

Welcome to E-XFL.COM

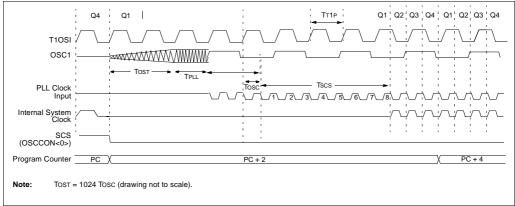
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

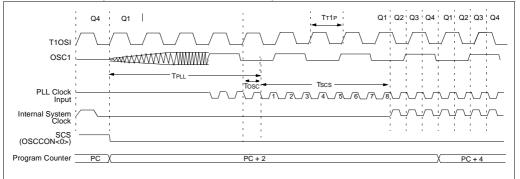
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, EBI/EMI, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	68
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.25K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf8680-i-pt


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


If the main oscillator is configured for HS mode with PLL active, an oscillator start-up time (TOST) plus an additional PLL time-out (TPLL) will occur. The PLL time-out is typically 2 ms and allows the PLL to lock to the main oscillator frequency. A timing diagram, indicating the transition from the Timer1 oscillator to the main oscillator for HS-PLL mode, is shown in Figure 2-10.

If the main oscillator is configured for EC mode with PLL active, only the PLL time-out (TPLL) will occur. The PLL time-out is typically 2 ms and allows the PLL to lock to the main oscillator frequency. A timing diagram, indicating the transition from the Timer1 oscillator to the main oscillator for EC with PLL active, is shown in Figure 2-11.

FIGURE 2-11: TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1 (EC WITH PLL ACTIVE, SCS1 = 1)

TADLE 4-3	ABLE 4-3. REGISTER FILE SOMMART (CONTINUED)												
File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:			
RXFBCON7(7)	F15BP_3	F15BP_2	F15BP_1	F15BP_0	F14BP_3	F14BP_2	F14BP_1	F14BP_01	0000 0000	47, 230			
RXFBCON6(7)	F13BP_3	F13BP_2	F13BP_1	F13BP_0	F12BP_3	F12BP_2	F12BP_1	F12BP_01	0000 0000	47, 230			
RXFBCON5(7)	F11BP_3	F11BP_2	F11BP_1	F11BP_0	F10BP_3	F10BP_2	F10BP_1	F10BP_01	0000 0000	47, 230			
RXFBCON4(7)	F9BP_3	F9BP_2	F9BP_1	F9BP_0	F8BP_3	F8BP_2	F8BP_1	F8BP_01	0000 0000	47, 230			
RXFBCON3(7)	F7BP_3	F7BP_2	F7BP_1	F7BP_0	F6BP_3	F6BP_2	F6BP_1	F6BP_01	0000 0000	47, 230			
RXFBCON2(7)	F5BP_3	F5BP_2	F5BP_1	F5BP_0	F4BP_3	F4BP_2	F4BP_1	F4BP_01	0000 0000	47, 230			
RXFBCON1(7)	F3BP_3	F3BP_2	F3BP_1	F3BP_0	F2BP_3	F2BP_2	F2BP_1	F2BP_01	0000 0000	47, 230			
RXFBCON0(7)	F1BP_3	F1BP_2	F1BP_1	F1BP_0	F0BP_3	F0BP_2	F0BP_1	F0BP_01	0000 0000	47, 230			

TABLE 4-3: REGISTER FILE SUMMARY (CONTINUED)

 $\label{eq:legend: Legend: Legend: u = unchanged, -= unimplemented, q = value depends on condition$

Note 1: RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read 'o' in all other oscillator modes.

2: Bit 21 of the TBLPTRU allows access to the device configuration bits.

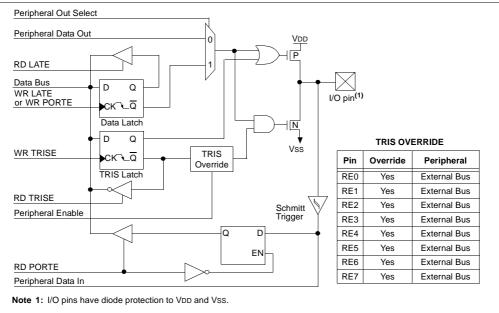
3: These registers are unused on PIC18F6X80 devices; always maintain these clear.

4: These bits have multiple functions depending on the CAN module mode selection.

5: Meaning of this register depends on whether this buffer is configured as transmit or receive.

6: RG5 is available as an input when MCLR is disabled.

7: This register reads all '0's until the ECAN module is set up in Mode 1 or Mode 2.


