



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

### Details

| Product Status             | Active                                                                     |
|----------------------------|----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                        |
| Core Size                  | 8-Bit                                                                      |
| Speed                      | 40MHz                                                                      |
| Connectivity               | CANbus, I <sup>2</sup> C, SPI, UART/USART                                  |
| Peripherals                | Brown-out Detect/Reset, LVD, POR, PWM, WDT                                 |
| Number of I/O              | 52                                                                         |
| Program Memory Size        | 48KB (24K x 16)                                                            |
| Program Memory Type        | FLASH                                                                      |
| EEPROM Size                | 1K x 8                                                                     |
| RAM Size                   | 3.25K x 8                                                                  |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 5.5V                                                                  |
| Data Converters            | A/D 12x10b                                                                 |
| Oscillator Type            | External                                                                   |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                          |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 64-TQFP                                                                    |
| Supplier Device Package    | 64-TQFP (10x10)                                                            |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic18lf6585-i-pt |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### 3.0 RESET

The PIC18F6585/8585/6680/8680 devices differentiate between various kinds of Reset:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during Sleep
- d) Watchdog Timer (WDT) Reset (during normal operation)
- e) Programmable Brown-out Reset (BOR)
- f) RESET Instruction
- g) Stack Full Reset
- h) Stack Underflow Reset

Most registers are unaffected by a Reset. Their status is unknown on POR and unchanged by all other Resets. The other registers are forced to a "Reset state" on Power-on Reset, MCLR, WDT Reset, Brownout Reset, MCLR Reset during Sleep and by the RESET instruction. Most registers are not affected by a WDT wake-up since this is viewed as the resumption of normal operation. Status bits from the RCON register,  $\overline{RI}$ ,  $\overline{TO}$ ,  $\overline{PD}$ ,  $\overline{POR}$  and  $\overline{BOR}$ , are set or cleared differently in different Reset situations, as indicated in Table 3-2. These bits are used in software to determine the nature of the Reset. See Table 3-3 for a full description of the Reset states of all registers.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 3-1.

The Enhanced MCU devices have a MCLR noise filter in the MCLR Reset path. The filter will detect and ignore small pulses. The MCLR pin is not driven low by any internal Resets, including the WDT.





|                          |            |            | Power-on Reset. | MCLR Resets<br>WDT Reset          | Wake-up via WDT |
|--------------------------|------------|------------|-----------------|-----------------------------------|-----------------|
| Register                 | Applicable | e Devices  | Brown-out Reset | RESET Instruction<br>Stack Resets | or Interrupt    |
| RXFCON0 <sup>(7)</sup>   | PIC18F6X8X | PIC18F8X8X | 0000 0000       | 0000 0000                         | uuuu uuuu       |
| RXFBCON7 <sup>(7)</sup>  | PIC18F6X8X | PIC18F8X8X | 0000 0000       | 0000 0000                         | uuuu uuuu       |
| RXFBCON6 <sup>(7)</sup>  | PIC18F6X8X | PIC18F8X8X | 0000 0000       | 0000 0000                         | uuuu uuuu       |
| RXFBCON5 <sup>(7)</sup>  | PIC18F6X8X | PIC18F8X8X | 0000 0000       | 0000 0000                         | uuuu uuuu       |
| RXFBCON4 <sup>(7)</sup>  | PIC18F6X8X | PIC18F8X8X | 0000 0000       | 0000 0000                         | uuuu uuuu       |
| RXFBCON3 <sup>(7)</sup>  | PIC18F6X8X | PIC18F8X8X | 0000 0000       | 0000 0000                         | uuuu uuuu       |
| RXFBCON2 <sup>(7)</sup>  | PIC18F6X8X | PIC18F8X8X | 0001 0001       | 0001 0001                         | uuuu uuuu       |
| RXFBCON1 <sup>(7)</sup>  | PIC18F6X8X | PIC18F8X8X | 0001 0001       | 0001 0001                         | uuuu uuuu       |
| RXFBCON0 <sup>(7)</sup>  | PIC18F6X8X | PIC18F8X8X | 0000 0000       | 0000 0000                         | uuuu uuuu       |
| RXF15EIDL <sup>(7)</sup> | PIC18F6X8X | PIC18F8X8X | XXXX XXXX       | uuuu uuuu                         | uuuu uuuu       |
| RXF15EIDH <sup>(7)</sup> | PIC18F6X8X | PIC18F8X8X | XXXX XXXX       | uuuu uuuu                         | uuuu uuuu       |
| RXF15SIDL <sup>(7)</sup> | PIC18F6X8X | PIC18F8X8X | xxx- x-xx       | uuu- u-uu                         | uuu- u-uu       |
| RXF15SIDH <sup>(7)</sup> | PIC18F6X8X | PIC18F8X8X | XXXX XXXX       | uuuu uuuu                         | uuuu uuuu       |
| RXF14EIDL <sup>(7)</sup> | PIC18F6X8X | PIC18F8X8X | XXXX XXXX       | uuuu uuuu                         | uuuu uuuu       |
| RXF14EIDH <sup>(7)</sup> | PIC18F6X8X | PIC18F8X8X | XXXX XXXX       | uuuu uuuu                         | uuuu uuuu       |
| RXF14SIDL <sup>(7)</sup> | PIC18F6X8X | PIC18F8X8X | xxx- x-xx       | uuu- u-uu                         | uuu- u-uu       |
| RXF14SIDH <sup>(7)</sup> | PIC18F6X8X | PIC18F8X8X | XXXX XXXX       | uuuu uuuu                         | uuuu uuuu       |
| RXF13EIDL <sup>(7)</sup> | PIC18F6X8X | PIC18F8X8X | XXXX XXXX       | uuuu uuuu                         | uuuu uuuu       |
| RXF13EIDH <sup>(7)</sup> | PIC18F6X8X | PIC18F8X8X | XXXX XXXX       | uuuu uuuu                         | uuuu uuuu       |
| RXF13SIDL <sup>(7)</sup> | PIC18F6X8X | PIC18F8X8X | xxx- x-xx       | uuu- u-uu                         | uuu- u-uu       |
| RXF13SIDH(7)             | PIC18F6X8X | PIC18F8X8X | XXXX XXXX       | uuuu uuuu                         | uuuu uuuu       |
| RXF12EIDL <sup>(7)</sup> | PIC18F6X8X | PIC18F8X8X | XXXX XXXX       | uuuu uuuu                         | uuuu uuuu       |
| RXF12EIDH <sup>(7)</sup> | PIC18F6X8X | PIC18F8X8X | XXXX XXXX       | uuuu uuuu                         | uuuu uuuu       |
| RXF12SIDL <sup>(7)</sup> | PIC18F6X8X | PIC18F8X8X | xxx- x-xx       | uuu- u-uu                         | uuu- u-uu       |
| RXF12SIDH <sup>(7)</sup> | PIC18F6X8X | PIC18F8X8X | XXXX XXXX       | uuuu uuuu                         | uuuu uuuu       |
| RXF11EIDL <sup>(7)</sup> | PIC18F6X8X | PIC18F8X8X | XXXX XXXX       | uuuu uuuu                         | uuuu uuuu       |
| RXF11EIDH <sup>(7)</sup> | PIC18F6X8X | PIC18F8X8X | XXXX XXXX       | uuuu uuuu                         | uuuu uuuu       |
| RXF11SIDL <sup>(7)</sup> | PIC18F6X8X | PIC18F8X8X | xxx- x-xx       | uuu- u-uu                         | uuu- u-uu       |
| RXF11SIDH <sup>(7)</sup> | PIC18F6X8X | PIC18F8X8X | XXXX XXXX       | uuuu uuuu                         | uuuu uuuu       |
| RXF10EIDL <sup>(7)</sup> | PIC18F6X8X | PIC18F8X8X | XXXX XXXX       | uuuu uuuu                         | -uuu uuuu       |
| RXF10EIDH(7)             | PIC18F6X8X | PIC18F8X8X | XXXX XXXX       | uuuu uuuu                         | -uuu uuuu       |

#### TABLE 3-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

 $\label{eq:Legend: u = unchanged, x = unknown, - = unimplemented bit, read as `0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.$ 

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

- 2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).
- 3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.
- 4: See Table 3-2 for Reset value for specific condition.
- 5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other oscillator modes, they are disabled and read '0'.
- 6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they read '0'.
- 7: This register reads all '0's until ECAN is set up in Mode 1 or Mode 2.



