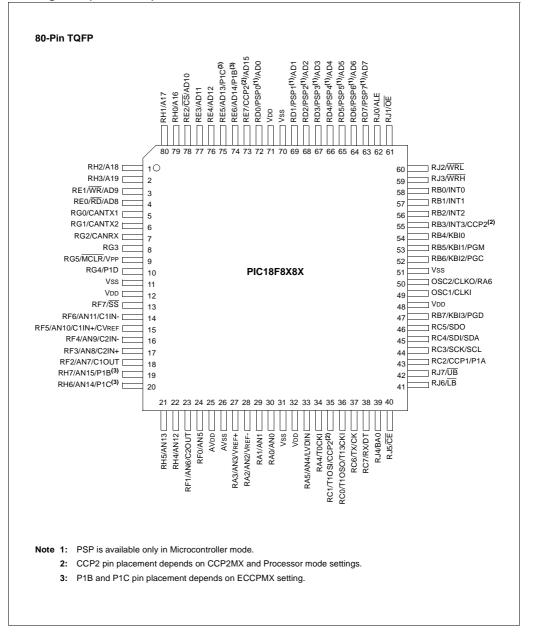


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	48KB (24K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	68-LCC (J-Lead)
Supplier Device Package	68-PLCC (24.23x24.23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf6585-i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Table of Contents

1.0	Device Overview	9
2.0	Oscillator Configurations	23
3.0	Reset	33
4.0	Memory Organization	51
5.0	Flash Program Memory	83
6.0	External Memory Interface	93
7.0	Data EEPROM Memory	101
8.0	8 x 8 Hardware Multiplier	. 107
9.0	Interrupts	. 109
10.0	I/O Ports	. 125
11.0	Timer0 Module	. 155
12.0	Timer1 Module	. 159
13.0	Timer2 Module	. 162
	Timer3 Module	
15.0	Capture/Compare/PWM (CCP) Modules	. 167
16.0	Enhanced Capture/Compare/PWM (ECCP) Module	
17.0	Master Synchronous Serial Port (MSSP) Module	
18.0	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (USART)	. 229
19.0	10-bit Analog-to-Digital Converter (A/D) Module	. 249
	Comparator Module	
	Comparator Voltage Reference Module	
22.0	Low-Voltage Detect	. 269
23.0	ECAN Module	. 275
24.0	Special Features of the CPU	. 345
25.0	Instruction Set Summary	. 365
26.0	Development Support	. 407
27.0	Electrical Characteristics	. 413
	DC and AC Characteristics Graphs and Tables	
	Packaging Information	
Appe	ndix A: Revision History	469
	ndix B: Device Differences	
Appe	ndix C: Conversion Considerations	. 470
Appe	ndix D: Migration from Mid-Range to Enhanced Devices	. 470
Appe	ndix E: Migration from High-End to Enhanced Devices	. 471
Index	۲	. 473
On-L	ine Support	. 487
Syste	ems Information and Upgrade Hot Line	. 487
Read	er Response	. 488
PIC1	8F6585/8585/6680/8680 Product Identification System	. 489

5.0 FLASH PROGRAM MEMORY

The Flash program memory is readable, writable and erasable during normal operation over the entire VDD range.

A read from program memory is executed on one byte at a time. A write to program memory is executed on blocks of 8 bytes at a time. Program memory is erased in blocks of 64 bytes at a time. A bulk erase operation cannot be issued from user code.

Writing or erasing program memory will cease instruction fetches until the operation is complete. The program memory cannot be accessed during the write or erase, therefore, code cannot execute. An internal programming timer terminates program memory writes and erases.

A value written to program memory does not need to be a valid instruction. Executing a program memory location that forms an invalid instruction results in a NOP.

5.1 Table Reads and Table Writes

In order to read and write program memory, there are two operations that allow the processor to move bytes between the program memory space and the data RAM:

- Table Read (TBLRD)
- Table Write (TBLWT)

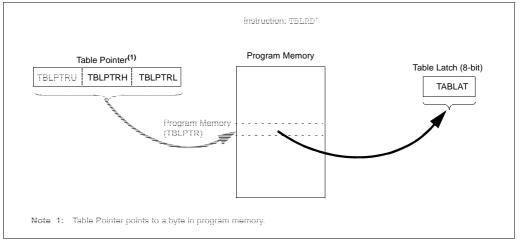

The program memory space is 16 bits wide, while the data RAM space is 8-bits wide. Table reads and table writes move data between these two memory spaces through an 8-bit register (TABLAT).