If the device fetches or accesses external memory while EBDIS = 1, the pins will switch to external bus. If the EBDIS bit is set by a program executing from external memory, the action of setting the bit will be delayed until the program branches into the internal memory. At that time, the pins will change from external bus to I/O ports.

When the device is executing out of internal memory (with EBDIS = 0) in Microprocessor with Boot Block mode or Extended Microcontroller mode, the control signals will be in inactive. They will go to a state where the AD<15:0>, A<19:16> are tri-state; the \overrightarrow{OE} , \overrightarrow{WRH} , \overrightarrow{WRL} , \overrightarrow{UB} and \overrightarrow{LB} signals are '1'; and ALE and BA0 are '0'.

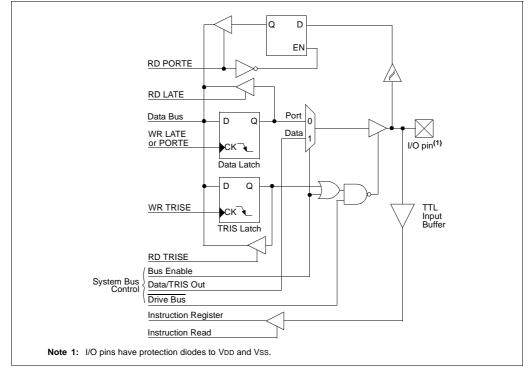

Name	Port	Bit	Function
RD0/AD0	PORTD	bit 0	Input/Output or System Bus Address bit 0 or Data bit 0
RD1/AD1	PORTD	bit 1	Input/Output or System Bus Address bit 1 or Data bit 1
RD2/AD2	PORTD	bit 2	Input/Output or System Bus Address bit 2 or Data bit 2
RD3/AD3	PORTD	bit 3	Input/Output or System Bus Address bit 3 or Data bit 3
RD4/AD4	PORTD	bit 4	Input/Output or System Bus Address bit 4 or Data bit 4
RD5/AD5	PORTD	bit 5	Input/Output or System Bus Address bit 5 or Data bit 5
RD6/AD6	PORTD	bit 6	Input/Output or System Bus Address bit 6 or Data bit 6
RD7/AD7	PORTD	bit 7	Input/Output or System Bus Address bit 7 or Data bit 7
RE0/AD8	PORTE	bit 0	Input/Output or System Bus Address bit 8 or Data bit 8
RE1/AD9	PORTE	bit 1	Input/Output or System Bus Address bit 9 or Data bit 9
RE2/AD10	PORTE	bit 2	Input/Output or System Bus Address bit 10 or Data bit 10
RE3/AD11	PORTE	bit 3	Input/Output or System Bus Address bit 11 or Data bit 11
RE4/AD12	PORTE	bit 4	Input/Output or System Bus Address bit 12 or Data bit 12
RE5/AD13	PORTE	bit 5	Input/Output or System Bus Address bit 13 or Data bit 13
RE6/AD14	PORTE	bit 6	Input/Output or System Bus Address bit 14 or Data bit 14
RE7/AD15	PORTE	bit 7	Input/Output or System Bus Address bit 15 or Data bit 15
RH0/A16	PORTH	bit 0	Input/Output or System Bus Address bit 16
RH1/A17	PORTH	bit 1	Input/Output or System Bus Address bit 17
RH2/A18	PORTH	bit 2	Input/Output or System Bus Address bit 18
RH3/A19	PORTH	bit 3	Input/Output or System Bus Address bit 19
RJ0/ALE	PORTJ	bit 0	Input/Output or System Bus Address Latch Enable (ALE) Control pin
RJ1/OE	PORTJ	bit 1	Input/Output or System Bus Output Enable (OE) Control pin
RJ2/WRL	PORTJ	bit 2	Input/Output or System Bus Write Low (WRL) Control pin
RJ3/WRH	PORTJ	bit 3	Input/Output or System Bus Write High (WRH) Control pin
RJ4/BA0	PORTJ	bit 4	Input/Output or System Bus Byte Address bit 0
RJ5/CE	PORTJ	bit 5	Input/Output or Chip Enable
RJ6/LB	PORTJ	bit 6	Input/Output or System Bus Lower Byte Enable (IB) Control pin
RJ7/UB	PORTJ	bit 7	Input/Output or System Bus Upper Byte Enable (UB) Control pin

 TABLE 6-1:
 PIC18F8X8X EXTERNAL BUS – I/O PORT FUNCTIONS

FIGURE 10-11: PORTE BLOCK DIAGRAM IN I/O MODE

FIGURE 10-12: PORTE BLOCK DIAGRAM IN SYSTEM BUS MODE (PIC18F8X8X ONLY)

© 2003-2013 Microchip Technology Inc.