FIGURE 3-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1



FIGURE 3-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2



© 2003-2013 Microchip Technology Inc.

| File Name | Bit 7                            | Bit 6                                 | Bit 5                             | Bit 4                            | Bit 3                    | Bit 2            | Bit 1          | Bit 0     | Value on<br>POR, BOR | Details<br>on page: |
|-----------|----------------------------------|---------------------------------------|-----------------------------------|----------------------------------|--------------------------|------------------|----------------|-----------|----------------------|---------------------|
| TOSU      | _                                | _                                     | _                                 | Top-of-Stack                     | Upper Byte (T            | OS<20:16>)       |                |           | 0 0000               | 36, 54              |
| TOSH      | Top-of-Stack                     | High Byte (TOS                        | S<15:8>)                          |                                  |                          |                  |                |           | 0000 0000            | 36, 54              |
| TOSL      | Top-of-Stack                     | Low Byte (TOS                         | <7:0>)                            |                                  |                          |                  |                |           | 0000 0000            | 36, 54              |
| STKPTR    | STKFUL                           | STKUNF                                | _                                 | Return Stack                     | turn Stack Pointer       |                  |                |           |                      | 36, 55              |
| PCLATU    | _                                | —                                     | bit 21                            | Holding Reg                      | ister for PC<20          | ):16>            |                |           | 00 0000              | 36, 56              |
| PCLATH    | Holding Regis                    | ster for PC<15:8                      | 8>                                |                                  |                          |                  |                |           | 0000 0000            | 36, 56              |
| PCL       | PC Low Byte                      | (PC<7:0>)                             |                                   |                                  |                          |                  |                |           | 0000 0000            | 36, 56              |
| TBLPTRU   | _                                | —                                     | bit 21 <sup>(2)</sup>             | Program Me                       | mory Table Po            | inter Upper Byte | e (TBLPTR<     | 20:16>)   | 00 0000              | 36, 86              |
| TBLPTRH   | Program Men                      | nory Table Poin                       | ter High Byte (                   | TBLPTR<15:                       | B>)                      |                  |                |           | 0000 0000            | 36, 86              |
| TBLPTRL   | Program Men                      | nory Table Poin                       | ter Low Byte (                    | TBLPTR<7:0>                      | »)                       |                  |                |           | 0000 0000            | 36, 86              |
| TABLAT    | Program Men                      | nory Table Latc                       | h                                 |                                  |                          |                  |                |           | 0000 0000            | 36, 86              |
| PRODH     | Product Regis                    | ster High Byte                        | High Byte                         |                                  |                          |                  |                |           | XXXX XXXX            | 36, 107             |
| PRODL     | Product Regis                    | ster Low Byte                         |                                   |                                  |                          |                  |                |           | xxxx xxxx            | 36, 107             |
| INTCON    | GIE/GIEH                         | PEIE/GIEL                             | TMR0IE                            | INT0IE                           | RBIE                     | TMR0IF           | INTOIF         | RBIF      | 0000 000x            | 36, 111             |
| INTCON2   | RBPU                             | INTEDG0                               | INTEDG1                           | INTEDG2                          | INTEDG3                  | TMR0IP           | INT3IP         | RBIP      | 1111 1111            | 36, 112             |
| INTCON3   | INT2IP                           | INT1IP                                | INT3IE                            | INT2IE                           | INT1IE                   | INT3IF           | INT2IF         | INT1IF    | 1100 0000            | 36, 113             |
| INDF0     | Uses contents                    | s of FSR0 to ad                       | dress data me                     | mory – value                     | of FSR0 not ch           | hanged (not a pl | nysical regist | er)       | n/a                  | 79                  |
| POSTINC0  | Uses contents                    | s of FSR0 to ad                       | ldress data me                    | mory – value                     | of FSR0 post-i           | incremented (no  | t a physical i | register) | n/a                  | 79                  |
| POSTDEC0  | Uses contents                    | s of FSR0 to ad                       | ldress data me                    | mory – value                     | of FSR0 post-            | decremented (no  | ot a physical  | register) | n/a                  | 79                  |
| PREINC0   | Uses contents                    | s of FSR0 to ad                       | ldress data me                    | mory – value                     | of FSR0 pre-ir           | cremented (not   | a physical re  | egister)  | n/a                  | 79                  |
| PLUSW0    | Uses contents<br>(not a physical | s of FSR0 to ad<br>al register) – val | ldress data me<br>lue of FSR0 off | emory – value<br>fset by value i | of FSR0 pre-ir<br>n WREG | cremented        |                |           | n/a                  | 79                  |
| FSR0H     | _                                | —                                     | —                                 | _                                | Indirect Data            | Memory Addres    | s Pointer 0 H  | ligh Byte | 0000                 | 36, 79              |
| FSR0L     | Indirect Data                    | Memory Addres                         | ss Pointer 0 Lo                   | ow Byte                          |                          |                  |                |           | xxxx xxxx            | 36, 79              |
| WREG      | Working Regi                     | ster                                  |                                   |                                  |                          |                  |                |           | xxxx xxxx            | 36                  |
| INDF1     | Uses contents                    | s of FSR1 to ad                       | ldress data me                    | emory – value                    | of FSR1 not ch           | nanged (not a pł | nysical regist | er)       | n/a                  | 79                  |
| POSTINC1  | Uses contents                    | s of FSR1 to ad                       | ldress data me                    | mory – value                     | of FSR1 post-i           | incremented (no  | t a physical i | register) | n/a                  | 79                  |
| POSTDEC1  | Uses contents                    | s of FSR1 to ad                       | ldress data me                    | mory – value                     | of FSR1 post-            | decremented (no  | ot a physical  | register) | n/a                  | 79                  |
| PREINC1   | Uses contents                    | s of FSR1 to ad                       | ldress data me                    | emory – value                    | of FSR1 pre-ir           | ncremented (not  | a physical re  | egister)  | n/a                  | 79                  |
| PLUSW1    | Uses contents<br>(not a physical | s of FSR1 to ad<br>al register) – val | ldress data me<br>ue of FSR1 off  | emory – value<br>fset by value i | of FSR1 pre-ir<br>n WREG | ncremented       |                |           | n/a                  | 79                  |
| FSR1H     | —                                | —                                     | —                                 | —                                | Indirect Data            | Memory Addres    | s Pointer 1 H  | ligh Byte | 0000                 | 37, 79              |
| FSR1L     | Indirect Data                    | Memory Addres                         | ss Pointer 1 Lo                   | w Byte                           |                          |                  |                |           | xxxx xxxx            | 37, 79              |
| BSR       | _                                | _                                     | _                                 | _                                | Bank Select F            | Register         |                |           | 0000                 | 37, 78              |
| INDF2     | Uses contents                    | s of FSR2 to ad                       | dress data me                     | emory – value                    | of FSR2 not ch           | nanged (not a pł | nysical regist | er)       | n/a                  | 79                  |
| POSTINC2  | Uses contents                    | s of FSR2 to ad                       | ldress data me                    | emory – value                    | of FSR2 post-i           | incremented (no  | t a physical i | register) | n/a                  | 79                  |
| POSTDEC2  | Uses contents                    | s of FSR2 to ad                       | ldress data me                    | mory – value                     | of FSR2 post-            | decremented (no  | ot a physical  | register) | n/a                  | 79                  |
| PREINC2   | Uses contents                    | s of FSR2 to ad                       | ldress data me                    | emory – value                    | of FSR2 pre-ir           | ncremented (not  | a physical re  | egister)  | n/a                  | 79                  |
| PLUSW2    | Uses contents<br>(not a physical | s of FSR2 to ad<br>al register) – val | ldress data me<br>lue of FSR2 off | emory – value<br>fset by value i | of FSR2 pre-ir<br>n WREG | cremented        |                |           | n/a                  | 79                  |
| FSR2H     | _                                | _                                     | _                                 | _                                | Indirect Data            | Memory Addres    | s Pointer 2 H  | ligh Byte | 0000                 | 37, 79              |
| FSR2L     | Indirect Data                    | Memory Addres                         | ss Pointer 2 Lo                   | w Byte                           | 1                        |                  |                |           | XXXX XXXX            | 37, 79              |
| Legend: x | : = unknown, 1                   | 1 = unchanged                         | l, – = unimple                    | mented, q =                      | value depend             | s on condition   |                |           |                      |                     |

#### TABLE 4-3: REGISTER FILE SUMMARY

Note 1: RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read 'o' in all other oscillator modes.

2: Bit 21 of the TBLPTRU allows access to the device configuration bits.

3: These registers are unused on PIC18F6X80 devices; always maintain these clear.

4: These bits have multiple functions depending on the CAN module mode selection.

5: Meaning of this register depends on whether this buffer is configured as transmit or receive.

6: RG5 is available as an input when MCLR is disabled.

7: This register reads all '0's until the ECAN module is set up in Mode 1 or Mode 2.

### 13.0 TIMER2 MODULE

The Timer2 module timer has the following features:

- 8-bit timer (TMR2 register)
- 8-bit period register (PR2)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMR2 match of PR2
- SSP module optional use of TMR2 output to generate clock shift

Timer2 has a control register shown in Register 13-1. Timer2 can be shut-off by clearing control bit, TMR2ON (T2CON<2>), to minimize power consumption. Figure 13-1 is a simplified block diagram of the Timer2 module. Register 13-1 shows the Timer2 Control register. The prescaler and postscaler selection of Timer2 are controlled by this register.

### 13.1 Timer2 Operation

Timer2 can be used as the PWM time base for the PWM mode of the CCP module. The TMR2 register is readable and writable and is cleared on any device Reset. The input clock (FOSC/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits, T2CKPS1:T2CKPS0 (T2CON<1:0>). The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate a TMR2 interrupt latched in flag bit, TMR2IF (PIR1<1>).

The prescaler and postscaler counters are cleared when any of the following occurs:

- · a write to the TMR2 register
- · a write to the T2CON register
- any device Reset (Power-on Reset, MCLR Reset, Watchdog Timer Reset, or Brown-out Reset)

TMR2 is not cleared when T2CON is written.