Table read operations retrieve data from program memory and places it into the data RAM space. Figure 5-1 shows the operation of a table read with program memory and data RAM.

Table write operations store data from the data memory space into holding registers in program memory. The procedure to write the contents of the holding registers into program memory is detailed in **Section 5.5 "Writing to Flash Program Memory"**. Figure 5-2 shows the operation of a table write with program memory and data RAM.

Table operations work with byte entities. A table block containing data, rather than program instructions, is not required to be word aligned. Therefore, a table block can start and end at any byte address. If a table write is being used to write executable code into program memory, program instructions will need to be word aligned.

FIGURE 5-1: TABLE READ OPERATION

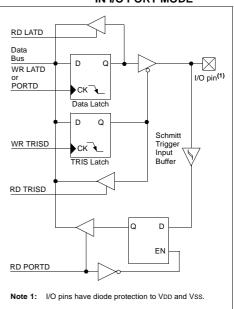
10.4 PORTD, TRISD and LATD Registers

PORTD is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISD. Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATD) is also memory mapped. Read-modify-write operations on the LATD register read and write the latched output value for PORTD.

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

Note:	On a Power-on Reset, these pins a	re				
	configured as digital inputs.					


On PIC18F8X8X devices, PORTD is multiplexed with the system bus as the external memory interface; I/O port functions are only available when the system bus is disabled by setting the EBDIS bit in the MEMCOM register (MEMCON<7>). When operating as the external memory interface, PORTD is the low-order byte of the multiplexed address/data bus (AD7:AD0).

PORTD can also be configured as an 8-bit wide microprocessor port (Parallel Slave Port) by setting control bit, PSPMODE (TRISE<4>). In this mode, the input buffers are TTL. See Section 10.10 "Parallel Slave Port (PSP)" for additional information.

EXAMPLE 10-4: INITIALIZING PORTD

CLRF	PORTD	; Initialize PORTD by ; clearing output
		; data latches
CLRF	LATD	; Alternate method
		; to clear output
		; data latches
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISD	; Set RD<3:0> as inputs
		; RD<5:4> as outputs
		; RD<7:6> as inputs

FIGURE 10-9: PORTD BLOCK DIAGRAM IN I/O PORT MODE

REGISTER 15-2: CCP2CON REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0
bit 7							bit 0

bit 7-6 Unimplemented: Read as '0'

bit 5-4 DC2B1:DC2B0: PWM Duty Cycle bit 1 and bit 0

Capture mode: Unused. Compare mode:

Unused. PWM mode:

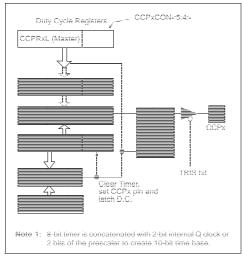
These bits are the two LSbs of the 10-bit PWM duty cycle. The eight MSbs of the duty cycle are found in CCPR2L.

bit 3-0 CCP2M3:CCP2M0: CCP2 Mode Select bits

- 0000 = Capture/Compare/PWM off (resets CCP2 module)
- 0001 = Reserved
- 0010 = Compare mode, toggle output on match
- 0011 = Reserved
- 0100 = Capture mode, every falling edge
- 0101 = Capture mode, every rising edge
- 0110 = Capture mode, every 4th rising edge
- 0111 = Capture mode, every 16th rising edge
- 1000 = Compare mode, initialize CCP pin low, on compare match force CCP pin high
- ${\tt 1001}$ = Compare mode, initialize CCP pin high, on compare match force CCP pin low
- ${\tt 1010}$ = Compare mode, generate software interrupt only, CCP pin is unaffected
- 1011 = Compare mode, trigger special event, resets TMR1 or TMR3 and starts A/D conversion if A/D module is enabled
- 11xx = PWM mode

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

15.4 PWM Mode


In Pulse Width Modulation (PWM) mode, the CCPx pin produces up to a 10-bit resolution PWM output. For PWM mode to function properly, the TRIS bit for the CCPx pin must be cleared to make it an output.

Note:	Clearing the CCPxCON register will force
	the CCPx PWM output latch to the default
	low level. This is not the port data latch.

Figure 15-3 shows a simplified block diagram of the CCP module in PWM mode.

