

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf6680-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	in Name PIC18F6X8X PIC18F8X8X Typ					
Pin Name			Pin Type	Buffer Type	Description	
	TQFP	PLCC	TQFP			
						PORTB is a bidirectional I/O port. PORTB
						can be software programmed for internal weak pull-ups on all inputs
RB0/INT0	48	60	58			······································
RB0				I/O	TTL	Digital I/O.
INT0				I	ST	External interrupt 0.
RB1/IN11 RB1	47	59	57	1/0	тті	Digital I/O
INT1				1	ST	External interrupt 1.
RB2/INT2	46	58	56			
RB2				I/O	TTL	Digital I/O.
	45	57	55	1	51	External Interrupt 2.
RB3	45	57		I/O	TTL	Digital I/O.
INT3				I/O	ST	External interrupt 3.
CCP2(")				I/O	ST	Capture 2 input/Compare 2 output/ PWM 2 output
RB4/KBI0	44	56	54			
RB4			0.	I/O	TTL	Digital I/O.
KBI0				I	ST	Interrupt-on-change pin.
RB5/KBI1/PGM	43	55	53	1/0	тті	Digital I/O
KBI1				1/0	ST	Interrupt-on-change pin.
PGM				I/O	ST	Low-Voltage ICSP Programming
	10	54	50			enable pin.
RB6/KBI2/PGC RB6	42	54	52	1/0	тті	Digital I/O
KBI2				I.	ST	Interrupt-on-change pin.
PGC				I/O	ST	In-circuit debugger and ICSP
	37	48	47			programming clock.
RB7	57	40	47	I/O	TTL	Digital I/O.
KBI3				I/O	ST	Interrupt-on-change pin.
PGD						In-circuit debugger and ICSP programming data.
Legend: TTL = TTL	compatik	ole input	1	1	CMOS	= CMOS compatible input or output
ST = Schr	nitt Trigg	er input	with CMOS le	vels	Analog	= Analog input
I = Inpu P = Pow	t er				0 OD	 Output Open-Drain (no P diode to Vם)
PGC RB7/KBI3/PGD RB7 KBI3 PGD Legend: TTL = TTL ST = Schi I = Inpu P = Pow	37 compatil nitt Trigg t er	48 Die input er input	47 with CMOS le	I/O I/O I/O vels	ST TTL ST CMOS Analog O OD	In-circuit debugger and ICSP programming clock. Digital I/O. Interrupt-on-change pin. In-circuit debugger and ICSP programming data. = CMOS compatible input or output = Analog input = Output = Open-Drain (no P diode to VDD)

TABLE 1-2: PIC18F6585/8585/6680/8680 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Alternate assignment for CCP2 in all operating modes except Microcontroller - applies to PIC18F8X8X only.

2: Default assignment when CCP2MX is set.

3: External memory interface functions are only available on PIC18F8X8X devices.

4: CCP2 is multiplexed with this pin by default when configured in Microcontroller mode; otherwise, it is multiplexed with either RB3 or RC1.

5: PORTH and PORTJ are only available on PIC18F8X8X (80-pin) devices.

6: PSP is available in Microcontroller mode only.

7: On PIC18F8X8X devices, these pins can be multiplexed with RH7/RH6 by changing the ECCPMX configuration bit.

FIGURE 5-2: TABLE WRITE OPERATION

5.2 Control Registers

Several control registers are used in conjunction with the TBLRD and TBLWT instructions. These include the:

- EECON1 register
- EECON2 register
- TABLAT register
- TBLPTR registers

5.2.1 EECON1 AND EECON2 REGISTERS

EECON1 is the control register for memory accesses.

EECON2 is not a physical register. Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the memory write and erase sequences.

Control bit EEPGD determines if the access will be a program or data EEPROM memory access. When clear, any subsequent operations will operate on the data EEPROM memory. When set, any subsequent operations will operate on the program memory.

Control bit CFGS determines if the access will be to the configuration/calibration registers or to program memory/data EEPROM memory. When set, subsequent operations will operate on configuration registers regardless of EEPGD (see Section 24.0 "Special Features of the CPU"). When clear, memory selection access is determined by EEPGD.