### REGISTER 13-1: T2CON: TIMER2 CONTROL REGISTER

|         | U-0                                 | R/W-0                                      | R/W-0                | R/W-0         | R/W-0          | R/W-0     | R/W-0        | R/W-0   |
|---------|-------------------------------------|--------------------------------------------|----------------------|---------------|----------------|-----------|--------------|---------|
|         | —                                   | T2OUTPS3                                   | T2OUTPS2             | T2OUTPS1      | T2OUTPS0       | TMR2ON    | T2CKPS1      | T2CKPS0 |
|         | bit 7                               |                                            |                      |               |                |           |              | bit 0   |
| bit 7   | Unimple                             | mented: Rea                                | d as '0'             |               |                |           |              |         |
| bit 6-3 | T2OUTP                              | S3:T2OUTPS                                 | <b>50</b> : Timer2 O | utput Postsca | le Select bits |           |              |         |
|         | 0000 = 1<br>0001 = 1                | :1 postscale<br>:2 postscale               |                      |               |                |           |              |         |
|         | •                                   |                                            |                      |               |                |           |              |         |
|         | •                                   |                                            |                      |               |                |           |              |         |
|         | 1111 <b>= 1</b>                     | :16 postscale                              | 9                    |               |                |           |              |         |
| bit 2   | TMR2ON                              | I: Timer2 On                               | bit                  |               |                |           |              |         |
|         | 1 = Time<br>0 = Time                | r2 is on<br>r2 is off                      |                      |               |                |           |              |         |
| bit 1-0 | T2CKPS                              | 1:T2CKPS0:                                 | Timer2 Clock         | Prescale Se   | lect bits      |           |              |         |
|         | 00 = Pres<br>01 = Pres<br>1x = Pres | scaler is 1<br>scaler is 4<br>scaler is 16 |                      |               |                |           |              |         |
|         |                                     |                                            |                      |               |                |           |              |         |
|         | Legend:                             |                                            |                      |               |                |           |              |         |
|         | R = Rea                             | dable bit                                  | VV = V               | Vritable bit  | U = Unim       | olemented | bit, read as | '0'     |
|         | - n = Val                           | ue at POR                                  | '1' = E              | Bit is set    | '0' = Bit is   | cleared   | x = Bit is u | unknown |

#### 17.4.7 BAUD RATE GENERATOR

In I<sup>2</sup>C Master mode, the Baud Rate Generator (BRG) reload value is placed in the lower 7 bits of the SSPADD register (Figure 17-17). When a write occurs to SSPBUF, the Baud Rate Generator will automatically begin counting. The BRG counts down to 'o' and stops until another reload has taken place. The BRG count is decremented twice per instruction cycle (TcY) on the Q2 and Q4 clocks. In I<sup>2</sup>C Master mode, the BRG is reloaded automatically.

Once the given operation is complete (i.e., transmission of the last data bit is followed by  $\overline{ACK}$ ), the internal clock will automatically stop counting and the SCL pin will remain in its last state.

Table 17-3 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPADD.

#### FIGURE 17-17: BAUD RATE GENERATOR BLOCK DIAGRAM



| Fcy    | FcY*2  | BRG Value | Fsc∟<br>(2 Rollovers of BRG) |
|--------|--------|-----------|------------------------------|
| 10 MHz | 20 MHz | 19h       | 400 kHz <sup>(1)</sup>       |
| 10 MHz | 20 MHz | 20h       | 312.5 kHz                    |
| 10 MHz | 20 MHz | 64h       | 100 kHz                      |
| 4 MHz  | 8 MHz  | 0Ah       | 400 kHz <sup>(1)</sup>       |
| 4 MHz  | 8 MHz  | 0Dh       | 308 kHz                      |
| 4 MHz  | 8 MHz  | 28h       | 100 kHz                      |
| 1 MHz  | 2 MHz  | 03h       | 333 kHz <sup>(1)</sup>       |
| 1 MHz  | 2 MHz  | 0Ah       | 100 kHz                      |
| 1 MHz  | 2 MHz  | 00h       | 1 MHz <sup>(1)</sup>         |

#### TABLE 17-3: I<sup>2</sup>C CLOCK RATE w/BRG

**Note 1:** The  $l^2C$  interface does not conform to the 400 kHz  $l^2C$  specification (which applies to rates greater than 100 kHz) in all details but may be used with care where higher rates are required by the application.



### FIGURE 18-11: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

### TABLE 18-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

| Name    | Bit 7                                   | Bit 6        | Bit 5       | Bit 4  | Bit 3 | Bit 2  | Bit 1  | Bit 0  | Value on<br>POR, BOR | Value on<br>all other<br>Resets |
|---------|-----------------------------------------|--------------|-------------|--------|-------|--------|--------|--------|----------------------|---------------------------------|
| INTCON  | GIE/GIEH                                | PEIE/GIEL    | TMR0IE      | INT0IE | RBIE  | TMR0IF | INT0IF | RBIF   | 0000 0000            | 0000 0000                       |
| PIR1    | PSPIF                                   | ADIF         | RCIF        | TXIF   | SSPIF | CCP1IF | TMR2IF | TMR1IF | 0000 0000            | 0000 0000                       |
| PIE1    | PSPIE                                   | ADIE         | RCIE        | TXIE   | SSPIE | CCP1IE | TMR2IE | TMR1IE | 0000 0000            | 0000 0000                       |
| IPR1    | PSPIP                                   | ADIP         | RCIP        | TXIP   | SSPIP | CCP1IP | TMR2IP | TMR1IP | 1111 1111            | 1111 1111                       |
| RCSTA   | SPEN                                    | RX9          | SREN        | CREN   | ADDEN | FERR   | OERR   | RX9D   | 0000 000x            | 0000 000x                       |
| TXREG   | USART Tra                               | ansmit Regis | ter         |        |       |        |        |        | 0000 0000            | 0000 0000                       |
| TXSTA   | CSRC                                    | TX9          | TXEN        | SYNC   | SENDB | BRGH   | TRMT   | TX9D   | 0000 0010            | 0000 0010                       |
| BAUDCON | —                                       | RCIDL        | —           | SCKP   | BRG16 | —      | WUE    | ABDEN  | -1-0 0-00            | -1-0 0-00                       |
| SPBRGH  | Baud Rate Generator Register, High Byte |              |             |        |       |        |        |        | 0000 0000            | 0000 0000                       |
| SPBRG   | Baud Rate                               | Generator R  | egister, Lo | w Byte |       |        |        |        | 0000 0000            | 0000 0000                       |

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

| ER 23-4: | CONSTAT:                              | COMMUNIC                                                                   | ATION 5               | ATUS RE      | GISTER   |               |             |             |  |  |  |  |
|----------|---------------------------------------|----------------------------------------------------------------------------|-----------------------|--------------|----------|---------------|-------------|-------------|--|--|--|--|
| Mada 0   | R/C-0                                 | R/C-0                                                                      | R-0                   | R-0          | R-0      | R-0           | R-0         | R-0         |  |  |  |  |
| Mode o   | RXB00VFL                              | RXB10VFL                                                                   | ТХВО                  | TXBP         | RXBP     | TXWARN        | RXWARN      | EWARN       |  |  |  |  |
|          | U-0                                   | R/C-0                                                                      | R-0                   | R-0          | R-0      | R-0           | R-0         | R-0         |  |  |  |  |
| Mode 1   | _                                     | RXBnOVFL                                                                   | TXB0                  | TXBP         | RXBP     | TXWARN        | RXWARN      | EWARN       |  |  |  |  |
|          | - /                                   | 5/2 4                                                                      |                       |              |          |               |             |             |  |  |  |  |
| Mode 2   | R/C-0                                 | R/C-0                                                                      | R-0                   | R-0          | R-0      | R-0           | R-0         | R-0         |  |  |  |  |
|          | FIFOEMPTY                             | RXBnOVFL                                                                   | тхво                  | ТХВР         | RXBP     | TXWARN        | RXWARN      | EWARN       |  |  |  |  |
|          | DIT /                                 |                                                                            |                       |              |          |               |             | DITU        |  |  |  |  |
| bit 7    | Mode 0:                               |                                                                            |                       |              |          |               |             |             |  |  |  |  |
|          | RXB00VFL:                             | Receive Buffe                                                              | er 0 Overflo          | w bit        |          |               |             |             |  |  |  |  |
|          | 1 = Receive Buffer 0 overflowed       |                                                                            |                       |              |          |               |             |             |  |  |  |  |
|          | 0 = Receive                           | Buffer 0 has no                                                            | ot overflow           | ed           |          |               |             |             |  |  |  |  |
|          | Mode 1:                               |                                                                            | ( . ]                 |              |          |               |             |             |  |  |  |  |
|          | Unimplemei                            | ited: Read as                                                              | .0,                   |              |          |               |             |             |  |  |  |  |
|          |                                       | Mode 2:                                                                    |                       |              |          |               |             |             |  |  |  |  |
|          | 1 = Receive                           | FIFO is not em                                                             | notv                  |              |          |               |             |             |  |  |  |  |
|          | 0 = Receive                           | FIFO is empty                                                              | ip y                  |              |          |               |             |             |  |  |  |  |
| bit 6    | Mode 0:                               |                                                                            |                       |              |          |               |             |             |  |  |  |  |
|          | RXB10VFL:                             | Receive Buffe                                                              | er 1 Overflo          | w bit        |          |               |             |             |  |  |  |  |
|          | 1 = Receive                           | 1 = Receive Buffer 1 overflowed<br>0 = Receive Buffer 1 has not overflowed |                       |              |          |               |             |             |  |  |  |  |
|          | 0 = Receive                           | Mode 1, 2:                                                                 |                       |              |          |               |             |             |  |  |  |  |
|          | RXBnOVFL: Receive Buffer Overflow bit |                                                                            |                       |              |          |               |             |             |  |  |  |  |
|          | 1 = Receive buffer has overflowed     |                                                                            |                       |              |          |               |             |             |  |  |  |  |
|          | 0 = Receive                           | buffer has not                                                             | overflowed            |              |          |               |             |             |  |  |  |  |
| oit 5    | TXBO: Trans                           | smitter Bus-Off                                                            | bit                   |              |          |               |             |             |  |  |  |  |
|          | 1 = Transmit                          | error counter :                                                            | > 255                 |              |          |               |             |             |  |  |  |  |
|          |                                       | error counter:                                                             | ≤ 255                 |              |          |               |             |             |  |  |  |  |
| bit 4    | TXBP: Transmitter Bus Passive bit     |                                                                            |                       |              |          |               |             |             |  |  |  |  |
|          | 1 = Transmit<br>0 = Transmit          | error counter                                                              | < 127                 |              |          |               |             |             |  |  |  |  |
| bit 3    | RXBP: Rece                            | iver Bus Passi                                                             | ve bit                |              |          |               |             |             |  |  |  |  |
|          | 1 = Receive                           | error counter >                                                            | 127                   |              |          |               |             |             |  |  |  |  |
|          | 0 = Receive                           | error counter ≤                                                            | 127                   |              |          |               |             |             |  |  |  |  |
| bit 2    | TXWARN: T                             | ransmitter War                                                             | ning bit              |              |          |               |             |             |  |  |  |  |
|          | $1 = 127 \ge Transmit$                | ansmit error co                                                            | unter > 95            |              |          |               |             |             |  |  |  |  |
| hit 1    |                                       |                                                                            | ≥ 90<br>na hit        |              |          |               |             |             |  |  |  |  |
|          | 1 = 127 > Re                          | ceive error co                                                             | inter > 95            |              |          |               |             |             |  |  |  |  |
|          | 0 = Receive                           | error counter ≤                                                            | 95                    |              |          |               |             |             |  |  |  |  |
| bit 0    | EWARN: Err                            | or Warning bit                                                             |                       |              |          |               |             |             |  |  |  |  |
|          | This bit is a f                       | lag of the RXW                                                             | /ARN and <sup>·</sup> | TXWARN bi    | its.     |               |             |             |  |  |  |  |
|          | 1 = The RXV                           | VARN or the T                                                              | XWARN bi              | ts are set   |          |               |             |             |  |  |  |  |
|          | 0 = Neither t                         | he RXWARN c                                                                | or the TXW            | ARN bits are | e set    |               |             |             |  |  |  |  |
|          | Legend:                               |                                                                            |                       |              |          |               |             |             |  |  |  |  |
|          | C = Clearabl                          | ehit R-Re                                                                  | adable hit            | W - Write    | able hit | l I = Unimple | mented bit  | read as 'O' |  |  |  |  |
|          |                                       |                                                                            | addine bit            | vv — vviite  |          |               | moniou bit, | 1000 03 0   |  |  |  |  |