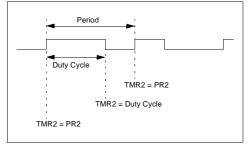
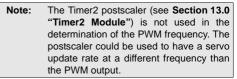

For a step-by-step procedure on how to set up the CCP module for PWM operation, see Section 15.4.3 "Setup for PWM Operation".

FIGURE 15-3: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 15-4) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

15.4.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula.


EQUATION 15-1:

 $PWM Period = [(PR2) + 1] \cdot 4 \cdot TOSC \cdot (TMR2 Prescale Value)$

PWM frequency is defined as 1/[PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

15.4.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPRxL register and to the CCPxCON<5:4> bits. Up to 10-bit resolution is available. The CCPRxL contains the eight MSbs and the CCPxCON<5:4> contain the two LSbs. This 10-bit value is represented by CCPRxL:CCPxCON<5:4>. The following equation is used to calculate the PWM duty cycle in time.

EQUATION 15-2:

```
PWM Duty Cycle = (CCPRxL:CCPxCON<5:4>) •
Tosc • (TMR2 Prescale Value)
```

CCPRxL and CCPxCON<5:4> can be written to at any time but the duty cycle value is not latched into CCPRxH until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPRxH is a read-only register.

The CCPRxH register and a 2-bit internal latch are used to double-buffer the PWM duty cycle. This double-buffering is essential for glitchless PWM operation.

When the CCPRxH and 2-bit latch match TMR2, concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCPx pin is cleared.

16.2 Enhanced PWM Mode

The Enhanced PWM mode provides additional PWM output options for a broader range of control applications. The module is a backward compatible version of the standard CCP module and offers up to four outputs, designated P1A through P1D. Users are also able to select the polarity of the signal (either active-high or active-low). The module's output mode and polarity are configured by setting the P1M1:P1M0 and CCP1M3:CCP1M0 bits of the CCP1CON register (CCP1CON<7:6> and CCP1CON<3:0>, respectively).

Figure 16-2 shows a simplified block diagram of PWM operation. All control registers are double-buffered and are loaded at the beginning of a new PWM cycle (the period boundary when Timer2 resets) in order to prevent glitches on any of the outputs. The exception is the PWM Delay register, ECCP1DEL, which is loaded at either the duty cycle boundary or the boundary period (whichever comes first). Because of the buffering, the module waits until the assigned timer resets instead of starting immediately. This means that enhanced PWM waveforms do not exactly match the standard PWM waveforms, but are instead offset by one full instruction cycle (4 Tosc).

As before, the user must manually configure the appropriate TRIS bits for output.

16.2.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following equation.

EQUATION 16-1:

 $PWM Period = [(PR2) + 1] \cdot 4 \cdot TOSC \cdot (TMR2 Prescale Value)$

PWM frequency is defined as 1/[PWM period]. When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is copied from CCPR1L into CCPR1H
 - Note: The Timer2 postscaler (see Section 13.0 "Timer2 Module") is not used in the determination of the PWM frequency. The postscaler could be used to have a servo update rate at a different frequency than the PWM output.

16.2.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The PWM duty cycle is calculated by the following equation.

EQUATION 16-2:

```
PWM Duty Cycle = (CCPR1L:CCP1CON<5:4>) •
Tosc • (TMR2 Prescale Value)
```

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not copied into CCPR1H until a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double-buffer the PWM duty cycle. This double-buffering is essential for glitchless PWM operation. When the CCPR1H and 2-bit latch match TMR2, concatenated with an internal 2-bit Q clock or two bits of the TMR2 prescaler, the CCP1 pin is cleared. The maximum PWM resolution (bits) for a given PWM frequency is given by the following equation:

EQUATION 16-3:

PWM Resolution (max) =
$$\frac{\log\left(\frac{FOSC}{FPWM}\right)}{\log(2)}$$
 bits

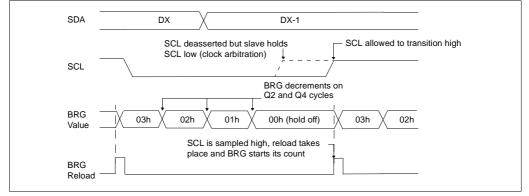
Note: If the PWM duty cycle value is longer than the PWM period, the CCP1 pin will not be cleared.