17.4.4 CLOCK STRETCHING

Both 7- and 10-bit Slave modes implement automatic clock stretching during a transmit sequence.

The SEN bit (SSPCON2<0>) allows clock stretching to be enabled during receives. Setting SEN will cause the SCL pin to be held low at the end of each data receive sequence.

17.4.4.1 Clock Stretching for 7-bit Slave Receive Mode (SEN = 1)

In 7-bit Slave Receive mode, on the falling edge of the ninth clock at the end of the ACK sequence if the BF bit is set, the CKP bit in the SSPCON1 register is automatically cleared, forcing the SCL output to be held low. The CKP being cleared to 'o' will assert the SCL line low. The CKP bit must be set in the user's ISR before reception is allowed to continue. By holding the SCL line low, the user has time to service the ISR and read the contents of the SSPBUF before the master device can initiate another receive sequence. This will prevent buffer overruns from occurring (see Figure 17-13).

- Note 1: If the user reads the contents of the SSPBUF before the falling edge of the ninth clock, thus clearing the BF bit, the CKP bit will not be cleared and clock stretching will not occur.
 - 2: The CKP bit can be set in software regardless of the state of the BF bit. The user should be careful to clear the BF bit in the ISR before the next receive sequence in order to prevent an overflow condition.

17.4.4.2 Clock Stretching for 10-bit Slave Receive Mode (SEN = 1)

In 10-bit Slave Receive mode, during the address sequence, clock stretching automatically takes place but CKP is not cleared. During this time, if the UA bit is set after the ninth clock, clock stretching is initiated. The UA bit is set after receiving the upper byte of the 10-bit address and following the receive of the second byte of the 10-bit address with the R/W bit cleared to '0'. The release of the clock line occurs upon updating SSPADD. Clock stretching will occur on each data receive sequence as described in 7-bit mode.

Note: If the user polls the UA bit and clears it by updating the SSPADD register before the falling edge of the ninth clock occurs and if the user hasn't cleared the BF bit by reading the SSPBUF register before that time, then the CKP bit will still NOT be asserted low. Clock stretching on the basis of the state of the BF bit only occurs during a data sequence, not an address sequence.

17.4.4.3 Clock Stretching for 7-bit Slave Transmit Mode

7-bit Slave Transmit mode implements clock stretching by clearing the CKP bit after the falling edge of the ninth clock, if the BF bit is clear. This occurs regardless of the state of the SEN bit.

The user's ISR must set the CKP bit before transmission is allowed to continue. By holding the SCL line low, the user has time to service the ISR and load the contents of the SSPBUF before the master device can initiate another transmit sequence (see Figure 17-9).

- Note 1: If the user loads the contents of SSPBUF, setting the BF bit before the falling edge of the ninth clock, the CKP bit will not be cleared and clock stretching will not occur.
 - 2: The CKP bit can be set in software regardless of the state of the BF bit.

17.4.4.4 Clock Stretching for 10-bit Slave Transmit Mode

In 10-bit Slave Transmit mode, clock stretching is controlled during the first two address sequences by the state of the UA bit, just as it is in 10-bit Slave Receive mode. The first two addresses are followed by a third address sequence which contains the high order bits of the 10-bit address and the R/W bit set to '1'. After the third address sequence is performed, the UA bit is not set, the module is now configured in Transmit mode, and clock stretching is controlled by the BF flag as in 7-bit Slave Transmit mode (see Figure 17-11).

=R 18-3:	BAUDCON	I: BAUD F	RATE CON	TROL REC	SISTER			
	U-0	R-1	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
	_	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN
	bit 7							bit 0
bit 7	Unimplem	antad: Poo	d as 'o'					
bit 6	-			tuo hit				
DILO	1 = Receive	•	ation Idle Sta	ilus di				
	1 = Receive 0 = Receive							
bit 5	Unimplem	ented: Rea	d as '0'					
bit 4	SCKP: Syn	chronous C	lock Polarity	/ Select bit				
	Asynchrono Unused in t							
	Synchrono							
			(CK) is a hig (CK) is a lov	,				
bit 3	BRG16: 16	-bit Baud R	ate Register	Enable bit				
			Generator – S enerator – S		d SPBRG (Compatible	mode), SPE	BRGH value	ignored
bit 2	Unimplem	ented: Rea	d as '0'					
bit 1	WUE: Wak	e-up Enable	e bit					
	in hard	T will contin ware on fol	ue to sample lowing rising ed or rising	edge	– interrupt ge	enerated on	falling edge	; bit cleared
	<u>Synchrono</u> Unused in t							
bit 0	ABDEN: A	uto-Baud De	etect Enable	bit				
	(55h);	e baud rate cleared in h	measureme ardware upo ement disab	on completic		– requires r	eception of	a sync field
	Synchrono	us mode:						
	Unused in t	his mode.						
	Legend:							