#### **REGISTER 23** . ~

- n = Value at POR '1' = Bit is set

#### EXAMPLE 23-4: TRANSMITTING A CAN MESSAGE USING WIN BITS

```
; Need to transmit Standard Identifier message 123h using TXB0 buffer.
; To successfully transmit, CAN module must be either in Normal or Loopback mode.
; TXB0 buffer is not in access bank. Use WIN bits to map it to RXB0 area.
MOVE CANCON, W
                                    ; WIN bits are in lower 4 bits only. Read CANCON
                                    ; register to preserve all other bits. If operation
                                    ; mode is already known, there is no need to preserve
                                    ; other bits.
ANDLW B'11110000'
                                    ; Clear WIN bits.
IORLW B'00001000'
                                    ; Select Transmit Buffer 0
MOVWF CANCON
                                    ; Apply the changes.
; Now TXB0 is mapped in place of RXB0. All future access to RXB0 registers will actually
; yield TXB0 register values.
; Load transmit data into TXB0 buffer.
MOVLW MY_DATA_BYTE1
                                    ; Load first data byte into buffer
MOVWF RXB0D0
                                    ; Access TXB0D0 via RXB0D0 address.
; Load rest of the data bytes - up to 8 bytes into "TXBO" buffer using RXB0 registers.
. . .
; Load message identifier
MOVLW 60H
                                    ; Load SID2:SID0, EXIDE = 0
MOVWF RXBOSIDL
MOVLW 24H
                                     : Load SID10:SID3
MOVWF RXB0SIDH
; No need to load RXB0EIDL:RXB0EIDH, as we are transmitting Standard Identifier Message only.
; Now that all data bytes are loaded, mark it for transmission.
MOVLW B'00001000'
                                    ; Normal priority; Request transmission
MOVWF RXB0CON
; If required, wait for message to get transmitted
BTFSC RXB0CON, TXREQ
                         ; Is it transmitted?
BRA
       $-2
                                    ; No. Continue to wait ...
; Message is transmitted.
; If required, reset the WIN bits to default state.
```

## REGISTER 23-32: BnDm: TX/RX BUFFER n DATA FIELD BYTE m REGISTERS IN RECEIVE MODE $[0 \le n \le 5, 0 \le m \le 7, TXnEN (BSEL<n>) = 0]^{(1)}$

| R-x   |
|-------|-------|-------|-------|-------|-------|-------|-------|
| BnDm7 | BnDm6 | BnDm5 | BnDm4 | BnDm3 | BnDm2 | BnDm1 | BnDm0 |
| bit 7 |       |       |       |       |       |       | bit 0 |

bit 7-0 **BnDm7:BnDm0:** Receive Buffer n Data Field Byte m bits (where  $0 \le n < 3$  and 0 < m < 8) Each receive buffer has an array of registers. For example, Receive Buffer 0 has 7 registers: B0D0 to B0D7.

Note 1: These registers are available in Mode 1 and 2 only.

| Legend:            |                  |                                        |  |  |  |
|--------------------|------------------|----------------------------------------|--|--|--|
| R = Readable bit   | W = Writable bit | U = Unimplemented bit, read as '0'     |  |  |  |
| - n = Value at POR | '1' = Bit is set | 0' = Bit is cleared x = Bit is unknown |  |  |  |

## REGISTER 23-33: BnDm: TX/RX BUFFER n DATA FIELD BYTE m REGISTERS IN TRANSMIT MODE $[0 \le n \le 5, 0 \le m \le 7, TX$ nEN (BSEL<n>) = 1]<sup>(1)</sup>

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| BnDm7 | BnDm6 | BnDm5 | BnDm4 | BnDm3 | BnDm2 | BnDm1 | BnDm0 |
| bit 7 |       |       |       |       |       |       | bit 0 |

bit 7-0 **BnDm7:BnDm0:** Transmit Buffer n Data Field Byte m bits (where  $0 \le n < 3$  and 0 < m < 8) Each transmit buffer has an array of registers. For example, Transmit Buffer 0 has 7 registers: TXB0D0 to TXB0D7.

Note 1: These registers are available in Mode 1 and 2 only.

| Legend:            |                  |                      |                    |
|--------------------|------------------|----------------------|--------------------|
| R = Readable bit   | W = Writable bit | U = Unimplemented    | bit, read as '0'   |
| - n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |

#### **REGISTER 23-34:** BnDLC: TX/RX BUFFER n DATA LENGTH CODE REGISTERS IN RECEIVE MODE [0 < n < 5. TXnEN (BSEL<n>) = $01^{(1)}$