16.2.3 PWM OUTPUT CONFIGURATIONS

The P1M1:P1M0 bits in the CCP1CON register allow one of four configurations:

- Single Output
- Half-Bridge Output
- Full-Bridge Output, Forward mode
- Full-Bridge Output, Reverse mode

The Single Output mode is the standard PWM mode discussed in **Section 16.2 "Enhanced PWM Mode"**. The Half-Bridge and Full-Bridge Output modes are covered in detail in the sections that follow.


The general relationship of the outputs in all configurations is summarized in Figure 16-3.

17.4.7.1 Clock Arbitration

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, deasserts the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the

SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 17-18).

NOTES:

FER 23-51:	MSEL3: M	ASK SELE	CT REGIS	TER 3(1)				
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	FIL15_1	FIL15_0	FIL14_1	FIL14_0	FIL13_1	FIL13_0	FIL12_1	FIL12_0
	bit 7							bit 0
bit 7-6	_	15_0: Filter 1	5 Select bit	s 1 and 0				
	11 = No mas							
	10 = Filter 1 01 = Accept							
		ance Mask 0						
bit 5-4	FIL14_1:FIL	14_0: Filter 1	4 Select bit	s 1 and 0				
	11 = No mas	sk						
	10 = Filter 1							
	01 = Accept	ance Mask 1 ance Mask 0						
bit 3-2		.13_0: Filter 1	3 Select hit	s 1 and 0				
DIT O L	11 = No mas	_	0 001001 511					
	10 = Filter 1							
	01 = Accept							
	•	ance Mask 0						
bit 1-0	—	.12_0: Filter 1	2 Select bit	s 1 and 0				
	11 = No mas 10 = Filter 1							
	01 = Accept							
		ance Mask 0						
	Note 1:	This register is	s available i	n Mode 1 ar	nd 2 only.			

REGISTER 23-51: N	MSEL3: MASK SELECT REGISTER 3 ⁽¹⁾
-------------------	--

 Legend:
 R = Readable bit
 W = Writable bit
 U = Unimplemented bit, read as '0'

 - n = Value at POR
 '1' = Bit is set
 '0' = Bit is cleared
 x = Bit is unknown

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
300001h	CONFIG1H			OSCSEN		FOSC3	FOSC2	FOSC1	FOSC0	1- 1111
300002h	CONFIG2L	_	_	_	_	BORV1	BORV0	BODEN	PWRTEN	1111
300003h	CONFIG2H	_	_	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN	1 1111
300004h ⁽¹⁾	CONFIG3L	WAIT	_	_	_	_	_	PM1	PM0	111
300005h	CONFIG3H	MCLRE	-	—		—	—	ECCPMX ⁽⁴⁾	CCP2MX	111
300006h	CONFIG4L	DEBUG		—		—	LVP	_	STVREN	11-1
300008h	CONFIG5L	_	_	_	_	CP3 ⁽²⁾	CP2	CP1	CP0	1111
300009h	CONFIG5H	CPD	CPB	_	_	_	_	_	_	11
30000Ah	CONFIG6L		-	—		WRT3 ⁽²⁾	WRT2	WRT1	WRT0	1111
30000Bh	CONFIG6H	WRTD	WRTB	WRTC	_	_	_	_	_	111
30000Ch	CONFIG7L			—		EBTR3 ⁽²⁾	EBTR2	EBTR1	EBTR0	1111
30000Dh	CONFIG7H		EBTRB	—		—	—	—		-1
3FFFFEh	DEVID1	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	(Note 3)
3FFFFFh	DEVID2	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	0000 1010

TABLE 24-1: CONFIGURATION BITS AND DEVICE IDS

 $\label{eq:legend: Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition. Shaded cells are unimplemented, read as '0'.$

Note 1: Unimplemented in PIC18F6X8X devices; maintain this bit set.

2: Unimplemented in PIC18FX585 devices; maintain this bit set.

3: See Register 24-13 for DEVID1 values.

4: Reserved in PIC18F6X8X devices; maintain this bit set.

REGISTER 24-13: DEVICE ID REGISTER 1 FOR PIC18FXX8X DEVICES (ADDRESS 3FFFFEh)

R	R	R	R	R	R	R	R
DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0
bit 7							bit 0

bit 7-5 DEV2:DEV0: Device ID bits

000 = PIC18F8680

001 = PIC18F6680

010 = PIC18F8585

011 = PIC18F6585

bit 4-0 REV4:REV0: Revision ID bits

These bits are used to indicate the device revision.