REGISTER 18-3: BAUDCON: BAUD RATE CONTROL REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

	SYNC = 0, BRGH = 0, BRG16 = 0											
BAUD RATE	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	-	_	_	_	_	_		_	_	_	_	_
1.2	—	—	—	1.221	1.73	255	1.202	0.16	129	1201	-0.16	103
2.4	2.441	1.73	255	2.404	0.16	129	2.404	0.16	64	2403	-0.16	51
9.6	9.615	0.16	64	9.766	1.73	31	9.766	1.73	15	9615	-0.16	12
19.2	19.531	1.73	31	19.531	1.73	15	19.531	1.73	7	_	_	_
57.6	56.818	-1.36	10	62.500	8.51	4	52.083	-9.58	2	_	_	—
115.2	125.000	8.51	4	104.167	-9.58	2	78.125	-32.18	1	_	_	_

TABLE 18-3:	BAUD RATES FOR ASYNCHRONOUS MODES

		SYNC = 0, BRGH = 0, BRG16 = 0											
BAUD	Fos	c = 4.000	MHz	Fos	c = 2.000	MHz	Fos	c = 1.000	MHz				
RATE (K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)				
0.3	0.300	0.16	207	300	-0.16	103	300	-0.16	51				
1.2	1.202	0.16	51	1201	-0.16	25	1201	-0.16	12				
2.4	2.404	0.16	25	2403	-0.16	12	—	_	—				
9.6	8.929	-6.99	6	_	_	_	_	_	_				
19.2	20.833	8.51	2	—	_	_	_	_	_				
57.6	62.500	8.51	0	—	_	_	_	_	_				
115.2	62.500	-45.75	0	_	_	_	_	_	_				

	SYNC = 0, BRGH = 1, BRG16 = 0												
BAUD RATE	Fosc	Fosc = 40.000 MHz			Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	Rate Frror		Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	-	_	_	_	_	_	_	_	_	_	_	_	
1.2	—	—	—	—	—	—	—	—	—	—	—	—	
2.4	—	—	—	—	_	—	2.441	1.73	255	2403	-0.16	207	
9.6	9.766	1.73	255	9.615	0.16	129	9.615	0.16	64	9615	-0.16	51	
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19230	-0.16	25	
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55555	3.55	8	
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	_	—	—	

		SYNC = 0, BRGH = 1, BRG16 = 0											
BAUD	Fost	c = 4.000	MHz	Fos	c = 2.000	MHz	Fos	Fosc = 1.000 MHz					
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)				
0.3	—	_	_	_	_	_	300	-0.16	207				
1.2	1.202	0.16	207	1201	-0.16	103	1201	-0.16	51				
2.4	2.404	0.16	103	2403	-0.16	51	2403	-0.16	25				
9.6	9.615	0.16	25	9615	-0.16	12	_	_	_				
19.2	19.231	0.16	12	_	_	_	_	_	_				
57.6	62.500	8.51	3	_	_	_	_	_	_				
115.2	125.000	8.51	1	_	—	_		_	—				

$\label{eq:register23-30:BnEIDL: TX/RX BUFFER n EXTENDED IDENTIFIER REGISTERS, \\ LOW BYTE IN RECEIVE MODE [0 \le n \le 5, TXnEN (BSEL<n>) = 0]^{(1)}$

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7							bit 0

bit 7-0

EID7:EID0: Extended Identifier bits

Note 1: These registers are available in Mode 1 and 2 only.

Legend	d:			
R = Re	adable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Va	alue at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 23-31: BnEIDL: TX/RX BUFFER n EXTENDED IDENTIFIER REGISTERS, LOW BYTE IN TRANSMIT MODE $[0 \le n \le 5, TXnEN (BSEL<n>) = 1]^{(1)}$

-			L -	- ,	`	/ 1		
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0	
bit 7							bit 0	

bit 7-0

EID7:EID0: Extended Identifier bits

Note 1: These registers are available in Mode 1 and 2 only.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

23.2.6 CAN INTERRUPT REGISTERS

The registers in this section are the same as described in **Section 9.0 "Interrupts"**. They are duplicated here for convenience.