| bit 7<br>bit 7<br>Unimplet<br>bit 7<br>Unimplet<br>bit 7<br>1 = This i<br>0 = This i<br>111 = R<br>110 = R<br>100 = R<br>100 = R<br>100 = R<br>100 = C<br>010 = C<br>010 = C<br>001 = C                                                                                                                                                                                                                                                                                                        | R-x                              | R-x                          | R-x                  | R-x        | R-x   | R-x  | R-x   |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------|----------------------|------------|-------|------|-------|--|--|--|--|
| bit 7<br>it 7<br>Unimplet<br>it 6<br>RXRTR:<br>1 = This i<br>0 = This i<br>0 = This i<br>0 = This i<br>0 = This i<br>Reserved<br>it 5<br>RB1: Res<br>Reserved<br>it 4<br>RB0: Res<br>Reserved<br>it 3-0<br>DLC3:DL<br>1111 = R<br>1110 = R<br>1100 = R<br>1001 = C<br>0111 = C<br>0101 = C<br>0101 = C<br>0011 = C                                                                                                                                                                                                                                                                                                                                                   | RXRTR                            | RB1                          | RB0                  | DLC3       | DLC2  | DLC1 | DLC0  |  |  |  |  |
| bit 7         Unimplement           bit 6         RXRTR:           1 = This i         0 = This i           0 = This i         0 = This i           bit 5         RB1: Reserved           bit 5         RB1: Reserved           bit 4         RB0: Reserved           bit 3-0         DLC3:DL           1111 = R         1110 = R           1101 = R         1001 = R           1001 = R         1001 = R           1001 = R         1001 = R           0101 = C         0101 = C           0010 = C         0010 = C |                                  | -                            |                      |            | •     | •    | bit 0 |  |  |  |  |
| Spit 6         RXRTR:           1 = This i         0 = This i           0 = This i         0 = This i           spit 5         RB1: Res           reserved         Reserved           spit 4         RB0: Res           spit 3-0         DLC3:DL           1111 = R           1100 = R           1001 = R           1001 = R           1000 = C           0110 = C           0100 = C           0100 = C           0101 = C           0101 = C           0010 = C                                                                                                                                                          | mented: Read                     | <b>d as</b> '0'              |                      |            |       |      |       |  |  |  |  |
| 1 = This i         0 = This i         not 5         RB1: Reserved         not 4         RB0: Reserved         not 3-0         DLC3:DL         1111 = R         1100 = R         1011 = R         1000 = R         1001 = R         1001 = R         1001 = C         0111 = C         0101 = C         0101 = C         0101 = C         0011 = C         0011 = C         0010 = C         0010 = C                                                                                                                                                                                                                       | Receiver Rem                     | note Transm                  | ission Requ          | est bit    |       |      |       |  |  |  |  |
| bit 5 <b>RB1:</b> Res           Reserved         Reserved           bit 4 <b>RB0:</b> Res           bit 3-0 <b>DLC3:DL</b> 1111 = R           1100 = R           1001 = R           1001 = R           1000 = D           0110 = D           0110 = D           0100 = D           0100 = D           0101 = D           0100 = D           0100 = D           0100 = D           0100 = D           0010 = D                                                                                                                                                     | s a remote tra<br>s not a remote | ansmission r<br>e transmissi | equest<br>on request |            |       |      |       |  |  |  |  |
| Reserved           bit 4 <b>RB0:</b> Res           bit 3-0 <b>DLC3:DL</b> 1111 = R           1100 = R           1001 = R           1000 = R           0011 = C           0110 = C           0101 = C           0010 = C           0010 = C           0010 = C           0010 = C                                                                                                                                                                                                                                                                                                                                           | served bit 1                     |                              |                      |            |       |      |       |  |  |  |  |
| bit 4 <b>RB0:</b> Res<br>Reserved<br>bit 3-0 <b>DLC3:DL</b><br>1111 = R<br>1100 = R<br>1001 = R<br>1001 = R<br>1000 = D<br>0111 = D<br>0101 = D<br>0100 = D<br>0101 = D<br>0010 = D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | by CAN Spe                       | c and read a                 | <b>IS</b> '0'.       |            |       |      |       |  |  |  |  |
| Reserved<br>bit 3-0 DLC3:DL<br>1111 = R<br>1100 = R<br>1001 = R<br>1001 = R<br>1000 = C<br>0111 = C<br>0100 = C<br>0101 = C<br>0010 = C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | erved bit 0                      |                              |                      |            |       |      |       |  |  |  |  |
| bit 3-0 DLC3:DL<br>1111 = R<br>1110 = R<br>1101 = R<br>1001 = R<br>1001 = R<br>1000 = D<br>0111 = D<br>0101 = D<br>0100 = D<br>0010 = D<br>0010 = D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | by CAN Spe                       | c and read a                 | <b>IS</b> '0'.       |            |       |      |       |  |  |  |  |
| 1111 = R<br>1110 = R<br>1101 = R<br>1001 = R<br>1011 = R<br>1000 = C<br>0111 = C<br>0100 = C<br>0101 = C<br>0101 = C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DLC3:DLC0: Data Length Code bits |                              |                      |            |       |      |       |  |  |  |  |
| 1110 = R<br>1101 = R<br>1011 = R<br>1010 = R<br>1000 = C<br>0111 = C<br>0110 = C<br>0100 = C<br>0101 = C<br>0011 = C<br>0010 = C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1111 = Reserved                  |                              |                      |            |       |      |       |  |  |  |  |
| 1101 = R<br>1100 = R<br>1011 = R<br>1000 = C<br>0111 = C<br>0110 = C<br>0100 = C<br>0101 = C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1110 = Reserved                  |                              |                      |            |       |      |       |  |  |  |  |
| 1100 = R<br>1011 = R<br>1001 = R<br>1001 = C<br>0111 = C<br>0101 = C<br>0101 = C<br>0011 = C<br>0011 = C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1101 = Reserved                  |                              |                      |            |       |      |       |  |  |  |  |
| 1011 = R<br>1010 = R<br>1001 = R<br>1000 = D<br>0111 = D<br>0101 = D<br>0100 = D<br>0011 = D<br>0011 = D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1100 = Reserved                  |                              |                      |            |       |      |       |  |  |  |  |
| 1010 = R<br>1001 = R<br>1000 = D<br>0111 = D<br>0110 = D<br>0101 = D<br>0011 = D<br>0011 = D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | eserved                          |                              |                      |            |       |      |       |  |  |  |  |
| 1001 = R<br>1000 = D<br>0111 = D<br>0101 = D<br>0101 = D<br>0011 = D<br>0011 = D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1010 = Reserved                  |                              |                      |            |       |      |       |  |  |  |  |
| 1000 = C<br>0111 = C<br>0101 = C<br>0101 = C<br>0100 = C<br>0011 = C<br>0010 = C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eserved                          |                              |                      |            |       |      |       |  |  |  |  |
| 0111 = C<br>0110 = C<br>0101 = C<br>0100 = C<br>0011 = C<br>0010 = C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ata length = 8                   | 3 bytes                      |                      |            |       |      |       |  |  |  |  |
| 0110 = C<br>0101 = C<br>0100 = C<br>0011 = C<br>0010 = C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ata length = 7                   | 7 bytes                      |                      |            |       |      |       |  |  |  |  |
| 0101 = C<br>0100 = C<br>0011 = C<br>0010 = C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ata length = 6                   | 6 bytes                      |                      |            |       |      |       |  |  |  |  |
| 0100 = D<br>0011 = D<br>0010 = D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ata length = 5                   | 5 bytes                      |                      |            |       |      |       |  |  |  |  |
| 0011 = D<br>0010 = D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0100 = Data length = 4  bytes    |                              |                      |            |       |      |       |  |  |  |  |
| 0010 = D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0011 = Data length = 3 bytes     |                              |                      |            |       |      |       |  |  |  |  |
| <b>D</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0010 = Data length = 2 bytes     |                              |                      |            |       |      |       |  |  |  |  |
| 0001 = L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0001 = Data length = 1 bytes     |                              |                      |            |       |      |       |  |  |  |  |
| 0000 = D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ata length = 0                   | ) bytes                      |                      |            |       |      |       |  |  |  |  |
| Note 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | : These regis                    | sters are ava                | ailable in Mo        | de 1 and 2 | only. |      |       |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                |                              |                      |            |       |      |       |  |  |  |  |

| Legend:            |                  |                      |                    |
|--------------------|------------------|----------------------|--------------------|
| R = Readable bit   | W = Writable bit | U = Unimplemented    | bit, read as '0'   |
| - n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |

| ER 23-30. |                                                                                                                                      | ASK SELE                                                         | ST REGIS      |             |            |        |        |        |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------|-------------|------------|--------|--------|--------|
|           | R/W-0                                                                                                                                | R/W-0                                                            | R/W-0         | R/W-0       | R/W-0      | R/W-0  | R/W-0  | R/W-0  |
|           | FIL11_1                                                                                                                              | FIL11_0                                                          | FIL10_1       | FIL10_0     | FIL9_1     | FIL9_0 | FIL8_1 | FIL8_0 |
|           | bit 7                                                                                                                                |                                                                  |               |             |            |        |        | bit 0  |
| bit 7-6   | FIL11_1:FIL<br>11 = No mas<br>10 = Filter 13<br>01 = Accepta<br>00 = Accepta                                                         | <b>11_0:</b> Filter 1<br>sk<br>5<br>ance Mask 1<br>ance Mask 0   | 1 Select bits | s 1 and 0   |            |        |        |        |
| bit 5-4   | FIL10_1:FIL10_0: Filter 10 Select bits 1 and 0<br>11 = No mask<br>10 = Filter 15<br>01 = Acceptance Mask 1<br>00 = Acceptance Mask 0 |                                                                  |               |             |            |        |        |        |
| bit 3-2   | FIL9_1:FIL9<br>11 = No mas<br>10 = Filter 13<br>01 = Accepta<br>00 = Accepta                                                         | 9_ <b>0:</b> Filter 9 S<br>sk<br>5<br>ance Mask 1<br>ance Mask 0 | elect bits 1  | and 0       |            |        |        |        |
| bit 1-0   | FIL8_1:FIL8<br>11 = No mas<br>10 = Filter 19<br>01 = Accepta<br>00 = Accepta                                                         | 5_ <b>0:</b> Filter 8 S<br>sk<br>5<br>ance Mask 1<br>ance Mask 0 | elect bits 1  | and 0       |            |        |        |        |
|           | Note 1:                                                                                                                              | This register i                                                  | s available i | n Mode 1 ar | nd 2 only. |        |        |        |

| Legend:            |                  |                      |                    |
|--------------------|------------------|----------------------|--------------------|
| R = Readable bit   | W = Writable bit | U = Unimplemented    | bit, read as '0'   |
| - n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown |

### REGISTER 23-50: MSEL2: MASK SELECT REGISTER 2<sup>(1)</sup>

### 23.9 Baud Rate Setting

All nodes on a given CAN bus must have the same nominal bit rate. The CAN protocol uses Non-Returnto-Zero (NRZ) coding which does not encode a clock within the data stream. Therefore, the receive clock must be recovered by the receiving nodes and synchronized to the transmitter's clock.

As oscillators and transmission time may vary from node to node, the receiver must have some type of Phase Lock Loop (PLL) synchronized to data transmission edges to synchronize and maintain the receiver clock. Since the data is NRZ coded, it is necessary to include bit stuffing to ensure that an edge occurs at least every six bit times to maintain the Digital Phase Lock Loop (DPLL) synchronization.

The bit timing of the PIC18F6585/8585/6680/8680 is implemented using a DPLL that is configured to synchronize to the incoming data and provides the nominal timing for the transmitted data. The DPLL breaks each bit time into multiple segments made up of minimal periods of time called the Time Quanta (TQ).