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
- n = Value when device	e is unprogrammed	u = Unchanged from programmed state

REGISTER 24-14: DEVICE ID REGISTER 2 FOR PIC18FXX8X DEVICES (ADDRESS 3FFFFFh)

R-0	R-0	R-0	R-0	R-1	R-0	R-1	R-0
DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3
bit 7							bit 0

bit 7-0 DEV10:DEV3: Device ID bits

These bits are used with the DEV2:DEV0 bits in the Device ID Register 1 to identify the part number.

0000 1010 = PIC18F6585/8585/6680/8680

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
- n = Value when devic	e is unprogrammed	u = Unchanged from programmed state

24.2 Watchdog Timer (WDT)

The Watchdog Timer is a free-running, on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKI pin. That means that the WDT will run even if the clock on the OSC1/CLKI and OSC2/CLKO/RA6 pins of the device has been stopped, for example, by execution of a SLEEP instruction.

During normal operation, a WDT time-out generates a device Reset (Watchdog Timer Reset). If the device is in Sleep mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer wake-up). The $\overline{\text{TO}}$ bit in the RCON register will be cleared upon a WDT time-out.

The Watchdog Timer is enabled/disabled by a device configuration bit. If the WDT is enabled, software execution may not disable this function. When the WDTEN configuration bit is cleared, the SWDTEN bit enables/disables the operation of the WDT. The WDT time-out period values may be found in **Section 27.0** "**Electrical Characteristics**" under parameter #31. Values for the WDT postscaler may be assigned using the configuration bits.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and the postscaler if assigned to the WDT and prevent it from timing out and generating a device Reset condition.
 - When a CLRWDT instruction is executed and the postscaler is assigned to the WDT, the postscaler count will be cleared but the postscaler assignment is not changed.

24.2.1 CONTROL REGISTER

Register 24-15 shows the WDTCON register. This is a readable and writable register which contains a control bit that allows software to override the WDT enable configuration bit, only when the configuration bit has disabled the WDT.

REGISTER 24-15: WDTCON REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—		—	—	—	—	—	SWDTEN
bit 7							bit 0

bit 7-1 Unimplemented: Read as '0'

bit 0 SWDTEN: Software Controlled Watchdog Timer Enable bit

- 1 = Watchdog Timer is on
- 0 = Watchdog Timer is turned off if the WDTEN configuration bit in the Configuration register = 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	d bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

24.4.2 DATA EEPROM CODE PROTECTION

The entire data EEPROM is protected from external reads and writes by two bits: CPD and WRTD. CPD inhibits external reads and writes of data EEPROM. WRTD inhibits external writes to data EEPROM. The CPU can continue to read and write data EEPROM readralless of the protection bit settings.

24.4.3 CONFIGURATION REGISTER PROTECTION

The Configuration registers can be write-protected. The WRTC bit controls protection of the Configuration registers. In User mode, the WRTC bit is readable only. WRTC can only be written via ICSP or an external programmer.

24.5 ID Locations

Eight memory locations (200000h-200007h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are accessible during normal execution through the TBLRD and TBLWT instructions or during program/verify. The ID locations can be read when the device is code-protected.

24.6 In-Circuit Serial Programming

PIC18FXX80/XX85 microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

24.7 In-Circuit Debugger

When the DEBUG bit in Configuration register, CONFIG4L, is programmed to a '0', the in-circuit debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB[®] IDE. When the microcontroller has this feature enabled, some of the resources are not available for general use. Table 24-4 shows which features are consumed by the background debugger.

TABLE 24-4:	DEBUGGER RESOURCES
--------------------	--------------------

I/O pins	RB6, RB7				
Stack	2 levels				
Program Memory	512 bytes				
Data Memory	10 bytes				

To use the in-circuit debugger function of the microcontroller, the design must implement In-Circuit Serial Programming connections to MCLR/VPP, VDD, GND, RB7 and RB6. This will interface to the in-circuit debugger module available from Microchip or one of the third party development tool companies.