REGISTER 23-56: PIR3: PERIPHERAL INTERRUPT FLAG REGISTER

LIX 23-30.	1 11(3.1 L)			ULLAC		IN					
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	IRXIF	WAKIF	ERRIF	TXB2IF/ TXBnIF	TXB1IF ⁽¹⁾	TXB0IF ⁽¹⁾	RXB1IF/ RXBnIF	RXB0IF/ FIFOWMIF			
	bit 7	I	1		1			bit 0			
bit 7				ssage Interr							
				irred on the	CAN bus						
bit 6		alid messao		up Interrupt	Eloa bit						
DILO		on CAN b		• •	Flag bit						
	0 = No act	ivity on CAI	N bus								
bit 5		AN bus Erro		-	(multiple of						
		N module e			e (multiple so	burces)					
bit 4		lis in Mode									
	TXB2IF: C	AN Transm	nit Buffer 2	Interrupt Fla	g bit						
		TXB2IF: CAN Transmit Buffer 2 Interrupt Flag bit 1 = Transmit Buffer 2 has completed transmission of a message and may be reloaded 0 = Transmit Buffer 2 has not completed transmission of a message									
	When CAN is in Mode 1 or 2:										
	TXBnIF: Any Transmit Buffer Interrupt Flag bit 1 = One or more transmit buffers has completed transmission of a message and may be reloaded										
	0 = No transmit buffer is ready for reload										
bit 3	TXB1IF: CAN Transmit Buffer 1 Interrupt Flag bit ⁽¹⁾										
	1 = Transmit Buffer 1 has completed transmission of a message and may be reloaded										
bit 2	 0 = Transmit Buffer 1 has not completed transmission of a message TXB0IF: CAN Transmit Buffer 0 Interrupt Flag bit⁽¹⁾ 										
DIL Z	1 = Transmit Buffer 0 has completed transmission of a message and may be reloaded 0 = Transmit Buffer 0 has not completed transmission of a message										
bit 1		lis in Mode		inplotod trail		amoooago					
	RXB1IF: CAN Receive Buffer 1 Interrupt Flag bit										
	 1 = Receive Buffer 1 has received a new message 0 = Receive Buffer 1 has not received a new message 										
	When CAN is in Mode 1 or 2:										
	RXBnIF: Any Receive Buffer Interrupt Flag bit										
	 1 = One or more receive buffers has received a new message 0 = No receive buffer has received a new message 										
bit 0	When CAN is in Mode 0:										
	RXB0IF: CAN Receive Buffer 0 Interrupt Flag bit										
	1 = Receive Buffer 0 has received a new message 0 = Receive Buffer 0 has not received a new message										
		lis in Mode									
	-	nented: Rea									
	-	<u>∖ is in Mode</u> : FIFO Wa		errupt Flag b	bit						
	FIFOWMIF: FIFO Watermark Interrupt Flag bit 1 = FIFO high watermark is reached 0 = FIFO high watermark is not reached										
	Note 1: In CAN Mode 1 and 2, this bit is forced to '0'.										
	Legend:										
	R = Reada	able bit	W = Wri	table bit	U = Un	implemente	d bit, read a	s '0'			
					(0)						

- n = Value at POR

'1' = Bit is set

x = Bit is unknown

'0' = Bit is cleared

23.5.3 PROGRAMMABLE TRANSMIT/ RECEIVE BUFFERS

The ECAN module implements six new buffers: B0-B5. These buffers are individually programmable as either transmit or receive buffers. These buffers are available only in Mode 1 and 2. As with dedicated transmit and receive buffers, each of these programmable buffers occupies 14 bytes of SRAM and are mapped into SFR memory map.

Each buffer contains one Control register (BnCON), four Identifier registers (BnSIDL, BnSIDH, BnEIDL, BnEIDH), one Data Length Count register (BnDLC) and eight Data Byte registers (BnDm). Each of these registers contains two sets of control bits. Depending on whether the buffer is configured as transmit or receive, one would use the corresponding control bit set. By default, all buffers are configured as receive buffers. Each buffer can be individually configured as transmit or receive buffers by setting the corresponding TXENn bit in the BSEL0 register.

When configured as transmit buffers, user firmware may access transmit buffers in any order similar to accessing dedicated transmit buffers. In receive configuration, with Mode 1 enabled, user firmware may also access receive buffers in any order required. But in Mode 2, all receive buffers are combined to form a single FIFO. Actual FIFO length is programmable by user firmware. Access to FIFO must be done through the FIFO pointer bits (FP<4:0>) in the CANCON register. It must be noted that there is no hardware protection against out of order FIFO reads.