Bus timing functions executed within the bit time frame, such as synchronization to the local oscillator, network transmission delay compensation, and sample point positioning, are defined by the programmable bit timing logic of the DPLL.

All devices on the CAN bus must use the same bit rate. However, all devices are not required to have the same master oscillator clock frequency. For the different clock frequencies of the individual devices, the bit rate has to be adjusted by appropriately setting the baud rate prescaler and number of time quanta in each segment.

The Nominal Bit Rate is the number of bits transmitted per second, assuming an ideal transmitter with an ideal oscillator, in the absence of resynchronization. The nominal bit rate is defined to be a maximum of 1 Mb/s. The Nominal Bit Time is defined as:

#### EQUATION 23-1:

TBIT = 1/Nominal Bit Rate

The Nominal Bit Time can be thought of as being divided into separate, non-overlapping time segments. These segments (Figure 23-4) include:

- Synchronization Segment (Sync\_Seg)
- Propagation Time Segment (Prop\_Seg)
- Phase Buffer Segment 1 (Phase\_Seg1)
- Phase Buffer Segment 2 (Phase\_Seg2)

The time segments (and thus the Nominal Bit Time) are in turn made up of integer units of time called Time Quanta or TQ (see Figure 23-4). By definition, the Nominal Bit Time is programmable from a minimum of 8 TQ to a maximum of 25 TQ. Also by definition, the minimum Nominal Bit Time is 1  $\mu$ s, corresponding to a maximum 1 Mb/s rate. The actual duration is given by the relationship:

#### EQUATION 23-2:

Nominal Bit Time = 
$$TQ * (Sync\_Seg + Prop\_Seg + Phase\_Seg1 + Phase\_Seg2)$$

The Time Quantum is a fixed unit derived from the oscillator period. It is also defined by the programmable baud rate prescaler with integer values from 1 to 64 in addition to a fixed divide-by-two for clock generation. Mathematically, this is:

#### EQUATION 23-3:

TQ (
$$\mu$$
s) = (2 \* (BRP+1))/Fosc (MHz)  
or  
TQ ( $\mu$ s) = (2 \* (BRP+1)) \* Tosc ( $\mu$ s)

where Fosc is the clock frequency, Tosc is the corresponding oscillator period, and BRP is an integer (0 through 63) represented by the binary values of BRGCON1<5:0>.



#### FIGURE 23-4: BIT TIME PARTITIONING



#### FIGURE 24-5: EXTERNAL BLOCK TABLE READ (EBTRn) DISALLOWED

#### FIGURE 24-6: EXTERNAL BLOCK TABLE READ (EBTRn) ALLOWED



NOTES:

| RET                                                                                                                                                                                                                                                                                                                                                                                                                                 | RETFIE Return from Interrupt         |                                                                                                                                    |                                                                                                                                                                                                                 |                                                                                                                                                        |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Synt                                                                                                                                                                                                                                                                                                                                                                                                                                | ax:                                  | [label]                                                                                                                            | RETFIE [s]                                                                                                                                                                                                      |                                                                                                                                                        |  |  |  |  |
| Ope                                                                                                                                                                                                                                                                                                                                                                                                                                 | rands:                               | $s \in [0,1]$                                                                                                                      |                                                                                                                                                                                                                 |                                                                                                                                                        |  |  |  |  |
| Ope                                                                                                                                                                                                                                                                                                                                                                                                                                 | ration:                              | $(TOS) \rightarrow F$<br>$1 \rightarrow GIE/C$<br>if s = 1<br>$(WS) \rightarrow W$<br>(STATUSS)<br>$(BSRS) \rightarrow$<br>PCLATU, | $(TOS) \rightarrow PC,$<br>$1 \rightarrow GIE/GIEH \text{ or PEIE/GIEL},$<br>if s = 1<br>$(WS) \rightarrow W,$<br>$(STATUSS) \rightarrow STATUS,$<br>$(BSRS) \rightarrow BSR,$<br>PCLATU. PCLATH are unchanged. |                                                                                                                                                        |  |  |  |  |
| State                                                                                                                                                                                                                                                                                                                                                                                                                               | us Affected:                         | GIE/GIEH                                                                                                                           | , PEIE/GIEL                                                                                                                                                                                                     |                                                                                                                                                        |  |  |  |  |
| Encoding: 0000 0000 0001 0                                                                                                                                                                                                                                                                                                                                                                                                          |                                      | 01 000s                                                                                                                            |                                                                                                                                                                                                                 |                                                                                                                                                        |  |  |  |  |
| Description: Return from interrupt. Stack is<br>popped and Top-of-Stack (TOS) is<br>loaded into the PC. Interrupts are<br>enabled by setting either the high<br>or low priority global interrupt<br>enable bit. If 's' = 1, the contents of<br>the shadow registers WS,<br>STATUSS and BSRS are loaded<br>into their corresponding registers,<br>W, Status and BSR. If 's' = 0, no<br>update of these registers occurs<br>(default) |                                      |                                                                                                                                    |                                                                                                                                                                                                                 | Stack is<br>ack (TOS) is<br>terrupts are<br>the rupt are<br>terrupt<br>e contents of<br>WS,<br>are loaded<br>g registers,<br>'s' = 0, no<br>ers occurs |  |  |  |  |
| Wor                                                                                                                                                                                                                                                                                                                                                                                                                                 | ds:                                  | 1                                                                                                                                  | 1                                                                                                                                                                                                               |                                                                                                                                                        |  |  |  |  |
| Cycl                                                                                                                                                                                                                                                                                                                                                                                                                                | es:                                  | 2                                                                                                                                  | 2                                                                                                                                                                                                               |                                                                                                                                                        |  |  |  |  |
| QC                                                                                                                                                                                                                                                                                                                                                                                                                                  | cycle Activity:                      |                                                                                                                                    |                                                                                                                                                                                                                 |                                                                                                                                                        |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     | Q1                                   | Q2                                                                                                                                 | Q3                                                                                                                                                                                                              | Q4                                                                                                                                                     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     | Decode                               | No<br>operation                                                                                                                    | No<br>operation                                                                                                                                                                                                 | Pop PC from<br>stack<br>Set GIEH or<br>GIEL                                                                                                            |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     | No                                   | No                                                                                                                                 | No                                                                                                                                                                                                              | No                                                                                                                                                     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     | operation                            | operation                                                                                                                          | operation                                                                                                                                                                                                       | operation                                                                                                                                              |  |  |  |  |
| <u>Exa</u> ı                                                                                                                                                                                                                                                                                                                                                                                                                        | mple:                                | RETFIE :                                                                                                                           | 1                                                                                                                                                                                                               |                                                                                                                                                        |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     | After Interrup                       | ot                                                                                                                                 |                                                                                                                                                                                                                 |                                                                                                                                                        |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     | PC<br>W<br>BSR<br>STATUS<br>GIF/CIFI |                                                                                                                                    | = TOS<br>= WS<br>= BSRS<br>= STATU<br>= 1                                                                                                                                                                       | JSS                                                                                                                                                    |  |  |  |  |

| RET               | LW                  | Return Li                                                        | teral to                                                                                                                                                                                 | w       |             |                              |  |  |
|-------------------|---------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|------------------------------|--|--|
| Syn               | tax:                | [ label ]                                                        | RETLW                                                                                                                                                                                    | k       |             |                              |  |  |
| Ope               | rands:              | $0 \le k \le 25$                                                 | 5                                                                                                                                                                                        |         |             |                              |  |  |
| Operation:        |                     | k → W,<br>(TOS) →<br>PCLATU,                                     | PC,<br>PCLATH                                                                                                                                                                            | l are   | unc         | hanged                       |  |  |
| Stat              | us Affected:        | None                                                             |                                                                                                                                                                                          |         |             |                              |  |  |
| Enc               | oding:              | 0000                                                             | 1100                                                                                                                                                                                     | kk}     | ck          | kkkk                         |  |  |
| Description:      |                     | W is loade<br>'k'. The pr<br>from the to<br>address).<br>(PCLATH | W is loaded with the eight-bit literal<br>'k'. The program counter is loaded<br>from the top of the stack (the return<br>address). The high address latch<br>(PCI ATH) remains unchanged |         |             |                              |  |  |
| Words:            |                     | 1                                                                | 1                                                                                                                                                                                        |         |             |                              |  |  |
| Cycles:           |                     | 2                                                                | 2                                                                                                                                                                                        |         |             |                              |  |  |
| Q Cycle Activity: |                     |                                                                  |                                                                                                                                                                                          |         |             |                              |  |  |
|                   | Q1                  | Q2                                                               | Q3                                                                                                                                                                                       |         |             | Q4                           |  |  |
|                   | Decode              | Read<br>literal 'k'                                              | Proce<br>Data                                                                                                                                                                            | SS<br>A | Pop<br>stac | PC from<br>ck, Write<br>to W |  |  |
|                   | No                  | No                                                               | No                                                                                                                                                                                       |         |             | No                           |  |  |
|                   | operation           | operation                                                        | operat                                                                                                                                                                                   | ion     | ор          | eration                      |  |  |
| <u>Exa</u>        | mple:<br>CALL TABLE | ; W conta<br>; offset<br>; W now h<br>; table v                  | ins tab<br>value<br>as<br>alue                                                                                                                                                           | le      |             |                              |  |  |

| •     |  |
|-------|--|
| TABLE |  |

| AB | LE    |     |   |              |
|----|-------|-----|---|--------------|
|    | ADDWF | PCL | ; | W = offset   |
|    | RETLW | k0  | ; | Begin table  |
|    | RETLW | k1  | ; |              |
|    | :     |     |   |              |
|    | :     |     |   |              |
|    | RETLW | kn  | ; | End of table |