GOT	о	Uncondi	tional B	ranch	ı			INC	=	
Synta	ax:	[label]	GOTO	k			•	Synt	ax:	
Oper	rands:	$0 \le k \le 10$)48575					Ope	rands:	
Oper	ration:	$k \rightarrow PC < 2$	20:1>							
Statu	us Affected:	None						000	ration:	
1st w	oding: vord (k<7:0>) word(k<19:8>	1110) 1111	1111 k ₁₉ kkk	k ₇ kl kkk		kkkk ₀ kkkk ₈		Statu	us Affected: oding:	
Description: GOTO allows an unconditional branch anywhere within entire 2-Mbyte memory range. The 20-bit value 'k' is loaded into PC<20:1>. GOTO is always a two-cycle instruction.						Desc	cription:			
Word	ds:	2								
Cycle	es:	2								
QC	ycle Activity:							Wor	ds:	
	Q1	Q2	Q	3		Q4	-	Cvcl	es:	
	Decode	Read literal 'k'<7:0>,	No operat		'k'•	ad literal <19:8>, te to PC			co. Sycle Activity Q1	y:
	No operation	No operation	No operat		ор	No eration			Decode	1

Example: GOTO THERE

After Instruction

PC = Address (THERE)

INCF	Incremen	t f					
Syntax:	[label]	INCF	f [,d [,a]]			
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]						
Operation:	(f) + 1 \rightarrow 0	dest					
Status Affected:	C, DC, N	, OV, Z					
Encoding:	0010	10da	ffff	ffff			
	is placed i is placed l (default). I Bank will l the BSR v	incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR using (default).					
Words:	1						
Cycles:	1						
Q Cycle Activity	•						
Q Cycle Activity Q1	Q2	Q3	8	Q4			
		Q3 Proce Data	SS	Q4 Write to destination			
Q1	Q2 Read	Proce Data	SS	Write to			

RLNCF	Rotate Left f (no carry)	RRCF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RLNCF f [,d [,a]]	Syntax:	[<i>label</i>] RRCF f [,d [,a]]
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$
Operation:	$(f < n >) \rightarrow dest < n + 1 >,$ $(f < 7 >) \rightarrow dest < 0 >$	Operation:	$(f < n >) \rightarrow dest < n - 1 >,$ $(f < 0 >) \rightarrow C,$ $(C) \rightarrow dest < 7 >$
Status Affected:	N, Z	Status Affected	()
Encoding: Description:	0100 01da ffff The contents of register 'f' ar	<u>Encoding</u>	0011 00da ffff fff
	rotated one bit to the left. If 'd the result is placed in W. If 'd the result is stored back in re 'f' (default). If 'a' is '0', the Ac Bank will be selected, overric the BSR value. If 'a' is '1', the bank will be selected as per t BSR value (default).	' is '1', gister cess ling en the	The contents of register 'f' are rotated one bit to the right throug the Carry flag. If 'd' is '0', the res is placed in W. If 'd' is '1', the res is placed back in register 'f' (default). If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value (default).
Words:	1		C register f
Cycles:	1	Words:	1
Q Cycle Activity Q1	: Q2 Q3 Q4	Cycles:	1
Decode	Read Process Write register 'f' Data destina	to Q Cycle Activi	ty: Q2 Q3 Q4
Example:	RLNCF REG, 1, 0	Decode	Read Process Write tr register 'f' Data destination
Before Instru	uction	_ .	
REG	= 1010 1011	Example:	RRCF REG, 0, 0
After Instruc REG	tion = 0101 0111	Before Ins REG C	= 1110 0110 = 0
		After Instr	iction

		rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value (default).					
Vor	ds:	1					
ycl	es:	1					
ຊດ	ycle Activity:						
	Q1	Q2	Q3	Q4			
Decode		Read register 'f'	Process Data	Write to destination			
xample:		RRCF	REG, 0, ()			

ffff

Delote mat	uction		
REG C	= =	1110 0	0110
After Instruc	ction		
REG	=	1110	0110
W	=	0111	0011
С	=	0	

26.9 MPLAB ICE 2000 High-Performance Universal In-Circuit Emulator

The MPLAB ICE 2000 universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers. Software control of the MPLAB ICE 2000 in-circuit emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB ICE in-circuit emulator allows expansion to support new PIC microcontrollers.

The MPLAB ICE 2000 in-circuit emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft[®] Windows 32-bit operating system were chosen to best make these features available in a simple, unified application.

26.10 MPLAB ICE 4000 High-Performance Universal In-Circuit Emulator

The MPLAB ICE 4000 universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for highend PIC microcontrollers. Software control of the MPLAB ICE in-circuit emulator is provided by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICD 4000 is a premium emulator system, providing the features of MPLAB ICE 2000, but with increased emulation memory and high-speed performance for dsPIC30F and PIC18XXXX devices. Its advanced emulator features include complex triggering and timing, up to 2 Mb of emulation memory and the ability to view variables in real-time.