23.5.4 PROGRAMMABLE AUTO-RTR BUFFERS

In Mode 1 and 2, any of six programmable transmit/ receive buffers may be programmed to automatically respond to predefined RTR messages without user firmware intervention. Automatic RTR handling is enabled by setting the TXnEN bit in the BSEL0 register and the RTREN bit in the BnCON register. After this setup, when an RTR request is received, the TXREQ bit is automatically set and current buffer content is automatically queued for transmission as a RTR response. As with all transmit buffers, once the TXREQ bit is set, buffer registers become read-only and any writes to them will be ignored. The following outlines the steps required to automatically handle RTR messages:

- 1. Set buffer to Transmit mode by setting TXnEN bit to '1' in BSEL0 register.
- At least one acceptance filter must be associated with this buffer and preloaded with expected RTR identifier.
- 3. Bit RTREN in BnCON register must be set to '1'.
- 4. Buffer must be preloaded with the data to be sent as a RTR response.

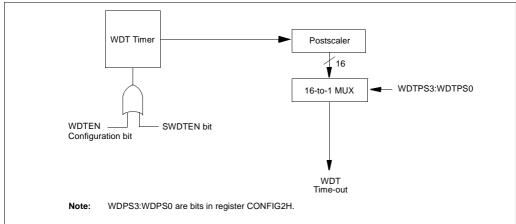
Normally, user firmware will keep Buffer Data registers up to date. If firmware attempts to update buffer while an automatic RTR response is in process of transmission, all writes to buffers are ignored.

23.6 CAN Message Transmission

23.6.1 INITIATING TRANSMISSION

For the MCU to have write access to the message buffer, the TXREQ bit must be clear, indicating that the message buffer is clear of any pending message to be transmitted. At a minimum, the SIDH, SIDL, and DLC registers must be loaded. If data bytes are present in the message, the data registers must also be loaded. If the message is to use extended identifiers, the EIDH:EIDL registers must also be loaded and the EXIDE bit set.

To initiate message transmission, the TXREQ bit must be set for each buffer to be transmitted. When TXREQ is set, the TXABT, TXLARB and TXERR bits will be cleared. To successfully complete the transmission, there must be at least one node with matching baud rate on the network.


Setting the TXREQ bit does not initiate a message transmission, it merely flags a message buffer as ready for transmission. Transmission will start when the device detects that the bus is available. The device will then begin transmission of the highest priority message that is ready.

When the transmission has completed successfully, the TXREQ bit will be cleared, the TXBnIF bit will be set, and an interrupt will be generated if the TXBnIE bit is set.

If the message transmission fails, the TXREQ will remain set, indicating that the message is still pending for transmission and one of the following condition flags will be set. If the message started to transmit but encountered an error condition, the TXERR and the IRXIF bits will be set and an interrupt will be generated. If the message lost arbitration, the TXLARB bit will be set.

24.2.2 WDT POSTSCALER

The WDT has a postscaler that can extend the WDT Reset period. The postscaler is selected at the time of the device programming by the value written to the CONFIG2H Configuration register.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CONFIG2H	—	_	_	WDTPS3	WDTPS2	WDTPS2	WDTPS0	WDTEN
RCON	IPEN	_	_	RI	TO	PD	POR	BOR
WDTCON	—			—	—	—	_	SWDTEN

Legend: Shaded cells are not used by the Watchdog Timer.

TABLE 25-2: PIC18FXXX INSTRUCTION SET

Mnemonic,		Description	Cycles	16-Bit Instruction Word				Status	Notes
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
BYTE-OR	IENTED	FILE REGISTER OPERATIONS							
ADDWF	f, d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, Skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, Skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, Skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1 ΄	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3,
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3,
DCFSNZ		Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1 ΄	0010	10da	ffff	ffff	C, DC, Z, OV, N	
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2
IORWF	f, d, a	Inclusive OR WREG with f	1 ΄	0001	00da	ffff	ffff	Z, N	1, 2
MOVF	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	
-	3, u	f _d (destination) 2nd word		1111	ffff	ffff	ffff		
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	1, 2
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	1, 2
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	
SUBFWB	f, d, a	Subtract f from WREG with borrow	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	
SUBWFB	, ,	Subtract WREG from f with	1		10da	ffff	ffff		1.2
0022	., u, u	borrow		0101	1000			0, 20, 2, 0,,	., _
SWAPF	f, d, a	Swap nibbles in f	1	0011	10da	ffff	ffff	None	4
TSTFSZ	f, a	Test f, Skip if 0	1 (2 or 3)		011a	ffff	ffff	None	1, 2
XORWF	f, d, a	Exclusive OR WREG with f	1		10da	ffff	ffff		., _
		ILE REGISTER OPERATIONS	-	0001	2000			_,	
BCF	f, b, a	Bit Clear f	1	1001	bbba	ffff	ffff	None	1, 2
BSF	f, b, a	Bit Set f	1		bbba	ffff	ffff	None	1, 2
BTFSC	f, b, a	Bit Test f, Skip if Clear	1 (2 or 3)			ffff	ffff		3, 4
BTFSS	f, b, a	Bit Test f, Skip if Set	1 (2 or 3)		bbba	ffff	ffff	None	3, 4
BTG	f, d, a	Bit Toggle f	1		bbba	ffff		None	1, 2
			1 1 1 1 1 1 1		JUDA			the velue weed w	•, •