#### **Before Instruction**

W = 0x07

#### After Instruction

W = value of kn

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Param.<br>No. | Symbol  | Charac           | teristic                  | Min              | Max  | Units | Conditions                   |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|------------------|---------------------------|------------------|------|-------|------------------------------|--|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100           | THIGH   | Clock High Time  | 100 kHz mode              | 2(Tosc)(BRG + 1) | —    | ms    |                              |  |
| $ \begin{array}{ c c c c c c c c } \hline 1 & \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & - & \text{ms} \\ \hline 1 & \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & - & \text{ms} \\ \hline 1 & \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & - & \text{ms} \\ \hline 1 & \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & - & \text{ms} \\ \hline 1 & \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & - & \text{ms} \\ \hline 1 & \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & - & \text{ms} \\ \hline 1 & \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & - & \text{ms} \\ \hline 1 & \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & - & \text{ms} \\ \hline 1 & \text{MHz mode}^{(1)} & - & 1000 & \text{ns} \\ \hline 1 & \text{MHz mode}^{(1)} & - & 300 & \text{ns} \\ \hline 1 & \text{MHz mode}^{(1)} & - & 300 & \text{ns} \\ \hline 1 & \text{MHz mode}^{(1)} & - & 300 & \text{ns} \\ \hline 1 & \text{MHz mode}^{(1)} & - & 100 & \text{ns} \\ \hline 1 & \text{MHz mode}^{(1)} & - & 100 & \text{ns} \\ \hline 1 & \text{MHz mode}^{(1)} & - & 100 & \text{ns} \\ \hline 1 & \text{MHz mode}^{(1)} & - & 100 & \text{ns} \\ \hline 1 & \text{MHz mode}^{(1)} & - & 100 & \text{ns} \\ \hline 1 & \text{MHz mode}^{(1)} & - & 100 & \text{ns} \\ \hline 1 & \text{MHz mode}^{(1)} & - & 100 & \text{ns} \\ \hline 1 & \text{MHz mode}^{(1)} & - & 100 & \text{ns} \\ \hline 1 & \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & - & \text{ms} \\ \hline 1 & \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & - & \text{ms} \\ \hline 1 & \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & - & \text{ms} \\ \hline 1 & \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & - & \text{ms} \\ \hline 1 & \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & - & \text{ms} \\ \hline 1 & \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & - & \text{ms} \\ \hline 1 & \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & - & \text{ms} \\ \hline 1 & \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & - & \text{ms} \\ \hline 1 & \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & - & \text{ms} \\ \hline 1 & \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & - & \text{ms} \\ \hline 1 & \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & - & \text{ms} \\ \hline 1 & \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & - & \text{ms} \\ \hline 1 & \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & - & \text{ms} \\ \hline 1 & \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & - & \text{ms} \\ \hline 1 & \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & - & \text{ms} \\ \hline 1 & \text{MHz mode}^{(1)} & 2(\text{Tosc})(BRG +$           |               |         |                  | 400 kHz mode              | 2(Tosc)(BRG + 1) | _    | ms    |                              |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |         |                  | 1 MHz mode <sup>(1)</sup> | 2(Tosc)(BRG + 1) | _    | ms    |                              |  |
| $ \begin{array}{ c c c c c c c c } \hline & & \hline & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 101           | TLOW    | Clock Low Time   | 100 kHz mode              | 2(Tosc)(BRG + 1) | _    | ms    |                              |  |
| $ \begin{array}{ c c c c c c c c } \hline 1 \ \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & & \text{ms} \\ \hline 1 \ \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & & \text{ms} \\ \hline 1 \ \text{Ms} & \text{mode}^{(1)} & -& 1000 & \text{ns} \\ \hline 1 \ \text{MHz mode}^{(1)} & -& 300 & \text{ns} \\ \hline 1 \ \text{MHz mode}^{(1)} & -& 300 & \text{ns} \\ \hline 1 \ \text{MHz mode}^{(1)} & -& 300 & \text{ns} \\ \hline 1 \ \text{MHz mode}^{(1)} & -& 300 & \text{ns} \\ \hline 1 \ \text{MHz mode}^{(1)} & -& 300 & \text{ns} \\ \hline 1 \ \text{MHz mode}^{(1)} & -& 100 & \text{ns} \\ \hline 1 \ \text{MHz mode}^{(1)} & -& 100 & \text{ns} \\ \hline 1 \ \text{MHz mode}^{(1)} & -& 100 & \text{ns} \\ \hline 1 \ \text{MHz mode}^{(1)} & -& 100 & \text{ns} \\ \hline 1 \ \text{MHz mode}^{(1)} & -& 100 & \text{ns} \\ \hline 1 \ \text{MHz mode}^{(1)} & -& 100 & \text{ns} \\ \hline 1 \ \text{MHz mode}^{(1)} & -& 100 & \text{ns} \\ \hline 1 \ \text{MHz mode}^{(1)} & -& 100 & \text{ns} \\ \hline 1 \ \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & -& \text{ms} \\ \hline 1 \ \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & -& \text{ms} \\ \hline 1 \ \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & -& \text{ms} \\ \hline 1 \ \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & -& \text{ms} \\ \hline 1 \ \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & -& \text{ms} \\ \hline 1 \ \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & -& \text{ms} \\ \hline 1 \ \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & -& \text{ms} \\ \hline 1 \ \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & -& \text{ms} \\ \hline 1 \ \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & -& \text{ms} \\ \hline 1 \ \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & -& \text{ms} \\ \hline 1 \ \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & -& \text{ms} \\ \hline 1 \ \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & -& \text{ms} \\ \hline 1 \ \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & -& \text{ms} \\ \hline 1 \ \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & -& \text{ms} \\ \hline 1 \ \text{Mz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & -& \text{ms} \\ \hline 1 \ \text{Mz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & -& \text{ms} \\ \hline 1 \ \text{Mz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & -& \text{ms} \\ \hline 1 \ \text{Mz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & -& \text{ms} \\ \hline 1 \ \text{Mz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & -& \text{ms} \\ \hline 1 \ \text{Mz mode}^{(1)} & 2(\text{Tosc})(\text{MZ + 1}) & -& \text{ms} \\ \hline 1 \ \text{Mz mode}^{(1)} & 2(\text{Tosc})(\text{MZ + 1}) & -& 1 $ |               |         |                  | 400 kHz mode              | 2(Tosc)(BRG + 1) | _    | ms    |                              |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |         |                  | 1 MHz mode <sup>(1)</sup> | 2(Tosc)(BRG + 1) | _    | ms    |                              |  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 102           | TR      | SDA and SCL      | 100 kHz mode              | —                | 1000 | ns    | CB is specified to be from   |  |
| $ \begin{array}{ c c c c c c c c c } \hline 1 \ \text{MHz mode}^{(1)} & - & 300 & \text{ns} \\ \hline 103 & \text{TF} & & \text{SDA and SCL} & 100 \ \text{KHz mode} & - & 300 & \text{ns} \\ \hline 100 \ \text{KHz mode} & 20 + 0.1 \ \text{CB} & 300 & \text{ns} \\ \hline 400 \ \text{KHz mode} & 20 + 0.1 \ \text{CB} & 300 & \text{ns} \\ \hline 1 \ \text{MHz mode}^{(1)} & - & 100 & \text{ns} \\ \hline 1 \ \text{MHz mode}^{(1)} & - & 100 & \text{ns} \\ \hline 100 \ \text{KHz mode} & 2(\text{Tosc})(\text{BRG + 1}) & - & \text{ms} \\ \hline 100 \ \text{KHz mode} & 2(\text{Tosc})(\text{BRG + 1}) & - & \text{ms} \\ \hline 1 \ \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & - & \text{ms} \\ \hline 1 \ \text{MHz mode}^{(1)} & 2(\text{Tosc})(\text{BRG + 1}) & - & \text{ms} \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |         | Rise Time        | 400 kHz mode              | 20 + 0.1 Св      | 300  | ns    | 10 to 400 pF                 |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |         |                  | 1 MHz mode <sup>(1)</sup> | _                | 300  | ns    | -                            |  |
| Fall Time         400 kHz mode         20 + 0.1 CB         300         ns         10 to 400 pF           90         TSU:STA         Start Condition<br>Setup Time         100 kHz mode         2(Tosc)(BRG + 1)         —         ms         Only relevant for<br>Repeated Start<br>condition           90         Tsu:STA         Start Condition<br>Setup Time         100 kHz mode         2(Tosc)(BRG + 1)         —         ms         Only relevant for<br>Repeated Start<br>condition           90         Trans of<br>Condition         Start Condition         100 kHz mode         2(Tosc)(BRG + 1)         —         ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 103           | TF      | SDA and SCL      | 100 kHz mode              | _                | 300  | ns    | CB is specified to be from   |  |
| $\begin{array}{ c c c c c c c c }\hline \hline & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 103           |         | Fall Time        | 400 kHz mode              | 20 + 0.1 Св      | 300  | ns    | 10 to 400 pF                 |  |
| 90     TSU:STA     Start Condition<br>Setup Time     100 kHz mode     2(ToSC)(BRG + 1)     —     ms     Only relevant for<br>Repeated Start<br>condition       90     True creation     100 kHz mode     2(ToSC)(BRG + 1)     —     ms     Only relevant for<br>Repeated Start<br>condition       90     True creation     0 kHz mode     2(ToSC)(BRG + 1)     —     ms     Only relevant for<br>Repeated Start<br>condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |         |                  | 1 MHz mode <sup>(1)</sup> | _                | 100  | ns    |                              |  |
| Setup Time         400 kHz mode         2(Tosc)(BRG + 1)         ms         Repeated Start condition           1 MHz mode <sup>(1)</sup> 2(Tosc)(BRG + 1)         —         ms         condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 90            | TSU:STA | Start Condition  | 100 kHz mode              | 2(Tosc)(BRG + 1) | —    | ms    | Only relevant for            |  |
| 1 MHz mode <sup>(1)</sup> 2(Tosc)(BRG + 1) — ms condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |         | Setup Time       | 400 kHz mode              | 2(Tosc)(BRG + 1) | _    | ms    | Repeated Start               |  |
| 24 The end Original Constitution (400 bits much of (CDDO) (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |         |                  | 1 MHz mode <sup>(1)</sup> | 2(Tosc)(BRG + 1) | —    | ms    | condition                    |  |
| 191 THD:STA Start Condition 100 kHz mode 2(TOSC)(BRG + 1) — ms After this period, the first                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 91            | THD:STA | Start Condition  | 100 kHz mode              | 2(Tosc)(BRG + 1) | —    | ms    | After this period, the first |  |
| Hold Time 400 kHz mode 2(Tosc)(BRG + 1) — ms clock pulse is generated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |         | Hold Time        | 400 kHz mode              | 2(Tosc)(BRG + 1) | _    | ms    | clock pulse is generated     |  |
| 1 MHz mode <sup>(1)</sup> 2(TOSC)(BRG + 1) — ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |         |                  | 1 MHz mode <sup>(1)</sup> | 2(Tosc)(BRG + 1) | —    | ms    |                              |  |
| 106 THD:DAT Data Input 100 kHz mode 0 — ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 106           | THD:DAT | Data Input       | 100 kHz mode              | 0                | —    | ns    |                              |  |
| Hold Time 400 kHz mode 0 0.9 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |         | Hold Time        | 400 kHz mode              | 0                | 0.9  | ms    | -                            |  |
| 1 MHz mode <sup>(1)</sup> TBD — ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |         |                  | 1 MHz mode <sup>(1)</sup> | TBD              | —    | ns    | -                            |  |
| 107 TSU:DAT Data Input 100 kHz mode 250 — ns (Note 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 107           | TSU:DAT | Data Input       | 100 kHz mode              | 250              | —    | ns    | (Note 2)                     |  |
| Setup Time 400 kHz mode 100 — ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |         | Setup Time       | 400 kHz mode              | 100              | —    | ns    | -                            |  |
| 1 MHz mode <sup>(1)</sup> TBD — ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |         |                  | 1 MHz mode <sup>(1)</sup> | TBD              | —    | ns    | -                            |  |
| 92 TSU:STO Stop Condition 100 kHz mode 2(TOSC)(BRG + 1) - ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 92            | TSU:STO | Stop Condition   | 100 kHz mode              | 2(Tosc)(BRG + 1) | —    | ms    |                              |  |
| Setup Time 400 kHz mode 2(Tosc)(BRG + 1) — ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |         | Setup Time       | 400 kHz mode              | 2(Tosc)(BRG + 1) | —    | ms    | -                            |  |
| 1 MHz mode <sup>(1)</sup> 2(TOSC)(BRG + 1) — ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |         |                  | 1 MHz mode <sup>(1)</sup> | 2(Tosc)(BRG + 1) | —    | ms    | -                            |  |
| 109 TAA Output Valid 100 kHz mode — 3500 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 109           | TAA     | Output Valid     | 100 kHz mode              | _                | 3500 | ns    |                              |  |
| from Clock 400 kHz mode — 1000 ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |         | from Clock       | 400 kHz mode              | _                | 1000 | ns    |                              |  |
| 1 MHz mode <sup>(1)</sup> — — ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |         |                  | 1 MHz mode <sup>(1)</sup> | _                | —    | ns    |                              |  |
| 110 TBUF Bus Free Time 100 kHz mode 4.7 — ms Time the bus must be free                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110           | TBUF    | Bus Free Time    | 100 kHz mode              | 4.7              | —    | ms    | Time the bus must be free    |  |
| 400 kHz mode 1.3 — ms before a new transmission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |         |                  | 400 kHz mode              | 1.3              | —    | ms    | before a new transmission    |  |
| 1 MHz mode <sup>(1)</sup> TBD — ms can start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |         |                  | 1 MHz mode <sup>(1)</sup> | TBD              | —    | ms    | can start                    |  |
| D102 CB Bus Capacitive Loading — 400 pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D102          | Св      | Bus Capacitive L | oading                    | —                | 400  | pF    |                              |  |