The FREE bit, when set, will allow a program memory erase operation. When the FREE bit is set, the erase operation is initiated on the next WR command. When FREE is clear, only writes are enabled.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a MCLR Reset or a WDT Time-out Reset during normal operation. In these situations, the user can check the WRERR bit and rewrite the location. It is necessary to reload the data and address registers (EEDATA and EEADR) due to Reset values of zero.

The WR control bit initiates write operations. The bit cannot be cleared, only set in software; it is cleared in hardware at the completion of the write operation. The inability to clear the WR bit in software prevents the accidental or premature termination of a write operation.

Note: Interrupt flag bit, EEIF in the PIR2 register, is set when the write is complete. It must be cleared in software.

ERASE_BLOCK			
	MOVLW	upper(CODE_ADDR)	; load TBLPTR with the base
	MOVWF	TBLPTRU	; address of the memory block
	MOVLW	high(CODE_ADDR)	
	MOVWF	TBLPTRH	
	MOVLW	low(CODE_ADDR)	
	MOVWF	TBLPTRL	
	BSF	EECON1, EEPGD	; point to Flash program memory
	BCF	EECON1, CFGS	; access Flash program memory
	BSF	EECON1, WREN	; enable write to memory
	BSF	EECON1, FREE	; enable Row Erase operation
	BCF	INTCON, GIE	; disable interrupts
	MOVEW	55II FECONO	. write FEU
Required	MOVIE	0AAb	; write 55h
Sequence	MOVWE	EECON2	. write AAH
bequence	BSF	EECON1 WR	; start erase (CPU stall)
	NOP	,	, (,,
	BSF	INTCON, GIE	; re-enable interrupts
	TBLRD*-		; dummy read decrement
WRITE_BUFFER_E	BACK		
	MOVLW	8	; number of write buffer groups of 8 bytes
	MOVWF	COUNTER_HI	
	MOVLW	high(BUFFER_ADDR)	; point to buffer
	MOVWF	FSROH	
	MOVLW	low(BUFFER_ADDR)	
550053W 5005	MOVWF	FSROL	
PROGRAM_LOOP	MOUTW	0	, number of butes in helding register
	MOVER	COUNTER	; number of bytes in nording register
WRITE WORD TO	HREGS	COUNTER	
	MOVFW	POSTINCO, W	; get low byte of buffer data
	MOVWF	TABLAT	; present data to table latch
	TBLWT+*		; write data, perform a short write
			; to internal TBLWT holding register.
	DECFSZ	COUNTER	; loop until buffers are full
	BRA	WRITE_WORD_TO_HREGS	
PROGRAM_MEMORY	<u>r</u>		
	BSF	EECON1, EEPGD	; point to Flash program memory
	BCF	EECON1, CFGS	; access Flash program memory
	BSF	EECONI, WREN	; enable write to memory
	MOVIN	INICON, GIE	; disable interrupts
	MOVWE	EECON2	. write 55h
Required	MOVLW	OAAh	, write JJH
Sequence	MOVWF	EECON2	: write OAAh
1	BSF	EECON1, WR	; start program (CPU stall)
	NOP	·	
	BSF	INTCON, GIE	; re-enable interrupts
	DECFSZ	COUNTER_HI	; loop until done
	BRA	PROGRAM_LOOP	
	BCF	EECON1, WREN	; disable write to memory

EXAMPLE 5-3: WRITING TO FLASH PROGRAM MEMORY (CONTINUED)

6.2.3 16-BIT BYTE SELECT MODE

Figure 6-3 shows an example of 16-bit Byte Select mode for PIC18F8X8X devices.

FIGURE 6-3: 16-BIT BYTE SELECT MODE EXAMPLE

10.7 PORTG, TRISG and LATG Registers

PORTG is a 6-bit wide port with 5 bidirectional pins and 1 unidirectional pin. The corresponding data direction register is TRISG. Setting a TRISG bit (= 1) will make the corresponding PORTG pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISG bit (= 0) will make the corresponding PORTG pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATG) is also memory mapped. Read-modify-write operations on the LATG register read and write the latched output value for PORTG.