Note 1: When a Port register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

TBLRD	Table Read							
Syntax:	[label]	TBLRD (*; *+; *-; +	-*)				
Operands:	None							
Operation:	if TBLRD *, (Prog Mem (TBLPTR)) → TABLAT; TBLPTR – No Change; if TBLRD *+, (Prog Mem (TBLPTR)) → TABLAT; (TBLPTR) + 1 → TBLPTR; if TBLRD *-, (Prog Mem (TBLPTR)) → TABLAT; (TBLPTR) - 1 → TBLPTR; if TBLRD +*, (TBLPTR) + 1 → TBLPTR; (Prog Mem (TBLPTR)) → TABLAT;							
Status Affected	:None							
Encoding:	0000	0000	0000	10nn nn=0 * =1 *+ =2 *- =3 +*				
Description:	This instruction is used to read the							

Description: This instruction is used to read the contents of Program Memory (P.M.). To address the program memory, a pointer called Table Pointer (TBLPTR) is used. The TBLPTR (a 21-bit pointer) points to each byte in the program memory. TBLPTR has a 2-Mbyte address range.

TBLPTR[0] = 0: Least Significant Byte of Program Memory Word TBLPTR[0] = 1: Most Significant Byte of Program

Memory Word The TBLRD instruction can modify the value of TBLPTR as follows:

- no change
- post-increment
- post-decrement
- pre-increment

1

2

Words:

Cycles:

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	No	No	No
	operation	operation	operation
No operation	No operation (Read Program Memory)	No operation	No operation (Write TABLAT)

TBLRD	Table Read	l (Co	ontinued)
Example1:	TBLRD *+	;	
Before Instruc TABLAT TBLPTR MEMORY	tion (0x00A356)	= = =	0x55 0x00A356 0x34
After Instructio TABLAT TBLPTR	on	= =	0x34 0x00A357
Example2:	TBLRD +*	;	
	ction (0x01A357) (0x01A358)	= = =	0xAA 0x01A357 0x12 0x34
After Instructio TABLAT TBLPTR	on	=	0x34 0x01A358

26.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI C compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

26.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB object librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

26.5 MPLAB C30 C Compiler

The MPLAB C30 C compiler is a full-featured, ANSI compliant, optimizing compiler that translates standard ANSI C programs into dsPIC30F assembly language source. The compiler also supports many command line options and language extensions to take full advantage of the dsPIC30F device hardware capabilities and afford fine control of the compiler code generator.

MPLAB C30 is distributed with a complete ANSI C standard library. All library functions have been validated and conform to the ANSI C library standard. The library includes functions for string manipulation, dynamic memory allocation, data conversion, time-keeping and math functions (trigonometric, exponential and hyperbolic). The compiler provides symbolic information for high-level source debugging with the MPLAB IDE.

26.6 MPLAB ASM30 Assembler, Linker and Librarian

MPLAB ASM30 assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 compiler uses the assembler to produce it's object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire dsPIC30F instruction set
- · Support for fixed-point and floating-point data
- · Command line interface
- Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

26.7 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code development in a PC hosted environment by simulating the PIC series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any pin. The execution can be performed in Single-Step, Execute Until Break or Trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and MPLAB C18 C Compilers, as well as the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent, economical software development tool.

26.8 MPLAB SIM30 Software Simulator

The MPLAB SIM30 software simulator allows code development in a PC hosted environment by simulating the dsPIC30F series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any of the pins.

The MPLAB SIM30 simulator fully supports symbolic debugging using the MPLAB C30 C Compiler and MPLAB ASM30 assembler. The simulator runs in either a Command Line mode for automated tasks, or from MPLAB IDE. This high-speed simulator is designed to debug, analyze and optimize time intensive DSP routines.