### TABLE 27-22: MASTER SSP I<sup>2</sup>C BUS DATA REQUIREMENTS

**Note 1:** Maximum pin capacitance = 10 pF for all  $I^2C$  pins.

2: A Fast mode I<sup>2</sup>C bus device can be used in a Standard mode I<sup>2</sup>C bus system, but parameter #107 ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line, parameter #102 + parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the SCL line is released.









#### F

| Firmware Instructions          |
|--------------------------------|
| Flash Program Memory83         |
| Associated Registers           |
| Control Registers 84           |
| Erase Sequence88               |
| Erasing                        |
| Operation During Code          |
| Protection                     |
| Reading87                      |
| Table Pointer                  |
| Boundaries Based on Operation  |
| Table Pointer Boundaries       |
| Table Reads and Table Writes83 |
| Write Sequence90               |
| Writing to                     |
| Protection Against Spurious    |
| Writes                         |
| Unexpected Termination92       |
| Write Verify92                 |
| G                              |
| General Call Address Support   |

| General Call Address Support |  |
|------------------------------|--|
| GOTO                         |  |

### н

| Hardware Multiplier                               | 107      |
|---------------------------------------------------|----------|
| Introduction                                      | 107      |
| Operation                                         | 107      |
| Performance Comparison                            |          |
| (table)                                           | 107      |
| · · ·                                             |          |
| 1                                                 |          |
| I/O Ports                                         | 125      |
| I <sup>2</sup> C Bus Data Requirements            |          |
| (Slave Mode)                                      | 442      |
| I <sup>2</sup> C Bus Start/Stop Bits Requirements |          |
| (Slave Mode)                                      | 441      |
| I <sup>2</sup> C Mode                             |          |
| General Call Address Support                      | 212      |
| Master Mode                                       |          |
| Operation                                         | 214      |
| Read/Write Bit Information                        |          |
| (R/W Bit)                                         | 202, 203 |
| Serial Clock (RC3/SCK/SCL)                        | 203      |
| ID Locations                                      | 345, 362 |
| INCF                                              | 386      |
| INCFSZ                                            | 387      |
| In-Circuit Debugger                               | 362      |
| Resources (table)                                 | 362      |
| In-Circuit Serial Programming                     |          |
| (ICSP)                                            | 345, 362 |
| Indirect Addressing                               |          |
| INDF and FSR Registers                            |          |
| Operation                                         |          |
| Indirect File Operand                             | 59       |
| INFSNZ                                            | 387      |
| Instruction Flow/Pipelining                       | 57       |
| Instruction Format                                | 367      |
|                                                   |          |

| Instruction Set | <br>365 |
|-----------------|---------|
| ADDLW           | <br>371 |
| ADDWF           | <br>371 |
| ADDWFC          | <br>372 |
| ANDLW           | <br>372 |
| ANDWF           | <br>373 |
| BC              | <br>373 |
| BCF             | <br>374 |
| BN              | <br>374 |
| BNC             | <br>375 |
| BNN             | <br>375 |
| BNOV            | <br>376 |
| BNZ             | <br>376 |
| BOV             | <br>379 |
| BRA             | <br>377 |
| BSF             | <br>377 |
| BTFSC           | <br>378 |
| BTFSS           | 378     |
| BTG             | 379     |
| B7              | 380     |
| CALL            | <br>380 |
|                 | <br>381 |
|                 | <br>201 |
| COME            | <br>201 |
|                 | <br>202 |
| CPFSEQ          | <br>382 |
|                 | <br>383 |
| CPFSLT          | <br>383 |
| DAW             | <br>384 |
| DCFSNZ          | <br>385 |
| DECF            | <br>384 |
| DECFSZ          | <br>385 |
| GOTO            | <br>386 |
| INCF            | <br>386 |
| INCFSZ          | <br>387 |
| INFSNZ          | <br>387 |
| IORLW           | <br>388 |
| IORWF           | <br>388 |
| LFSR            | <br>389 |
| MOVF            | <br>389 |
| MOVFF           | <br>390 |
| MOVLB           | <br>390 |
| MOVLW           | <br>391 |
| MOVWF           | 391     |
| MULLW           | 392     |
| MULWE           | 392     |
| NEGE            | <br>393 |
| NOP             | <br>303 |
|                 | <br>301 |
|                 | <br>204 |
| POSH            | <br>394 |
| RCALL           | <br>395 |
|                 | <br>395 |
| RETHE           | <br>396 |
| REILW           | <br>396 |
| RETURN          | <br>397 |
| RLCF            | <br>397 |
| RLNCF           | <br>398 |
| RRCF            | <br>398 |
| RRNCF           | <br>399 |
| SETF            | <br>399 |

NOTES: