz mode 100 kHz mode 4.7 — ms 100 kHz mode 1.3 — ms time the bus must be free 400 kHz mode 1.3 — ms before a new transmission 1 MHz mode ⁽¹⁾ TBD — ms can start D102 CB Bus Capacitive Loading — 400 pF				1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	-
from Clock 400 kHz mode — 1000 ns 110 TBUF Bus Free Time 100 kHz mode 4.7 — ms Time the bus must be free 400 kHz mode 1.3 — ms before a new transmission 110 TBUF Bus Capacitive Loading — ms time the bus must be free	109 TAA	TAA	Output Valid from Clock	100 kHz mode	_	3500	ns	
$ \begin{array}{ c c c c c c c } \hline 1 & MHz \mod(e^{(1)}) & & & ns \\ \hline 1 & MHz \mod(e^{(1)}) & & ms \\ \hline 100 & KHz \mod(e^{(1)}) & & ms \\ \hline 100 & KHz \mod(e^{(1)}) & & ms \\ \hline 1 & MHz \mod(e^{(1)}) & TBD & & ms \\ \hline 1 & MHz \mod(e^{(1)}) & TBD & & ms \\ \hline 1 & MHz \mod(e^{(1)}) & & ms \\ \hline 1 & MHz \pmod(e^{(1)}) & & ms \\ \hline 1 & MHz \pmod(e^{(1)}) & & ms \\ \hline 1 & MHz \pmod(e^{(1)}) & & ms \\ \hline 1 & MHz \pmod(e^{(1)}) & & ms \\ \hline 1 & MHz \pmod(e^{(1)}) & & ms \\ \hline 1 & MHz \pmod(e^{(1)}) & & ms \\ \hline 1 & MHz \pmod(e^{(1)}) & & ms \\ \hline 1 & MHz \pmod(e^{(1)}) & & ms \\ \hline 1 & MHZ \pmod(e^{(1)}) & & ms \\ \hline 1 & MHZ \pmod(e^{(1)}) & & ms \\ \hline 1 & MHZ \pmod(e^{(1)}) & & ms \\ \hline 1 & MHZ \pmod(e^{(1)}) & & ms \\ \hline 1 & MHZ \pmod(e^{(1)}) & & ms \\ \hline 1 & MHZ \pmod(e^{(1)}) & & ms \\ \hline 1 & MHZ \pmod(e^{(1)}) & & ms \\ \hline 1 & MHZ \pmod(e^{(1)}) & & ms \\ \hline 1 & MHZ \pmod(e^{(1)}) & & ms \\ \hline 1 & MHZ \pmod(e^{(1)}) & & ms \\ \hline 1 & MHZ \pmod(e^{(1)}) & & ms \\ \hline 1 & MHZ \pmod(e^{(1)}) & $				400 kHz mode	_	1000	ns	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1 MHz mode ⁽¹⁾	_	—	ns	
400 kHz mode 1.3 ms before a new transmission 1 MHz mode ⁽¹⁾ TBD ms can start D102 CB Bus Capacitive Loading 400 pF	110 TBUF	TBUF	F Bus Free Time	100 kHz mode	4.7	—	ms	Time the bus must be free
I MHz mode ⁽¹⁾ TBD ms can start D102 CB Bus Capacitive Loading 400 pF				400 kHz mode	1.3	—	ms	before a new transmission
D102 CB Bus Capacitive Loading — 400 pF				1 MHz mode ⁽¹⁾	TBD	—	ms	can start
	D102	Св	Bus Capacitive L	oading	—	400	pF	

TABLE 27-22: MASTER SSP I²C BUS DATA REQUIREMENTS

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

2: A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but parameter #107 ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line, parameter #102 + parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the SCL line is released.

NOTES:

FIGURE 28-23: TYPICAL AND MAXIMUM Vol vs. Iol (VDD = 5V, -40°C TO +125°C)

