

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	75264
Total RAM Bits	516096
Number of I/O	341
Number of Gates	300000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/agle3000v2-fg484

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IGLOOe Device Family Overview

m file Save to file	····		Show BSR [
Port Name	Macro Cell	Pin Number	1/O State (Output Only)
BIST	ADLIB:INBUF	T2	1
SYPASS_IO	ADLIB:INBUF	K1	1
CLK	ADLIB:INBUF	B1	1
ENOUT	ADLIB:INBUF	J16	1
_ED	ADLIB:OUTBUF	M3	0
MONITOR[0]	ADLIB:OUTBUF	B5	0
MONITOR[1]	ADLIB:OUTBUF	C7	Z
MONITOR[2]	ADLIB:OUTBUF	D9	Z
MONITOR[3]	ADLIB:OUTBUF	D7	Z
MONITOR[4]	ADLIB:OUTBUF	A11	Z
DEa	ADLIB:INBUF	E4	Z
ЭЕЬ	ADLIB:INBUF	F1	Z
DSC_EN	ADLIB:INBUF	К3	Z
PAD[10]	ADLIB:BIBUF_LVCMOS33U	M8	Z
PAD[11]	ADLIB:BIBUF_LVCMOS33D	R7	Z
PAD[12]	ADLIB:BIBUF_LVCMOS33U	D11	Z
PAD[13]	ADLIB:BIBUF_LVCMOS33D	C12	Z
PAD[14]	ADLIB:BIBUF_LVCMOS33U	R6	Z

Figure 1-4 • I/O States During Programming Window

- 6. Click OK to return to the FlashPoint Programming File Generator window.
- Note: I/O States During programming are saved to the ADB and resulting programming files after completing programming file generation.

2 – IGLOOe DC and Switching Characteristics

General Specifications

Operating Conditions

Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Conditions specified in Table 2-2 on page 2-2 is not implied.

Table 2-1 •	Absolute Maximum Ratings
-------------	--------------------------

Symbol	Parameter	Limits	Units
VCC	DC core supply voltage	–0.3 to 1.65	V
VJTAG	JTAG DC voltage	-0.3 to 3.75	V
VPUMP	Programming voltage	-0.3 to 3.75	V
VCCPLL	Analog power supply (PLL)	-0.3 to 1.65	V
VCCI and VMV ³	DC I/O buffer supply voltage	-0.3 to 3.75	V
VI	I/O input voltage	 -0.3 V to 3.6 V (when I/O hot insertion mode is enabled) -0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower (when I/O hot-insertion mode is disabled) 	V
T _{STG} ²	Storage temperature	–65 to +150	°C
T _J ²	Junction temperature	+125	°C

Notes:

1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 2-4 on page 2-3.

2. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-3, and for recommended operating limits, refer to Table 2-2 on page 2-2.

3. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section on page 3-1 for further information.

Microsemi.

IGLOOe DC and Switching Characteristics

Symbol	Parar	neter	Commercial	Industrial	Units
T _A	Ambient Temperature		0 to +70	-40 to +85	°C
TJ	Junction Temperature ²		0 to + 85	-40 to +100	°C
VCC ³	1.5 V DC core supply voltage ⁴		1.425 to 1.575	1.425 to 1.575	V
	1.2 V–1.5 V wide range DC core voltage ^{5, 6}		1.14 to 1.575	1.14 to 1.575	V
VJTAG	JTAG DC voltage		1.4 to 3.6	1.4 to 3.6	V
VPUMP	Programming voltage ⁶	Programming Mode	3.15 to 3.45	3.15 to 3.45	V
		Operation ⁷	0 to 3.6	0 to 3.6	V
VCCPLL ⁸	Analog power supply (PLL)	1.5 V DC core supply voltage ⁴	1.425 to 1.575	1.425 to 1.575	V
		1.2 V–1.5 V DC core supply voltage ⁵	1.14 to 1.575	1.14 to 1.575	V
VCCI and	1.2 V DC supply voltage ⁵		1.14 to 1.26	1.14 to 1.26	V
VMV ⁹	1.2 V wide range DC supply voltage ⁵		1.14 to 1.575	1.14 to 1.575	V
	1.5 V DC supply voltage		1.425 to 1.575	1.425 to 1.575	V
	1.8 V DC supply voltage		1.7 to 1.9	1.7 to 1.9	V
	2.5 V DC supply voltage		2.3 to 2.7	2.3 to 2.7	V
	3.0 V DC supply voltage ¹⁰		2.7 to 3.6	2.7 to 3.6	V
	3.3 V DC supply voltage		3.0 to 3.6	3.0 to 3.6	V
	LVDS differential I/O		2.375 to 2.625	2.375 to 2.625	V
	LVPECL differential I/O		3.0 to 3.6	3.0 to 3.6	V