The MPLAB ICE 4000 in-circuit emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft Windows 32-bit operating system were chosen to best make these features available in a simple, unified application.

26.11 MPLAB ICD 2 In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD 2, is a powerful, low-cost, run-time development tool, connecting to the host PC via an RS-232 or high-speed USB interface. This tool is based on the Flash PIC MCUs and can be used to develop for these and other PIC microcontrollers. The MPLAB ICD 2 utilizes the incircuit debugging capability built into the Flash devices. This feature, along with Microchip's In-Circuit Serial Programming[™] (ICSP[™]) protocol, offers cost effective in-circuit Flash debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, singlestepping and watching variables, CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real-time. MPLAB ICD 2 also serves as a development programmer for selected PIC devices

26.12 PRO MATE II Universal Device Programmer

The PRO MATE II is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features an LCD display for instructions and error messages and a modular detachable socket assembly to support various package types. In Stand-Alone mode, the PRO MATE II device programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode.

26.13 MPLAB PM3 Device Programmer

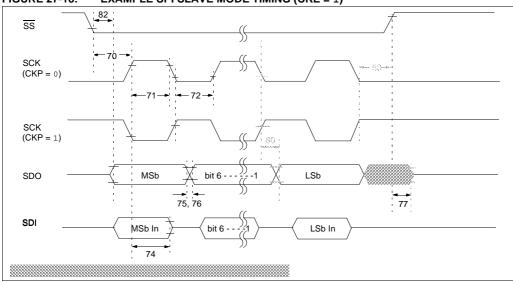
The MPLAB PM3 is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 device programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. MPLAB PM3 connects to the host PC via an RS-232 or USB cable. MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an SD/ MMC card for file storage and secure data applications.

27.2 DC Characteristics: Power-down and Supply Current PIC18FXX8X (Industrial, Extended) PIC18LFXX8X (Industrial) (Continued)

PIC18LFXX8X (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC18F) (Indu	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended								
Param. Device		Тур	Max	Units	Conditions				
	Supply Current (IDD) ^{(2,3}	3)							
	PIC18FXX8X	13	27	mA	-40°C				
		15	27	mA	+25°C	VDD = 4.2V			
		19	29	mA	+85°C		Fosc = 25 MHz,		
	PIC18FXX8X	17	31	mA	-40°C		EC oscillator		
		21	31	mA	+25°C	VDD = 5.0V			
		23	34	mA	+85°C				
	PIC18FXX8X	20	34	mA	-40°C				
		24	34	mA	+25°C	VDD = 4.2V	Fosc = 40 MHz, EC oscillator		
		29	44	mA	+85°C				
	PIC18FXX8X	28	46	mA	-40°C				
		33	46	mA	+25°C	VDD = 5.0V			
		40	51	mA	+85°C				
D014	PIC18LFXX8X	27	45	μΑ	-10°C				
		30	50	μΑ	+25°C	VDD = 2.0V			
	-	32	54	μΑ	+70°C				
	PIC18LFXX8X	33	55	μΑ	-10°C	-	Fosc = 32 kHz,		
		36	60	μA	+25°C	VDD = 3.0V	Timer1 as clock		
		39	65	μΑ	+70°C				
	All devices	75	125	μΑ	-10°C	_			
		90	150	μΑ	+25°C	VDD = 5.0V			
		113	188	μA	+70°C				

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).


2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

TABLE 27-18: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{\text{SS}} \downarrow \text{to SCK} \downarrow \text{or SCK} \uparrow \text{Input}$		Тсү	—	ns	
71	TscH	SCK Input High Time (Slave mode)	Continuous	1.25 TCY + 30	—	ns	
71A			Single Byte	40	—	ns	(Note 1)
72	TscL	SCK Input Low Time (Slave mode)	Continuous	1.25 TCY + 30	—	ns	
72A			Single Byte	40	_	ns	(Note 1)
73A	Тв2в	Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2		1.5 TCY + 40		ns	(Note 2)
74	TscH2diL, TscL2diL	Hold Time of SDI Data Input to SCK Edge		100	—	ns	
75	TDOR	SDO Data Output Rise Time	PIC18FXX8X	—	25	ns	
			PIC18LFXX8X		45	ns	
76	TDOF	SDO Data Output Fall Time		—	25	ns	
77	TssH2doZ	SS ↑ to SDO Output High-Impedance		10	50	ns	
78	TSCR	SCK Output Rise Time (Master mode)	PIC18FXX8X		25	ns	
			PIC18LFXX8X	_	45	ns	
79	TSCF	SCK Output Fall Time (Master mode)			25	ns	
80	TSCH2DOV, TSCL2DOV	SDO Data Output Valid after SCK Edge	PIC18FXX8X		50	ns	
			PIC18LFXX8X	_	100	ns	
82	TssL2doV	SDO Data Output Valid after $\overline{ extsf{SS}}\downarrow$ Edge	PIC18FXX8X	—	50	ns	
			PIC18LFXX8X	—	100	ns	
83	TscH2ssH, TscL2ssH	SS ↑ after SCK Edge	1	1.5 TCY + 40	—	ns	