27.3 DC Characteristics: PIC18FXX8X (Industrial, Extended) PIC18LFXX8X (Industrial)


DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise state}\\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial}\\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array}$				
Param No.	Symbol	Characteristic	Min	Max	Units	Conditions	
	VIL	Input Low Voltage					
		I/O ports:					
D030		with TTL buffer	Vss	0.15 Vdd	V	Vdd < 4.5V	
D030A			_	0.8	V	$4.5V \le VDD \le 5.5V$	
D031		with Schmitt Trigger buffer RC3 and RC4	Vss Vss	0.2 Vdd 0.3 Vdd	V V		
D032		MCLR	Vss	0.2 Vdd	V		
D032A		OSC1 (in XT, HS and LP modes) and T1OSI	Vss	0.3 Vdd	V		
D033		OSC1 (in RC and EC mode) ⁽¹⁾	Vss	0.2 Vdd	V		
	VIH	Input High Voltage					
		I/O ports:					
D040		with TTL buffer	0.25 VDD + 0.8V	Vdd	V	Vdd < 4.5V	
D040A			2.0	Vdd	V	$4.5V \leq V \text{DD} \leq 5.5V$	
D041		with Schmitt Trigger buffer RC3 and RC4	0.8 Vdd 0.7 Vdd	Vdd Vdd	V V		
D042		MCLR, OSC1 (EC mode)	0.8 Vdd	Vdd	V		
D042A		OSC1 (in XT, HS and LP modes) and T1OSI	0.7 Vdd	Vdd	V		
D043		OSC1 (RC mode) ⁽¹⁾	0.9 Vdd	Vdd	V		
	lı∟	Input Leakage Current ^(2,3)					
D060		I/O ports	-	±1	μA	Vss ≤ VPIN ≤ VDD, Pin at high-impedance	
D061		MCLR		± 5	μA	$Vss \le VPIN \le VDD$	
D063		OSC1		± 5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$	
	IPU	Weak Pull-up Current					
D070	IPURB	PORTB weak pull-up current	50	400	μA	VDD = 5V, VPIN = VSS	

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the PIC device be driven with an external clock while in RC mode.

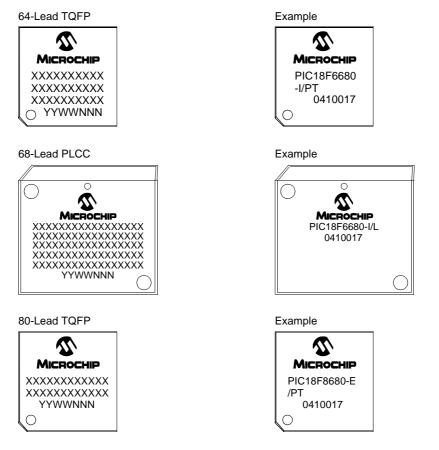
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: Parameter is characterized but not tested.

TABLE 27-26: A/D CONVERSION REQUIREMENTS

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
130	TAD	A/D Clock Period	PIC18FXX8X	1.6	20 ⁽⁵⁾	μS	Tosc based, VREF $\geq 3.0V$
			PIC18LFXX8X	3.0	20 ⁽⁵⁾	μS	TOSC based, VREF full range
			PIC18FXX8X	2.0	6.0	μs	A/D RC mode
			PIC18LFXX8X	3.0	9.0	μs	A/D RC mode
131	TCNV	Conversion Time (not including acquisition time) (Note 1)		11	12	TAD	
132	TACQ	Acquisition Time (Not	e 3)	15 10	_	μS μS	$-40^{\circ}C \le Temp \le +125^{\circ}C$ $0^{\circ}C \le Temp \le +125^{\circ}C$
135	Tswc	Switching Time from (Convert \rightarrow Sample		(Note 4)		
136	Тамр	Amplifier Settling Time (Note 2)		1	_	μs	This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 5 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).


Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 19.0 "10-bit Analog-to-Digital Converter (A/D) Module" for minimum conditions when input voltage has changed more than 1 LSb.

- **3:** The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (AVDD to AVss, or AVss to AVDD). The source impedance (*Rs*) on the input channels is 50Ω.
- 4: On the next Q4 cycle of the device clock.
- 5: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

29.0 PACKAGING INFORMATION

29.1 Package Marking Information

Legen	d: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((((((((((((((((((((((((((((((((((((
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

APPENDIX E: MIGRATION FROM HIGH-END TO ENHANCED DEVICES

A detailed discussion of the migration pathway and differences between the high-end MCU devices (i.e., PIC17CXXX) and the enhanced devices (i.e., PIC18FXXXX) is provided in AN726, "PIC17CXXX to PIC18CXXX Migration." This Application Note is available as Literature Number DS00726.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tei: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/29/12