Table 2-2 • Recommended Operating Conditions ¹

Notes:

1. All parameters representing voltages are measured with respect to GND unless otherwise specified.

2. To ensure targeted reliability standards are met across ambient and junction operating temperatures, Microsemi recommends that the user follow best design practices using Microsemi's timing and power simulation tools.

3. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-21 on page 2-20. VCCI should be at the same voltage within a given I/O bank.

4. For IGLOOe V5 devices

5. For IGLOOe V2 devices only, operating at VCCI \geq VCC

6. All IGLOOe devices (V5 and V2) must be programmed with the VCC core voltage at 1.5 V. Applications using the V2 devices powered by a 1.2 V supply must switch the core supply to 1.5 V for in-system programming.

7. VPUMP can be left floating during operation (not programming mode).

8. VCCPLL pins should be tied to VCC pins. See the "VCCPLA/B/C/D/E/F PLL Supply Voltage" section for further information.

9. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" section for further information.

10. 3.3 V wide range is compliant to the JESD8-B specification and supports 3.0 V VCCI operation.

٠

JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O behavior.

PLL Behavior at Brownout Condition

Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper powerup behavior. Power ramp-up should be monotonic at least until VCC and VCCPLX exceed brownout activation levels. The VCC activation level is specified as 1.1 V worst-case (see Figure 2-1 and Figure 2-2 on page 2-5 for more details).

When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V \pm 0.25 V), the PLL output lock signal goes low and/or the output clock is lost. Refer to the "Power-Up/-Down Behavior of Low Power Flash Devices" chapter of the *IGLOOe FPGA Fabric User's Guide* for information on clock and lock recovery.

Internal Power-Up Activation Sequence

- 1. Core
- 2. Input buffers

Output buffers, after 200 ns delay from input buffer activation.

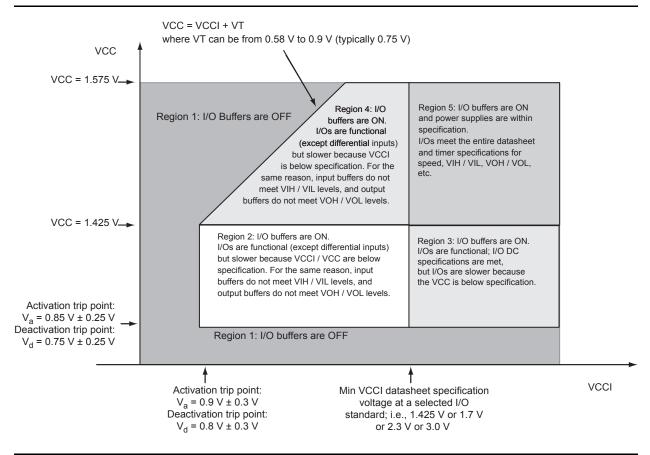


Figure 2-1 • V5 – I/O State as a Function of VCCI and VCC Voltage Levels

IGLOOe DC and Switching Characteristics

Package Thermal Characteristics

The device junction-to-case thermal resistivity is θ_{jc} and the junction-to-ambient air thermal resistivity is θ_{ja} . The thermal characteristics for θ_{ja} are shown for two air flow rates. The absolute maximum junction temperature is 100°C. EQ 2 shows a sample calculation of the absolute maximum power dissipation allowed for an 896-pin FBGA package at commercial temperature and in still air.

EQ 2

Maximum Power Allowed =
$$\frac{\text{Max. junction temp. (°C)} - \text{Max. ambient temp. (°C)}}{\theta_{ja}(°C/W)} = \frac{100°C - 70°C}{13.6°C/W} = 2.206 \text{ W}$$

				$ heta_{ja}$				
Package Type	Pin Count	θ_{jc}	Still Air	200 ft./min.	500 ft./min.	Units		
Plastic Quad Flat Package (PQFP)	208	8.0	26.1	22.5	20.8	C/W		
Plastic Quad Flat Package (PQFP) with embedded heat spreader	208	3.8	16.2	13.3	11.9	C/W		
Fine Pitch Ball Grid Array (FBGA)	256	3.8	26.9	22.8	21.5	C/W		
	484	3.2	20.5	17.0	15.9	C/W		
	676	3.2	16.4	13.0	12.0	C/W		
	896	2.4	13.6	10.4	9.4	C/W		

Table 2-5 • Package Thermal Resistivities

Temperature and Voltage Derating Factors

Table 2-6 •Temperature and Voltage Derating Factors for Timing Delays
(normalized to T_J = 70°C,VCC = 1.425 V)
For IGLOOe V2 or V5 devices, 1.5 V DC Core Supply Voltage

Array Voltage		Junction Temperature (°C)											
VCC (V)	–40°C	0°C	25°C	70°C	85°C	100°C							
1.425	0.945	0.965	0.978	1.000	1.008	1.013							
1.500	0.876	0.893	0.906	0.927	0.934	0.940							
1.575	0.824	0.840	0.852	0.872	0.879	0.884							

Table 2-7 •Temperature and Voltage Derating Factors for Timing Delays
(normalized to T_J = 70°C, VCC = 1.14 V)
For IGLOOe V2, 1.2 V DC Core Supply Voltage

Array Voltage		Junction Temperature (°C)											
VCC (V)	–40°C	0°C	25°C	70°C	85°C	100°C							
1.14	0.968	0.978	0.991	1.000	1.006	1.010							
1.20	0.864	0.873	0.885	0.893	0.898	0.902							
1.26	0.793	0.803	0.813	0.821	0.826	0.829							

Microsemi.

IGLOOe DC and Switching Characteristics

Table 2-17 • Different Components Contributing to the Dynamic Power Consumption in IGLOOe Devices For IGLOOe V2 Devices, 1.2 V DC Core Supply Voltage

			cific Dynamic ons (µW/MHz)	
Parameter	Definition	AGLE600	AGLE3000	
PAC1	Clock contribution of a Global Rib	12.61	8.17	
PAC2	Clock contribution of a Global Spine	2.66	1.18	
PAC3	Clock contribution of a VersaTile row	C	0.56	
PAC4	Clock contribution of a VersaTile used as a sequential module	0.	.071	
PAC5	First contribution of a VersaTile used as a sequential module	0.	.045	
PAC6	Second contribution of a VersaTile used as a sequential module	0.	.186	
PAC7	Contribution of a VersaTile used as a combinatorial module	0.	.109	
PAC8	Average contribution of a routing net	0.	.449	
PAC9	Contribution of an I/O input pin (standard-dependent)	See Table 2-	9 on page 2-7.	
PAC10	Contribution of an I/O output pin (standard-dependent)		10 on page 2-7 11 on page 2-7.	
PAC11	Average contribution of a RAM block during a read operation	2	5.00	
PAC12	Average contribution of a RAM block during a write operation	30	0.00	
PAC13	Dynamic PLL contribution	2	2.10	

Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power calculator or SmartPower in Libero SoC software.

Table 2-18 • Different Components Contributing to the Static Power Consumption in IGLOO Devices For IGLOOe V2 Devices, 1.2 V DC Core Supply Voltage

		Device Specific St	atic Power (mW)			
Parameter	Definition	AGLE600	AGLE3000			
PDC1	Array static power in Active mode	See Table 2-12	on page 2-8.			
PDC2	Array static power in Static (Idle) mode	See Table 2-11	on page 2-7.			
PDC3	Array static power in Flash*Freeze mode	See Table 2-9	on page 2-7.			
PDC4	Static PLL contribution	0.9	0			
PDC5	Bank quiescent power (VCCI-dependent)	See Table 2-12	on page 2-8.			
PDC6	I/O input pin static power (standard-dependent) See Table 2-13 on page 2-					
PDC7	I/O output pin static power (standard-dependent)	See Table 2-14	on page 2-10.			

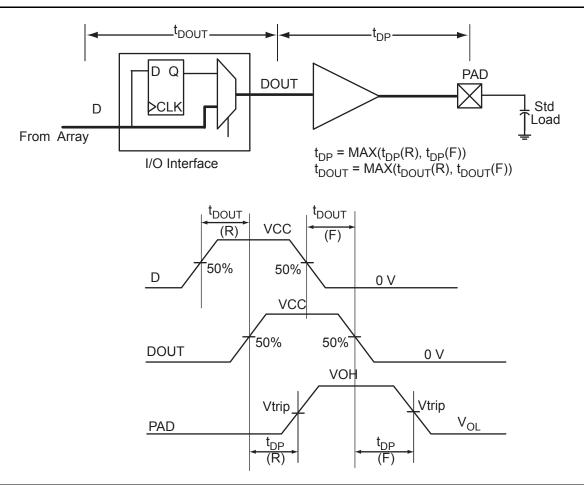


Figure 2-5 • Output Buffer Model and Delays (example)

🌜 Microsemi.

IGLOOe DC and Switching Characteristics

Timing Characteristics

1.5 V DC Core Voltage

Table 2-54 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{zL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
2 mA	Std.	0.97	7.33	0.18	1.27	1.59	0.66	7.47	6.18	2.34	1.18	11.07	9.77	ns
4 mA	Std.	0.97	6.07	0.18	1.27	1.59	0.66	6.20	5.25	2.69	2.42	9.79	8.84	ns
6 mA	Std.	0.97	5.18	0.18	1.27	1.59	0.66	5.29	4.61	2.93	2.88	8.88	8.21	ns
8 mA	Std.	0.97	4.88	0.18	1.27	1.59	0.66	4.98	4.48	2.99	3.01	8.58	8.08	ns
12 mA	Std.	0.97	4.80	0.18	1.27	1.59	0.66	4.89	4.49	3.07	3.47	8.49	8.09	ns
16 mA	Std.	0.97	4.80	0.18	1.27	1.59	0.66	4.89	4.49	3.07	3.47	8.49	8.09	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-55 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V

	Speed													
Drive Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.97	3.43	0.18	1.27	1.59	0.66	3.51	3.39	2.33	1.19	7.10	6.98	ns
4 mA	Std.	0.97	2.83	0.18	1.27	1.59	0.66	2.89	2.59	2.69	2.49	6.48	6.18	ns
6 mA	Std.	0.97	2.45	0.18	1.27	1.59	0.66	2.51	2.19	2.93	2.95	6.10	5.79	ns
8 mA	Std.	0.97	2.38	0.18	1.27	1.59	0.66	2.43	2.12	2.98	3.08	6.03	5.71	ns
12 mA	Std.	0.97	2.37	0.18	1.27	1.59	0.66	2.42	2.03	3.07	3.57	6.02	5.62	ns
16 mA	Std.	0.97	2.37	0.18	1.27	1.59	0.66	2.42	2.03	3.07	3.57	6.02	5.62	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Timing Characteristics

1.5 V DC Core Voltage

 Table 2-60 •
 1.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
2 mA	Std.	0.97	7.61	0.18	1.47	1.77	0.66	7.76	6.33	2.81	2.34	11.36	9.92	ns
4 mA	Std.	0.97	6.54	0.18	1.47	1.77	0.66	6.67	5.56	3.09	2.88	10.26	9.16	ns
6 mA	Std.	0.97	6.15	0.18	1.47	1.77	0.66	6.27	5.42	3.15	3.02	9.87	9.02	ns
8 mA	Std.	0.97	6.07	0.18	1.47	1.77	0.66	6.20	5.42	2.64	3.56	9.79	9.02	ns
12 mA	Std.	0.97	6.07	0.18	1.47	1.77	0.66	6.20	5.42	2.64	3.56	9.79	9.02	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-61 • 1.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.97	3.25	0.18	1.47	1.77	0.66	3.32	3.00	2.80	2.43	6.92	6.59	ns
4 mA	Std.	0.97	2.81	0.18	1.47	1.77	0.66	2.87	2.51	3.08	2.97	6.46	6.10	ns
6 mA	Std.	0.97	2.72	0.18	1.47	1.77	0.66	2.78	2.41	3.14	3.12	6.37	6.01	ns
8 mA	Std.	0.97	2.69	0.18	1.47	1.77	0.66	2.75	2.30	3.24	3.67	6.35	5.89	ns
12 mA	Std.	0.97	2.69	0.18	1.47	1.77	0.66	2.75	2.30	3.24	3.67	6.35	5.89	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

🌜 Microsemi.

IGLOOe DC and Switching Characteristics

1.2 V DC Core Voltage

Table 2-62 • 1.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V

	Speed													
Drive Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	tzhs	Units
2 mA	Std.	1.55	8.53	0.26	1.72	2.16	1.10	8.67	7.05	3.39	3.09	14.46	12.83	ns
4 mA	Std.	1.55	7.34	0.26	1.72	2.16	1.10	7.46	6.22	3.70	3.73	13.25	12.01	ns
6 mA	Std.	1.55	6.91	0.26	1.72	2.16	1.10	7.03	6.07	3.77	3.90	12.82	11.85	ns
8 mA	Std.	1.55	6.83	0.26	1.72	2.16	1.10	6.94	6.07	2.91	4.54	12.73	11.86	ns
12 mA	Std.	1.55	6.83	0.26	1.72	2.16	1.10	6.94	6.07	2.91	4.54	12.73	11.86	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Table 2-63 • 1.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
2 mA	Std.	1.55	3.72	0.26	1.72	2.16	1.10	3.78	3.45	3.38	3.19	9.56	9.24	ns
4 mA	Std.	1.55	3.23	0.26	1.72	2.16	1.10	3.27	2.92	3.69	3.83	9.06	8.71	ns
6 mA	Std.	1.55	3.13	0.26	1.72	2.16	1.10	3.18	2.82	3.76	4.01	8.96	8.61	ns
8 mA	Std.	1.55	3.10	0.26	1.72	2.16	1.10	3.15	2.70	3.86	4.68	8.93	8.49	ns
12 mA	Std.	1.55	3.10	0.26	1.72	2.16	1.10	3.15	2.70	3.86	4.68	8.93	8.49	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

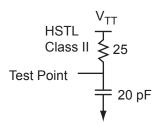
HSTL Class II

High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6). IGLOOe devices support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.

HSTL Class II		VIL	VIH		VOL	VOH	IOL	юн	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
15 mA ⁵	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI – 0.4	15	15	66	55	10	10

Table 2-93 • Minimum and Maximum DC Input and Output Levels

Notes:


1. IIL is the input leakage current per I/O pin over recommended operating conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Output drive strength is below JEDEC specification.

Figure 2-18 • AC Loading

Table 2-94 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.1	VREF + 0.1	0.75	0.75	0.75	20

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-95 •HSTL Class II – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 1.4 V VREF = 0.75 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.98	2.62	0.19	1.77	0.67	2.66	2.40			6.29	6.03	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

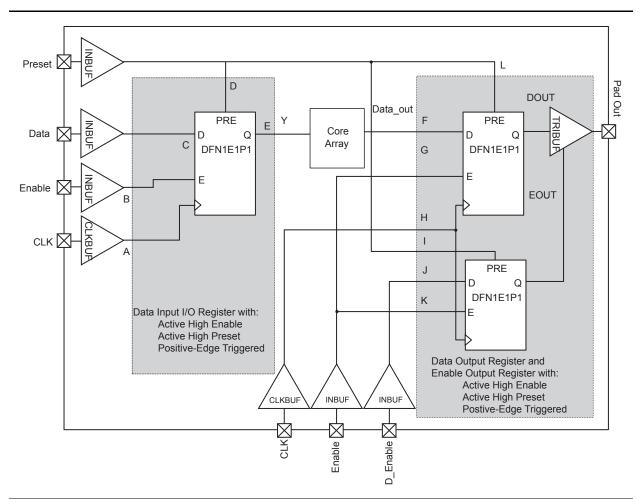

1.2 V DC Core Voltage

Table 2-96 • HSTL Class II – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 1.4 V VREF = 0.75 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	1.55	2.93	0.26	1.94	1.10	2.98	2.75			8.79	8.55	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

I/O Register Specifications

Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

Figure 2-26 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

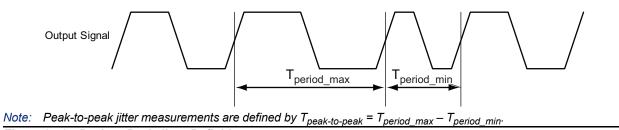


Figure 2-40 • Peak-to-Peak Jitter Definition

static Microsemi.

IGLOOe DC and Switching Characteristics

Timing Characteristics

Applies to 1.5 V DC Core Voltage

Table 2-145 • RAM4K9

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{AS}	Address Setup Time	0.83	ns
t _{AH}	Address Hold Time	0.16	ns
t _{ENS}	REN, WEN Setup Time	0.81	ns
t _{ENH}	REN, WEN Hold Time	0.16	ns
t _{BKS}	BLK Setup Time	1.65	ns
t _{вкн}	BLK Hold Time	0.16	ns
t _{DS}	Input Data (DIN) Setup Time	0.71	ns
t _{DH}	Input Data (DIN) Hold Time	0.36	ns
t _{CKQ1}	Clock HIGH to New Data Valid on DOUT (output retained, WMODE = 0)	3.53	ns
	Clock HIGH to New Data Valid on DOUT (flow-through, WMODE = 1)	3.06	ns
t _{CKQ2}	Clock HIGH to New Data Valid on DOUT (pipelined)	1.81	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address; applicable to closing edge	0.23	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address; applicable to opening edge	0.35	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address; applicable to opening edge	0.41	ns
t _{RSTBQ}	RESET Low to Data Out Low on DOUT (flow-through)	2.06	ns
	RESET Low to Data Out Low on DOUT (pipelined)	2.06	ns
t _{REMRSTB}	RESET Removal	0.61	ns
t _{RECRSTB}	RESET Recovery	3.21	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.68	ns
t _{CYC}	Clock Cycle Time	6.24	ns
F _{MAX}	Maximum Frequency	160	MHz

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Pin Descriptions and Packaging

Table 3-1 shows the Flash*Freeze pin location on the available packages. The Flash*Freeze pin location is independent of device (except for a PQ208 package), allowing migration to larger or smaller IGLOO devices while maintaining the same pin location on the board. Refer to the "Flash*Freeze Technology and Low Power Modes" chapter of the *IGLOOe FPGA Fabric User's Guide* for more information on I/O states during Flash*Freeze mode.

Table 3-1	• Flash*Freeze	Pin Locations	for IGI OOe	Devices

Package	Flash*Freeze Pin
FG256	Т3
FG484	W6
FG896	AH4

JTAG Pins

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND.

тск

Test Clock

Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pullup/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements. Refer to Table 3-2 for more information.

VJTAG	Tie-Off Resistance ^{1,2}
VJTAG at 3.3 V	200 Ω to 1 k Ω
VJTAG at 2.5 V	200 Ω to 1 k Ω
VJTAG at 1.8 V	500 Ω to 1 k Ω
VJTAG at 1.5 V	500 Ω to 1 kΩ

Table 3-2 • Recommended Tie-Off Values for the TCK and TRST Pins

Notes:

1. The TCK pin can be pulled-up or pulled-down.

2. The TRST pin is pulled-down.

3. Equivalent parallel resistance if more than one device is on the JTAG chain

Related Documents

User's Guides

IGLOOe FPGA Fabric User's Guide http://www.microsemi.com/soc/documents/IGLOOe UG.pdf

Packaging Documents

The following documents provide packaging information and device selection for low power flash devices.

Product Catalog

http://www.microsemi.com/soc/documents/ProdCat_PIB.pdf

Lists devices currently recommended for new designs and the packages available for each member of the family. Use this document or the datasheet tables to determine the best package for your design, and which package drawing to use.

Package Mechanical Drawings

http://www.microsemi.com/soc/documents/PckgMechDrwngs.pdf

This document contains the package mechanical drawings for all packages currently or previously supplied by Microsemi. Use the bookmarks to navigate to the package mechanical drawings.

Additional packaging materials: http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

Package Pin Assignments

FG896		FG896		FG896	
Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function
AK14	IO197PDB5V0	B20	IO53PDB1V1	C25	IO75PDB1V4
AK15	IO191NDB4V4	B21	IO53NDB1V1	C26	VCCIB1
AK16	IO191PDB4V4	B22	IO61NDB1V2	C27	IO64PPB1V2
AK17	IO189NDB4V4	B23	IO61PDB1V2	C28	VCC
AK18	IO189PDB4V4	B24	IO69NPB1V3	C29	GBA1/IO81PPB1V4
AK19	IO179PPB4V3	B25	VCC	C30	GND
AK20	IO175NDB4V2	B26	GBC0/IO79NPB1V4	D1	IO303PPB7V3
AK21	IO175PDB4V2	B27	VCC	D2	VCC
AK22	IO169NDB4V1	B28	IO64NPB1V2	D3	IO305NPB7V3
AK23	IO169PDB4V1	B29	GND	D4	GND
AK24	GND	B30	GND	D5	GAA1/IO00PPB0V0
AK25	IO167PPB4V1	C1	GND	D6	GAC1/IO02PDB0V0
AK26	GND	C2	IO309NPB7V4	D7	IO06NPB0V0
AK27	GDC2/IO156PPB4V0	C3	VCC	D8	GAB0/IO01NDB0V0
AK28	GND	C4	GAA0/IO00NPB0V0	D9	IO05NDB0V0
AK29	GND	C5	VCCIB0	D10	IO11NDB0V1
B1	GND	C6	IO03PDB0V0	D11	IO11PDB0V1
B2	GND	C7	IO03NDB0V0	D12	IO23NDB0V2
B3	GAA2/IO309PPB7V4	C8	GAB1/IO01PDB0V0	D13	IO23PDB0V2
B4	VCC	C9	IO05PDB0V0	D14	IO27PDB0V3
B5	IO14PPB0V1	C10	IO15NPB0V1	D15	IO40PDB0V4
B6	VCC	C11	IO25NDB0V3	D16	IO47NDB1V0
B7	IO07PPB0V0	C12	IO25PDB0V3	D17	IO47PDB1V0
B8	IO09PDB0V1	C13	IO31NPB0V3	D18	IO55NPB1V1
B9	IO15PPB0V1	C14	IO27NDB0V3	D19	IO65NDB1V3
B10	IO19NDB0V2	C15	IO39NDB0V4	D20	IO65PDB1V3
B11	IO19PDB0V2	C16	IO39PDB0V4	D21	IO71NDB1V3
B12	IO29NDB0V3	C17	IO55PPB1V1	D22	IO71PDB1V3
B13	IO29PDB0V3	C18	IO51PDB1V1	D23	IO73NDB1V4
B14	IO31PPB0V3	C19	IO59NDB1V2	D24	IO73PDB1V4
B15	IO37NDB0V4	C20	IO63NDB1V2	D25	IO74NDB1V4
B16	IO37PDB0V4	C21	IO63PDB1V2	D26	GBB0/IO80NPB1V4
B17	IO41PDB1V0	C22	IO67NDB1V3	D27	GND
B18	IO51NDB1V1	C23	IO67PDB1V3	D28	GBA0/IO81NPB1V4
B19	IO59PDB1V2	C24	IO75NDB1V4	D29	VCC

	FG896		FG896		
Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function		
V26	IO126NDB3V1	Y1	IO266PDB6V4		
V27	IO129NDB3V1	Y2	IO250PDB6V2		
V28	IO127NDB3V1	Y3	IO250NDB6V2		
V29	IO125NDB3V1	Y4	IO246PDB6V1		
V30	IO123PDB3V1	Y5	IO247NDB6V1		
W1	IO266NDB6V4	Y6	IO247PDB6V1		
W2	IO262NDB6V3	Y7	IO249NPB6V1		
W3	IO260NDB6V3	Y8	IO245PDB6V1		
W4	IO252NDB6V2	Y9	IO253NDB6V2		
W5	IO251NDB6V2	Y10	GEB0/IO235NPB6		
W6	IO251PDB6V2	Y11	VCC		
W7	IO255NDB6V2	Y12	VCC		
W8	IO249PPB6V1	Y13	VCC		
W9	IO253PDB6V2	Y14	VCC		
W10	VCCIB6	Y15	VCC		
W11	VCC	Y16	VCC		
W12	GND	Y17	VCC		
W13	GND	Y18	VCC		
W14	GND	Y19	VCC		
W15	GND	Y20	VCC		
W16	GND	Y21	IO142PPB3V3		
W17	GND	Y22	IO134NDB3V2		
W18	GND	Y23	IO138NDB3V3		
W19	GND	Y24	IO140NDB3V3		
W20	VCC	Y25	IO140PDB3V3		
W21	VCCIB3	Y26	IO136PPB3V2		
W22	IO134PDB3V2	Y27	IO141NDB3V3		
W23	IO138PDB3V3	Y28	IO135NDB3V2		
W24	IO132NDB3V2	Y29	IO131NDB3V2		
W25	IO136NPB3V2	Y30	IO133PDB3V2		
W26	IO130NPB3V2				
W27	IO141PDB3V3	1			
W28	IO135PDB3V2	1			
W29	IO131PDB3V2	1			
		4			

W30

IO123NDB3V1

Revision	Changes	Page		
Advance v0.4 (December 2007)	The Table 1 • IGLOOe Product Family table was updated to change the maximum number of user I/Os for AGLE3000.			
	The "IGLOOe FPGAs Package Sizes Dimensions" table table is new. Package dimensions were removed from the "I/Os Per Package ¹ " table. The number of I/Os was updated for FG896.			
	A note regarding marking information was added to the "IGLOOe Ordering Information" table.			
	Table 2-4 • IGLOOe CCC/PLL Specification and Table 2-5 • IGLOOe CCC/PLL Specification were updated.			
	The "During Flash*Freeze Mode" section was updated to include information about the output of the I/O to the FPGA core.			
	Figure 2-38 • Flash*Freeze Mode Type 1 – Timing Diagram was updated to modify the LSICC signal.			
	Table 2-32 • Flash*Freeze Pin Location in IGLOOe Family Packages (device- independent) was updated for the FG896 package.			
	Figure 2-40 • Flash*Freeze Mode Type 2 – Timing Diagram was updated to modify the LSICC Signal.	2-58		
	Information regarding calculation of the quiescent supply current was added to the "Quiescent Supply Current" section.			
	Table 3-8 • Quiescent Supply Current (IDD), IGLOOe Flash*Freeze Mode† was updated.			
	Table 3-9 • Quiescent Supply Current (IDD), IGLOOe Sleep Mode (VCC = 0 V)† was updated.	3-6		
	Table 3-11 • Quiescent Supply Current, No IGLOOe Flash*Freeze Mode1 was updated.	3-6		
	Table 3-99 • Minimum and Maximum DC Input and Output Levels was updated.	3-51		
	Table 3-136 • JTAG 1532 and Table 3-135 • JTAG 1532 were updated.	3-95		
	The "484-Pin FBGA" table for AGLE3000 is new.			
	The "896-Pin FBGA" package and table for AGLE3000 is new.			
Advance v0.3 (September 2007)	Cortex-M1 device information was added to the Table 1 • IGLOOe Product Family table, the "I/Os Per Package 1" table, "IGLOOe Ordering Information", and "Temperature Grade Offerings".	I, II, III, IV		
Advance v0.2	The words "ambient temperature" were added to the temperature range in the "IGLOOe Ordering Information", "Temperature Grade Offerings", and "Speed Grade and Temperature Grade Matrix" sections.			
	The T _J parameter in Table 3-2 \cdot Recommended Operating Conditions was changed to T _A , ambient temperature, and table notes 6–8 were added.	3-2		