Pins RG0-RG2 on PORTG are multiplexed with the CAN peripheral. Refer to **Section 23.0 "ECAN Module"** for proper settings of TRISG when CAN is enabled. RG5 is multiplexed with MCLR/VPP. Refer to Register 24-5 for more information.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTG pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

Note: On a Power-on Reset, these pins are configured as digital inputs.

The pin override value is not loaded into the TRIS register. This allows read-modify-write of the TRIS register without concern due to peripheral overrides.

EXAMPLE 10.7	INITIAL IZING PORT
EAAIVIFLE IV-/.	INTRALIZING FOR I

CLRF	PORTG	; Initialize PORTG by ; clearing output
		; data latches
CLRF	LATG	; Alternate method
		; data latches
MOVLW	04h	; Value used to
		; initialize data
		; direction
MOVWF	TRISG	; Set RG1:RG0 as outputs
		; RG2 as input
		; RG4:RG3 as inputs

Note 1: On a Power-on Reset, RG5 is enabled as a digital input only if Master Clear functionality is disabled (MCLRE = 0).

- 2: If the device Master Clear is disabled, verify that either of the following is done to ensure proper entry into ICSP mode:
 - a) disable Low-Voltage Programming (CONFIG4L<2> = 0); or
 - b) make certain that RB5/KBI1/PGM is held low during entry into ICSP.

FIGURE 10-16: RG0/CANTX1 PIN BLOCK DIAGRAM

FIGURE 11-1: TIMER0 BLOCK DIAGRAM IN 8-BIT MODE

17.3.6 SLAVE MODE

In Slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched, the SSPIF interrupt flag bit is set.

While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. When a byte is received, the device will wake-up from Sleep.

17.3.7 SLAVE SELECT SYNCHRONIZATION

The \overline{SS} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with \overline{SS} pin control enabled (SSPCON1<3:0> = 04h). The pin must not be driven low for the \overline{SS} pin to function as an input. The data latch must be high. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When

the \overline{SS} pin goes high, the SDO pin is no longer driven even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable depending on the application.

- Note 1: When the SPI is in Slave mode with SS pin control enabled (SSPCON<3:0> = 0100), the SPI module will reset if the SS pin is set to VDD.
 - 2: If the SPI is used in Slave mode with CKE set, then the SS pin control must be enabled.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the \overline{SS} pin to a high level or clearing the SSPEN bit.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver, the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

FIGURE 17-4: SLAVE SYNCHRONIZATION WAVEFORM

18.2.4 AUTO-WAKE-UP ON SYNC BREAK CHARACTER

During Sleep mode, all clocks to the USART are suspended. Because of this, the Baud Rate Generator is inactive and a proper byte reception cannot be performed. The auto-wake-up feature allows the controller to wake-up due to activity on the RX/DT line while the USART is operating in Asynchronous mode.

The auto-wake-up feature is enabled by setting the WUE bit (BAUDCON<1>). Once set, the typical receive sequence on RX/DT is disabled and the USART remains in an Idle state monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RX/DT line. (This coincides with the start of a sync break or a wake-up signal character for the LIN protocol.)

Following a wake-up event, the module generates an RCIF interrupt. The interrupt is generated synchronously to the Q clocks in normal operating modes (Figure 18-7) and asynchronously, if the device is in Sleep mode (Figure 18-8). The interrupt condition is cleared by reading the RCREG register.

The WUE bit is automatically cleared once a low-tohigh transition is observed on the RX line following the wake-up event. At this point, the USART module is in Idle mode and returns to normal operation. This signals to the user that the sync break event is over.

18.2.4.1 Special Considerations Using Auto-Wake-up

Since auto-wake-up functions by sensing rising edge transitions on RX/DT, information with any state changes before the Stop bit may signal a false end-of-character

and cause data or framing errors. To work properly, therefore, the initial character in the transmission must be all '0's. This can be 00h (8 bytes) for standard RS-232 devices or 000h (12 bits) for LIN bus.

Oscillator start-up time must also be considered, especially in applications using oscillators with longer start-up intervals (i.e., XT or HS mode). The sync break (or wake-up signal) character must be of sufficient length and be followed by a sufficient interval to allow enough time for the selected oscillator to start and provide proper initialization of the USART.

18.2.4.2 Special Considerations Using the WUE Bit

The timing of WUE and RCIF events may cause some confusion when it comes to determining the validity of received data. As noted, setting the WUE bit places the USART in an Idle mode. The wake-up event causes a receive interrupt by setting the RCIF bit. The WUE bit is cleared after this when a rising edge is seen on RX/DT. The interrupt condition is then cleared by reading the RCREG register. Ordinarily, the data in RCREG will be dummy data and should be discarded.

The fact that the WUE bit has been cleared (or is still set) and the RCIF flag is set should not be used as an indicator of the integrity of the data in RCREG. Users should consider implementing a parallel method in firmware to verify received data integrity.

To assure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

FIGURE 18-7: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING NORMAL OPERATION

	joeotosed	oriodese	logadogo4	s:d	02(02)02	(a)	02030	logoda	31023	orfactios	104	orjadaa	04	<u>enteziosie</u>	(e.tozo:	40 <i>4</i> ,
0803		WAAA Mariuu	funnin	94	ionin.	<i>(</i> °O	nun	ynnn,	N.Ę	WWW.		WWW.			AUNUN. Mariar	Aug.
WOE SK		,	······	نىيىيە ب		(·····;			•••••		ļ	.,	۰ میں ا
83000 0368			5			an.	Giiring		: איייייי		1110.		er d		5 K	
SU 35	e taanaan		• 			, 5			<i>i</i> ,				: 		, 	
									Cie	erod doe	(103) 1	999 (Ros	ठ ल	2026.2		
Skote i Das	0848702000	ne in táta arh	ikana Midéri	8.8	9-66											

FIGURE 18-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

20.7 Comparator Operation During Sleep

When a comparator is active and the device is placed in Sleep mode, the comparator remains active and the interrupt is functional if enabled. This interrupt will wake-up the device from Sleep mode when enabled. While the comparator is powered up, higher Sleep currents than shown in the power-down current specification will occur. Each operational comparator will consume additional current as shown in the comparator specifications. To minimize power consumption while in Sleep mode, turn off the comparators (CM<2:0> = 111) before entering Sleep. If the device wakes up from Sleep, the contents of the CMCON register are not affected.

20.8 Effects of a Reset

A device Reset forces the CMCON register to its Reset state, causing the comparator module to be in the Comparator Reset mode (CM<2:0> = 000). This ensures that all potential inputs are analog inputs. Device current is minimized when analog inputs are present at Reset time. The comparators will be powered down during the Reset interval.

20.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 20-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and VSS. The analog input, therefore, must be between VSS and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up condition may occur. A maximum source impedance of 10 k Ω is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

FIGURE 20-4: COMPARATOR ANALOG INPUT MODEL

- n = Value at POR

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0		
	bit 7							bit 0		
bit 7	SEG2PHTS:	: Phase Seg	ment 2 Tim	e Select bit						
	1 = Freely pr 0 = Maximur	rogrammabl n of PHEG1	e or Informa	tion Process	sing Time (IP	T), whichev	ver is greate	r		
bit 6	SAM: Sampl	le of the CA	N bus Line	bit						
	 1 = Bus line is sampled three times prior to the sample point 0 = Bus line is sampled once at the sample point 									
bit 5-3	SEG1PH2:S	EG1PH0: F	hase Segm	ent 1 bits						
	111 = Phase	e Segment '	l time = 8 x	ΤQ						
	110 = Phase	e Segment '	l time = 7 x	ΤQ						
	101 = Phase	e Segment '	time = 6 x	ΤQ						
	100 = Phase	e Segment	time = $5 x$	IQ Ta						
	011 = Phase	Segment	time = 4 x							
	010 = Phase	e Segment	I time = 3 x							
	001 = Phase 000 = Phase	e Segment '	time = 2 x time = 1 x	TQ TQ						
bit 2-0	PRSEG2:PR	SEG0: Pro	pagation Tir	ne Select bi	ts					
	111 = Propa	dation time	= 8 x TQ							
	110 = Propa	gation time	= 7 x TQ							
	101 = Propa	gation time	= 6 x TQ							
	100 = Propa	gation time	= 5 x TQ							
	011 = Propa	gation time	= 4 x TQ							
	010 = Propa	gation time	= 3 x TQ							
	001 = Propa	gation time	= 2 x TQ							
	000 = Propa	gation time	= 1 x TQ							
	Legend:									
	R = Readabl	e bit	W = Writab	le bit	U = Unim	olemented b	oit. read as '	0'		

'0' = Bit is cleared

'1' = Bit is set

REGISTER 23-53: BRGCON2: BAUD RATE CONTROL REGISTER 2

x = Bit is unknown

23.9 Baud Rate Setting

All nodes on a given CAN bus must have the same nominal bit rate. The CAN protocol uses Non-Returnto-Zero (NRZ) coding which does not encode a clock within the data stream. Therefore, the receive clock must be recovered by the receiving nodes and synchronized to the transmitter's clock.

As oscillators and transmission time may vary from node to node, the receiver must have some type of Phase Lock Loop (PLL) synchronized to data transmission edges to synchronize and maintain the receiver clock. Since the data is NRZ coded, it is necessary to include bit stuffing to ensure that an edge occurs at least every six bit times to maintain the Digital Phase Lock Loop (DPLL) synchronization.

The bit timing of the PIC18F6585/8585/6680/8680 is implemented using a DPLL that is configured to synchronize to the incoming data and provides the nominal timing for the transmitted data. The DPLL breaks each bit time into multiple segments made up of minimal periods of time called the Time Quanta (TQ).

Bus timing functions executed within the bit time frame, such as synchronization to the local oscillator, network transmission delay compensation, and sample point positioning, are defined by the programmable bit timing logic of the DPLL.

All devices on the CAN bus must use the same bit rate. However, all devices are not required to have the same master oscillator clock frequency. For the different clock frequencies of the individual devices, the bit rate has to be adjusted by appropriately setting the baud rate prescaler and number of time quanta in each segment.

The Nominal Bit Rate is the number of bits transmitted per second, assuming an ideal transmitter with an ideal oscillator, in the absence of resynchronization. The nominal bit rate is defined to be a maximum of 1 Mb/s. The Nominal Bit Time is defined as:

EQUATION 23-1:

TBIT = 1/Nominal Bit Rate

The Nominal Bit Time can be thought of as being divided into separate, non-overlapping time segments. These segments (Figure 23-4) include:

- Synchronization Segment (Sync_Seg)
- Propagation Time Segment (Prop_Seg)
- Phase Buffer Segment 1 (Phase_Seg1)
- Phase Buffer Segment 2 (Phase_Seg2)

The time segments (and thus the Nominal Bit Time) are in turn made up of integer units of time called Time Quanta or TQ (see Figure 23-4). By definition, the Nominal Bit Time is programmable from a minimum of 8 TQ to a maximum of 25 TQ. Also by definition, the minimum Nominal Bit Time is 1 μ s, corresponding to a maximum 1 Mb/s rate. The actual duration is given by the relationship:

EQUATION 23-2:

Nominal Bit Time =
$$TQ * (Sync_Seg + Prop_Seg + Phase_Seg1 + Phase_Seg2)$$

The Time Quantum is a fixed unit derived from the oscillator period. It is also defined by the programmable baud rate prescaler with integer values from 1 to 64 in addition to a fixed divide-by-two for clock generation. Mathematically, this is:

EQUATION 23-3:

TQ (
$$\mu$$
s) = (2 * (BRP+1))/Fosc (MHz)
or
TQ (μ s) = (2 * (BRP+1)) * Tosc (μ s)

where Fosc is the clock frequency, Tosc is the corresponding oscillator period, and BRP is an integer (0 through 63) represented by the binary values of BRGCON1<5:0>.

FIGURE 23-4: BIT TIME PARTITIONING

REGISTER 24-5:	CONFIG3	H: CONFIG	URATION	REGISTE	R 3 HIGH (E	BYTE ADD	RESS 3000	005h)
	R/P-1	U-0	U-0	U-0	U-0	U-0	R/P-1	R/P-1
	MCLRE	—	—	—	—	—	ECCPMX	CCP2MX
	bit 7							bit 0
bit 7	MCLRE: M	CLR Enable	e bit ⁽¹⁾					
	1 = MCLR 0 = RG5 in	pin enabled, put enabled	, <u>RG5 in</u> put , MCLR disa	pin disabled abled				
bit 6-2	Unimplem	ented: Read	d as '0'					
bit 1	ECCPMX:	CCP1 PWM	outputs P1	B, P1C mux	bit (PIC18F	8X8X devic	es only) ⁽²⁾	
	1 = P1B, P 0 = P1B, P	1C are multi 1C are multi	plexed with plexed with	RE6, RE5 RH7, RH6				
bit 0	CCP2MX: (CCP2 Mux b	bit					
	<u>In Microcor</u> 1 = CCP2 i 0 = CCP2 i	<u>troller mode</u> nput/output nput/output	<u>e:</u> is multiplexe is multiplexe	ed with RC1 ed with RE7				
	In Microprocessor, Microprocessor with Boot Block and Extended Microcontroller modes (PIC18F8X8X devices only): 1 = CCP2 input/output is multiplexed with RC1 0 = CCP2 input/output is multiplexed with RB3							
	 Note 1: If MCLR is disabled, either disable low-voltage ICSP or hold RB5/PGM low ensure proper entry into ICSP mode. 2: Reserved for PIC18F6X8X devices; maintain this bit set. 							GM low to
	Legend:							

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
- n = Value when device	e is unprogrammed	u = Unchanged from programmed state

REGISTER 24-6: CONFIG4L: CONFIGURATION REGISTER 4 LOW (BYTE ADDRESS 300006h)

R/P-1	U-0	U-0	U-0	U-0	R/P-1	U-0	R/P-1
DEBUG		—	—	—	LVP	-	STVREN
bit 7							bit 0

bit 7	DEBUG: Background Debugger Enable bit

1 = Background debugger disabled. RB6 and RB7 configured as general purpose I/O pins.
 0 = Background debugger enabled. RB6 and RB7 are dedicated to in-circuit debug.

- bit 6-3 Unimplemented: Read as '0'
- bit 2 LVP: Low-Voltage ICSP Enable bit 1 = Low-voltage ICSP enabled 0 = Low-voltage ICSP disabled
- bit 1 Unimplemented: Read as '0'
- bit 0 STVREN: Stack Full/Underflow Reset Enable bit
 - 1 = Stack full/underflow will cause Reset
 - 0 = Stack full/underflow will not cause Reset

Legend:

R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
- n = Value when device	e is unprogrammed	u = Unchanged from programmed state

REGISTER 24-13: DEVICE ID REGISTER 1 FOR PIC18FXX8X DEVICES (ADDRESS 3FFFFEh)

R	R	R	R	R	R	R	R
DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0
bit 7							bit 0

bit 7-5 DEV2:DEV0: Device ID bits

000 = PIC18F8680

001 = PIC18F6680

010 = PIC18F8585

011 = PIC18F6585

bit 4-0 REV4:REV0: Revision ID bits

These bits are used to indicate the device revision.

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
- n = Value when devi	ce is unprogrammed	u = Unchanged from programmed state

REGISTER 24-14: DEVICE ID REGISTER 2 FOR PIC18FXX8X DEVICES (ADDRESS 3FFFFFh)

R-0	R-0	R-0	R-0	R-1	R-0	R-1	R-0
DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3
bit 7							bit 0

bit 7-0 DEV10:DEV3: Device ID bits

These bits are used with the DEV2:DEV0 bits in the Device ID Register 1 to identify the part number.

0000 1010 = PIC18F6585/8585/6680/8680

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
- n = Value when device	e is unprogrammed	u = Unchanged from programmed state

25.1 Instruction Set

ADD	DLW	ADD liter	al to W				
Synt	ax:	[label] A	DDLW	k			
Ope	rands:	$0 \le k \le 25$	5				
Ope	ration:	(W) + k →	W				
Statu	us Affected:	N, OV, C,	DC, Z				
Enco	oding:	0000	1111	kkk	k	kkkk	
Description:		The conte 8-bit litera placed in	The contents of W are added to the 8-bit literal 'k' and the result is placed in W.				
Wor	ds:	1	1				
Cycl	es:	1	1				
QC	cycle Activity:						
	Q1	Q2	Q3	6	Q4		
	Decode	Read literal 'k'	Proce Data	SS A	Wr	ite to W	
Example:		ADDLW ()x15				
Before Instruc		ction					
W = 0		0x10					
	After Instruct	ion					
	W =	0x25					

ADDWF	ADD W to	ADD W to f					
Syntax:	[label] A	[label] ADDWF			f [,d [,a] f [,d [,a]		
Operands:	0 ≤ f ≤ 25 d ∈ [0,1] a ∈ [0,1]	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]					
Operation:	(W) + (f) -	\rightarrow dest					
Status Affected:	N, OV, C,	DC, Z					
Encoding:	0010	01da	fff	f	ffff		
Description:	Add W to result is s result is s (default). Bank will the BSR i	Add W to register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'd' (default). If 'a' is '0', the Access Bank will be selected. If 'a' is '1', the BSR is used.					
Words:	1						
Cycles:	1						
Q Cycle Activity	:						
Q1	Q2	Q3			Q4		
Decode	Read register 'f'	Proce Data	ss 1	W des	/rite to stination		
Example:	ADDWF	REG,	0, 0				
Before Instru	uction						
W REG	= 0x17 = 0xC2						
After Instruc	tion						
W REG	= 0xD9 = 0xC2						

IOR	LW	Inclusive	Inclusive OR literal with W			
Synt	ax:	[label]	IORLW	k		
Ope	rands:	$0 \le k \le 25$	55			
Ope	ration:	(W) .OR.	$k \rightarrow W$			
State	us Affected:	N, Z				
Enco	oding:	0000	1001	kkkk	kkkk	
Des	cription:	The conte the eight- placed in	ents of W bit literal W.	/ are OF I 'k'. The	R'ed with e result is	
Words:		1				
Cycl	es:	1				
QC	cycle Activity					
	Q1	Q2	Q3	}	Q4	
	Decode	Read literal 'k'	Proce Data	ss V a	/rite to W	
<u>Exa</u>	<u>mple</u> :	IORLW	0x35			
	Before Instru	uction				
	W =	0x9A				
	After Instruct	tion				
	W =	0xBF				

IORWF	Inclusive	Inclusive OR W with f			
Syntax:	[label]	IORWF	f [,d [,;	a]]	
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5			
Operation:	(W) .OR.	$(f) \rightarrow des$	st		
Status Affected:	N, Z				
Encoding:	0001	00da	ffff	ffff	
	'd' is '1', th register 'f' Access Ba overriding then the b per the BS	the result (default ank will t the BSF bank will SR value	is placed). If 'a' is be select R value. be select (default	d back in '0', the red, If 'a' = 1, ted as).	
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3		Q4	
Decode	Read register 'f'	Proces Data	ss V de:	Vrite to stination	
Example:		ESULT,	0, 1		

Before Instruction					
RESULT	=	0x13			
W	=	0x91			
After Instruct	ion				
RESULT	=	0x13			
W	=	0x93			

POF	•	Рор Тор	of Retu	rn Stae	ck
Synt	tax:	[label]	POP		
Ope	rands:	None			
Ope	ration:	$(TOS) \rightarrow$	bit buck	et	
Stat	us Affected:	None			
Enc	oding:	0000	0000	0000	0 0110
Des	cription:	The TOS return star TOS value previous v onto the re This instru enable the the return software s	value is ck and is e then b value tha eturn sta uction is e user to stack to stack.	pulled s disca ecome at was ack. provid prope o incorp	off the Irded. The is the pushed ed to rly manage porate a
Wor	ds:	1			
Cyc	es:	1			
QC	Cycle Activity:				
	Q1	Q2	Q	3	Q4
	Decode	No operation	POP T valu	OS e	No operation
<u>Exa</u>	mple:	POP GOTO	NEW		
Before Instruction TOS Stack (1 level down			0031 <i>A</i> 01433	\2h 32h	
After Instruction TOS = PC =		ion = =	01433 NEW	32h	

PUS	н	Push Top	of Retu	urn Stacl	k
Synt	ax:	[label]	PUSH		
Ope	rands:	None			
Ope	ration:	$(PC+2) \rightarrow$	TOS		
Statu	us Affected:	None			
Enco	oding:	0000	0000	0000	0101
Des	cription:	The PC+2 the return value is pu This instru ing a softv TOS, and return stac	is push stack. T ushed du iction al vare sta then pu ck.	ed onto ti 'he previd own on ti lows imp ck by mo shing it c	he top of ous TOS ne stack. lement- difying onto the
Wor	ds:	1			
Cycl	es:	1			
QC	ycle Activity				
	Q1	Q2	Q3	ł .	Q4
	Decode	PUSH PC+2 onto return stack	No operat	ion op	No peration
<u>Exar</u>	<u>mple</u> :	PUSH			
	TOS PC	= =	00345 00012	Ah 4h	
After Instruction PC = 000126h TOS = 000126h Stack (1 level down)= 00345Ah					

тѕт	FSZ	Test f, skip if 0					
Synt	ax:	[label] T	STFSZ f	,a]			
Ope	rands:	0 ≤ f ≤ 255 a ∈ [0,1]	0 ≤ f ≤ 255 a ∈ [0,1]				
Ope	ration:	skip if f = 0)				
State	us Affected:	None					
Enco	oding:	0110	011a f	fff ffff			
Des	cription:	If 'f' = 0, th fetched du instruction and a NOP a two-cycl the Access overriding '1', then th as per the	If 'f' = 0, the next instruction, fetched during the current instruction execution is discarded and a NOP is executed, making this a two-cycle instruction. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value (default).				
Wor	ds:	1					
Cycl	es:	1(2) Note: 3 cy by a	ycles if skip a 2-word ir	o and followed struction.			
QC	Cycle Activity:						
	Q1	Q2	Q3	Q4			
	Decode	Read	Process	No			
lf ol	din:	register 'f'	Data	operation			
11 51	ωp. Ο1	02	03	04			
	No	No	No	No			
	operation	operation	operation	operation			
lf sł	kip and follow	ed by 2-word	d instructio	n:			
	Q1	Q2	Q3	Q4			
	No	No	No	No			
	operation	operation	operation	operation			
	No	No	No	No			
	operation	operation	operation	operation			
<u>Example</u> :		HERE T NZERO T ZERO T	ISTFSZ C :	NT, 1			
	Before Instru	uction					
	PC	= Address	(HERE)				
	After Instruc	tion					
	If CNT PC If CNT PC	= 0x00, = Address ≠ 0x00, = Address	(ZERO)				

Exclusiv	Exclusive OR literal with W			
[label]	XORLW	k		
$0 \leq k \leq 2$	$0 \le k \le 255$			
(W) .XO	(W) .XOR. $k \rightarrow W$			
N, Z				
0000	1010	kkkk	kkkk	
The cont with the is placed	The contents of W are XORed with the 8-bit literal 'k'. The result is placed in W.			
1				
1				
Q2	Q3		Q4	
Read literal 'k'	Proce Data	ss W	rite to W	
	Exclusiv [label] \therefore $0 \le k \le 2$ (W) .XOF N, Z 0000 The cont with the \Rightarrow is placed 1 1 Q2 Read literal 'k'	Exclusive OR lit[label] XORLW $0 \le k \le 255$ (W) .XOR. $k \to W$ N, Z00001010The contents of Wwith the 8-bit literis placed in W.11Q2Q3ReadProceetliteral 'k'Data	Exclusive OR literal with $[label]$ XORLW k $0 \le k \le 255$ (W) .XOR. k \rightarrow W N, Z 0000 1010 kkkk The contents of W are XC with the 8-bit literal 'k'. The splaced in W. 1 Q2 Q3 Read Process W literal 'k' Data W	

Example: XORLW 0xAF

Before Instruction W = 0xB5

After Instruction

W = 0x1A

28.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.

© 2003-2013 Microchip Technology Inc.