FIGURE 27-18: EXAMPLE SPI SLAVE MODE TIMING (CKE = 1)

Note 1: Requires the use of Parameter #73A.

2: Only if Parameter #71A and #72A are used.

Product Identification System
Registers56
Program Memory
Instructions57
Two-Word
Interrupt Vector
Map and Stack for
PIC18F6585/8585
Map and Stack for
PIC18F6680/8680
Memory Access for PIC18F8X8X Modes52
Memory Maps for
PIC18F8X8X Modes
Reset Vector
Program Memory Modes
Extended Microcontroller
Microcontroller
Microprocessor
Microprocessor with
Boot Block
Program Memory Write Timing
Requirements
Program Verification and
Code Protection
Associated Registers
Configuration Register
Protection
Data EEPROM Code
Protection
Memory Code Protection
Programming, Device Instructions
PSP. See Parallel Slave Port.
PUSH
PWM (CCP Module)
CCPR1H:CCPR1L Registers
CCPR1L:CCPR1H Registers
Duty Cycle
Example Frequencies/
Resolutions
Period
Registers Associated with PWM
and Timer2
Setup for PWM Operation174
TMR2 to PR2 Match
PWM (CCP Module) and Timer2
Associated Registers 174
PWM (ECCP Module)
Effects of a Reset
Enhanced PWM Auto-Shutdown 184
Full-Bridge Application
Example
Full-Bridge Mode181
Direction Change
Half-Bridge Mode
Half-Bridge Output Mode
Applications Example
Output Configurations
Output Relationships
(Active-High State)178

Output Relationships	
(Active-Low State)	179
Programmable Dead-Band Delay	184
PWM Direction Change (diagram)	183
PWM Direction Change at Near 100%	
Duty Cycle (diagram)	183
Setup for Operation	187
Start-up Considerations	186
Q	
Q Clock	177

R

RAM. See Data Memory.	
RC Oscillator	4
RCALL	5
RCON Register	3
RCSTA Register	
SPEN Bit	9
Register File	9
Register File Summary	7
Registers	
ADCON0 (A/D Control 0) 249	9
ADCON1 (A/D Control 1) 250	0
ADCON2 (A/D Control 2) 25	1
BAUDCON (Baud Rate Control)	2
BIE0 (Buffer Interrupt Enable 0) 322	2
BnCON (TX/RX Buffer n Control,	
Receive Mode) 29	7
BnCON (TX/RX Buffer n Control,	
Transmit Mode) 298	8
BnDLC (TX/RX Buffer n Data Length	
Code in Receive Mode) 304	4
BnDLC (TX/RX Buffer n Data Length	
Code in Transmit Mode) 309	5
BnDm (TX/RX Buffer n Data Field Byte m	
in Receive Mode)	3
BnDm (TX/RX Buffer n Data Field Byte m	
in Transmit Mode)	3
BnEIDH (TX/RX Buffer n Extended	
Identifier, High Byte in Receive Mode)	
	1
BnEIDH (TX/RX Buffer n Extended	
Identifier, High Byte in	
Transmit Mode) 30 BnEIDL (TX/RX Buffer n Extended	1
Identifier, Low Byte in	
Receive Mode)	2
BnEIDL (TX/RX Buffer n Extended	2
Identifier, Low Byte in	
Transmit Mode)	2
BnSIDH (TX/RX Buffer n Standard	2
Identifier, High Byte in	
Receive Mode)	q
BnSIDH (TX/RX Buffer n Standard	Ő
Identifier, High Byte in	
Transmit Mode)	9
BnSIDL (TX/RX Buffer n Standard	-
Identifier, Low Byte in	
Receive Mode) 300	0
,	