



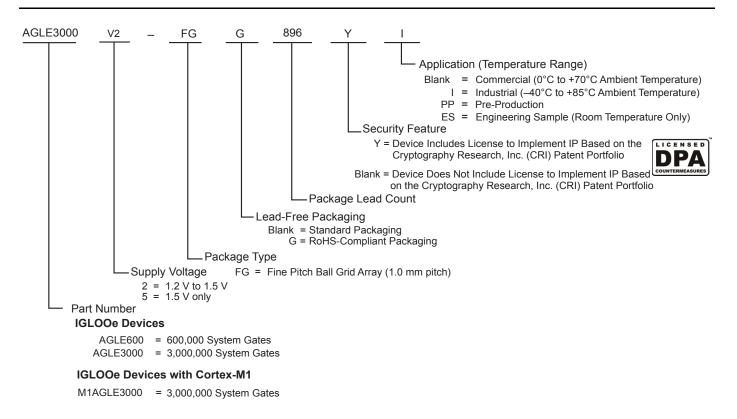
Welcome to E-XFL.COM

#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.


#### Details

| Details                        |                                                                             |
|--------------------------------|-----------------------------------------------------------------------------|
| Product Status                 | Active                                                                      |
| Number of LABs/CLBs            | -                                                                           |
| Number of Logic Elements/Cells | 75264                                                                       |
| Total RAM Bits                 | 516096                                                                      |
| Number of I/O                  | 341                                                                         |
| Number of Gates                | 300000                                                                      |
| Voltage - Supply               | 1.425V ~ 1.575V                                                             |
| Mounting Type                  | Surface Mount                                                               |
| Operating Temperature          | 0°C ~ 70°C (TA)                                                             |
| Package / Case                 | 484-BGA                                                                     |
| Supplier Device Package        | 484-FPBGA (23x23)                                                           |
| Purchase URL                   | https://www.e-xfl.com/product-detail/microchip-technology/agle3000v5-fgg484 |
|                                |                                                                             |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## **IGLOOe Ordering Information**



Note: Marking Information: IGLOO V2 devices do not have V2 marking, but IGLOO V5 devices are marked accordingly.



# 1 – IGLOOe Device Family Overview

## **General Description**

The IGLOOe family of flash FPGAs, based on a 130-nm flash process, offers the lowest power FPGA, a single-chip solution, small footprint packages, reprogrammability, and an abundance of advanced features.

The Flash\*Freeze technology used in IGLOOe devices enables entering and exiting an ultra-low power mode while retaining SRAM and register data. Flash\*Freeze technology simplifies power management through I/O and clock management with rapid recovery to operation mode.

The Low Power Active capability (static idle) allows for ultra-low power consumption while the IGLOOe device is completely functional in the system. This allows the IGLOOe device to control system power management based on external inputs (e.g., scanning for keyboard stimulus) while consuming minimal power.

Nonvolatile flash technology gives IGLOOe devices the advantage of being a secure, low power, singlechip solution that is Instant On. IGLOOe is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost.

These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

IGLOOe devices offer 1 kbit of on-chip, programmable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on 6 integrated phase-locked loops (PLLs). IGLOOe devices have up to 3 million system gates, supported with up to 504 kbits of true dual-port SRAM and up to 620 user I/Os.

M1 IGLOOe devices support the high-performance, 32-bit Cortex-M1 processor developed by ARM for implementation in FPGAs. Cortex-M1 is a soft processor that is fully implemented in the FPGA fabric. It has a three-stage pipeline that offers a good balance between low power consumption and speed when implemented in an M1 IGLOOe device. The processor runs the ARMv6-M instruction set, has a configurable nested interrupt controller, and can be implemented with or without the debug block. Cortex-M1 is available for free from Microsemi for use in M1 IGLOOe FPGAs.

The ARM-enabled devices have Microsemi ordering numbers that begin with M1AGLE and do not support AES decryption.

### Flash\*Freeze Technology

The IGLOOe device offers unique Flash\*Freeze technology, allowing the device to enter and exit ultralow power Flash\*Freeze mode. IGLOOe devices do not need additional components to turn off I/Os or clocks while retaining the design information, SRAM content, and registers. Flash\*Freeze technology is combined with in-system programmability, which enables users to quickly and easily upgrade and update their designs in the final stages of manufacturing or in the field. The ability of IGLOOe V2 devices to support a wide range of core voltage (1.2 V to 1.5 V) allows further reduction in power consumption, thus achieving the lowest total system power.

When the IGLOOe device enters Flash\*Freeze mode, the device automatically shuts off the clocks and inputs to the FPGA core; when the device exits Flash\*Freeze mode, all activity resumes and data is retained.

The availability of low power modes, combined with reprogrammability, a single-chip and single-voltage solution, and availability of small-footprint, high pin-count packages, make IGLOOe devices the best fit for portable electronics.



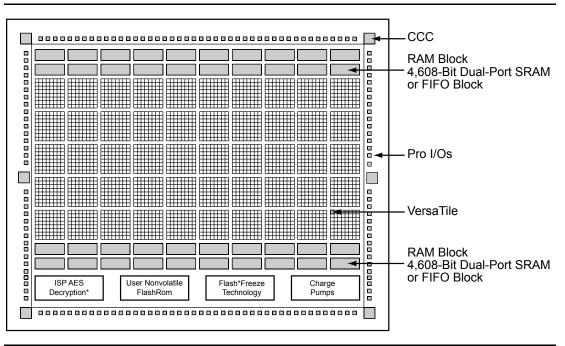



Figure 1-1 • IGLOOe Device Architecture Overview

### Flash\*Freeze Technology

The IGLOOe device has an ultra-low power static mode, called Flash\*Freeze mode, which retains all SRAM and register information and can still quickly return to normal operation. Flash\*Freeze technology enables the user to quickly (within 1  $\mu$ s) enter and exit Flash\*Freeze mode by activating the Flash\*Freeze pin while all power supplies are kept at their original values. In addition, I/Os and global I/Os can still be driven and can be toggling without impact on power consumption, clocks can still be driven or can be toggling without impact on power consumption, and the device retains all core registers, SRAM information, and states. I/O states are tristated during Flash\*Freeze mode or can be set to a certain state using weak pull-up or pull-down I/O attribute configuration. No power is consumed by the I/O banks, clocks, JTAG pins, or PLL in this mode.

Flash\*Freeze technology allows the user to switch to active mode on demand, thus simplifying the power management of the device.

The Flash\*Freeze pin (active low) can be routed internally to the core to allow the user's logic to decide when it is safe to transition to this mode. It is also possible to use the Flash\*Freeze pin as a regular I/O if Flash\*Freeze mode usage is not planned, which is advantageous because of the inherent low power static and dynamic capabilities of the IGLOOe device. Refer to Figure 1-2 for an illustration of entering/exiting Flash\*Freeze mode.

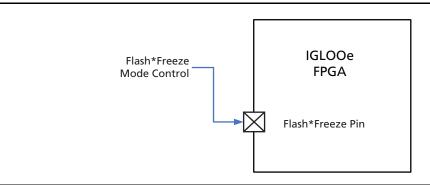



Figure 1-2 • IGLOOe Flash\*Freeze Mode



IGLOOe Device Family Overview

### SRAM and FIFO

IGLOOe devices have embedded SRAM blocks along their north and south sides. Each variable-aspectratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro.

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations.

### PLL and CCC

IGLOOe devices provide designers with very flexible clock conditioning capabilities. Each member of the IGLOOe family contains six CCCs, each with an integrated PLL.

The six CCC blocks are located at the four corners and the centers of the east and west sides. One CCC (center west side) has a PLL.

The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs located near the CCC that have dedicated connections to the CCC block.

The CCC block has these key features:

- Wide input frequency range ( $f_{IN CCC}$ ) = 1.5 MHz up to 250 MHz
- Output frequency range (f<sub>OUT CCC</sub>) = 0.75 MHz up to 250 MHz
- 2 programmable delay types for clock skew minimization
- Clock frequency synthesis

Additional CCC specifications:

- Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider configuration.
- Output duty cycle = 50% ± 1.5% or better
- Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global network used
- Maximum acquisition time is 300 µs
- Exceptional tolerance to input period jitter—allowable input jitter is up to 1.5 ns
- Four precise phases; maximum misalignment between adjacent phases of 40 ps × 250 MHz / fout\_ccc

#### **Global Clocking**

IGLOOe devices have extensive support for multiple clocking domains. In addition to the CCC and PLL support described above, there is a comprehensive global clock distribution network.

Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high-fanout nets.

## Kana Microsemi

IGLOOe DC and Switching Characteristics

### Table 2-12 • Quiescent Supply Current (IDD) Characteristics, No Flash\*Freeze Mode<sup>1</sup>

|                                                 | Core Voltage  | AGLE600 | AGLE3000   | Units |
|-------------------------------------------------|---------------|---------|------------|-------|
| ICCA Current <sup>2</sup>                       |               |         | <b>I</b> I |       |
| Typical (25°C)                                  | 1.2 V         | 28      | 89         | μA    |
|                                                 | 1.5 V         | 82      | 320        | μA    |
| ICCI or IJTAG Current <sup>3</sup>              |               |         |            |       |
| VCCI/VJTAG = 1.2 V (per bank)<br>Typical (25°C) | 1.2 V         | 1.7     | 1.7        | μΑ    |
| VCCI/VJTAG = 1.5 V (per bank)<br>Typical (25°C) | 1.2 V / 1.5 V | 1.8     | 1.8        | μΑ    |
| VCCI/VJTAG = 1.8 V (per bank)<br>Typical (25°C) | 1.2 V / 1.5 V | 1.9     | 1.9        | μΑ    |
| VCCI/VJTAG = 2.5 V (per bank)<br>Typical (25°C) | 1.2 V / 1.5 V | 2.2     | 2.2        | μΑ    |
| VCCI/VJTAG= 3.3 V (per bank)<br>Typical (25°C)  | 1.2 V / 1.5 V | 2.5     | 2.5        | μΑ    |

Notes:

IDD = N<sub>BANKS</sub> × ICCI + ICCA. JTAG counts as one bank when powered.
 Includes VCC and VPUMP and VCCPLL currents.

3. Values do not include I/O static contribution (PDC6 and PDC7).



IGLOOe DC and Switching Characteristics

#### Combinatorial Cells Contribution—P<sub>C-CELL</sub>

 $P_{C-CELL} = N_{C-CELL} * \alpha_1 / 2 * PAC7 * F_{CLK}$ 

N<sub>C-CELL</sub> is the number of VersaTiles used as combinatorial modules in the design.

 $\alpha_{1}$  is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-19 on page 2-15.

 $\mathsf{F}_{\mathsf{CLK}}$  is the global clock signal frequency.

### Routing Net Contribution—P<sub>NET</sub>

 $\mathsf{P}_{\mathsf{NET}} = (\mathsf{N}_{\mathsf{S}\text{-}\mathsf{CELL}} + \mathsf{N}_{\mathsf{C}\text{-}\mathsf{CELL}}) * \alpha_1 / 2 * \mathsf{PAC8} * \mathsf{F}_{\mathsf{CLK}}$ 

N<sub>S-CELL</sub> is the number of VersaTiles used as sequential modules in the design.

 $N_{C\text{-}CELL}$  is the number of VersaTiles used as combinatorial modules in the design.

 $\alpha_1$  is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-19 on page 2-15.

F<sub>CLK</sub> is the global clock signal frequency.

#### I/O Input Buffer Contribution—PINPUTS

 $P_{INPUTS}$  =  $N_{INPUTS}$  \*  $\alpha_2$  / 2 \* PAC9 \*  $F_{CLK}$ 

N<sub>INPUTS</sub> is the number of I/O input buffers used in the design.

 $\alpha_2$  is the I/O buffer toggle rate—guidelines are provided in Table 2-19 on page 2-15.

F<sub>CLK</sub> is the global clock signal frequency.

#### I/O Output Buffer Contribution—POUTPUTS

 $P_{OUTPUTS} = N_{OUTPUTS} * \alpha_2 / 2 * \beta_1 * PAC10 * F_{CLK}$ 

 $N_{\mbox{OUTPUTS}}$  is the number of I/O output buffers used in the design.

 $\alpha_2$  is the I/O buffer toggle rate—guidelines are provided in Table 2-19 on page 2-15.

 $\beta_1$  is the I/O buffer enable rate—guidelines are provided in Table 2-20 on page 2-15.

F<sub>CLK</sub> is the global clock signal frequency.

#### RAM Contribution—P<sub>MEMORY</sub>

 $\mathsf{P}_{\mathsf{MEMORY}} = \mathsf{PAC11} * \mathsf{N}_{\mathsf{BLOCKS}} * \mathsf{F}_{\mathsf{READ-CLOCK}} * \beta_2 + \mathsf{PAC12} * \mathsf{N}_{\mathsf{BLOCK}} * \mathsf{F}_{\mathsf{WRITE-CLOCK}} * \beta_3$ 

 $N_{\mbox{\scriptsize BLOCKS}}$  is the number of RAM blocks used in the design.

F<sub>READ-CLOCK</sub> is the memory read clock frequency.

 $\beta_2$  is the RAM enable rate for read operations—guidelines are provided in Table 2-20 on page 2-15.

F<sub>WRITE-CLOCK</sub> is the memory write clock frequency.

 $\beta_3$  is the RAM enable rate for write operations—guidelines are provided in Table 2-20 on page 2-15.

### PLL Contribution—P<sub>PLL</sub>

P<sub>PLL</sub> = PDC4 + PAC13 \* F<sub>CLKOUT</sub>

F<sub>CLKOUT</sub> is the output clock frequency.<sup>1</sup>

If a PLL is used to generate more than one output clock, include each output clock in the formula by adding its corresponding contribution (P<sub>AC13</sub>\* F<sub>CLKOUT</sub> product) to the total PLL contribution.

### Guidelines

#### Toggle Rate Definition

A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are some examples:

- The average toggle rate of a shift register is 100% as all flip-flop outputs toggle at half of the clock frequency.
- The average toggle rate of an 8-bit counter is 25%:
  - Bit 0 (LSB) = 100%
  - Bit 1 = 50%
  - Bit 2 = 25%
  - ...
  - Bit 7 (MSB) = 0.78125%
  - Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8

#### Enable Rate Definition

Output enable rate is the average percentage of time during which tristate outputs are enabled. When nontristate output buffers are used, the enable rate should be 100%.

#### Table 2-19 • Toggle Rate Guidelines Recommended for Power Calculation

| Component      | Definition                       | Guideline |
|----------------|----------------------------------|-----------|
| $\alpha_1$     | Toggle rate of VersaTile outputs | 10%       |
| α <sub>2</sub> | I/O buffer toggle rate           | 10%       |

#### Table 2-20 • Enable Rate Guidelines Recommended for Power Calculation

| Component      | Definition                           | Guideline |
|----------------|--------------------------------------|-----------|
| β <sub>1</sub> | I/O output buffer enable rate        | 100%      |
| β <sub>2</sub> | RAM enable rate for read operations  | 12.5%     |
| $\beta_3$      | RAM enable rate for write operations | 12.5%     |

## 🌜 Microsemi.

IGLOOe DC and Switching Characteristics

### **Detailed I/O DC Characteristics**

#### Table 2-27 • Input Capacitance

| Symbol          | Definition                         | Conditions           | Min. | Max. | Units |
|-----------------|------------------------------------|----------------------|------|------|-------|
| C <sub>IN</sub> | Input capacitance                  | VIN = 0, f = 1.0 MHz |      | 8    | pF    |
| CINCLK          | Input capacitance on the clock pin | VIN = 0, f = 1.0 MHz |      | 8    | pF    |

#### Table 2-28 • I/O Output Buffer Maximum Resistances<sup>1</sup>

| Standard                             | Drive Strength | R <sub>PULL-DOWN</sub> (Ω) <sup>2</sup> | R <sub>PULL-UP</sub> (Ω) <sup>3</sup> |
|--------------------------------------|----------------|-----------------------------------------|---------------------------------------|
| 3.3 V LVTTL / 3.3 V LVCMOS           | 4 mA           | 100                                     | 300                                   |
|                                      | 8 mA           | 50                                      | 150                                   |
|                                      | 12 mA          | 25                                      | 75                                    |
|                                      | 16 mA          | 17                                      | 50                                    |
|                                      | 24 mA          | 11                                      | 33                                    |
| 3.3 V LVCMOS Wide Range              | 100 µA         | Same as regular<br>3.3 V LVCMOS         | Same as regular<br>3.3 V LVCMOS       |
| 2.5 V LVCMOS                         | 4 mA           | 100                                     | 200                                   |
|                                      | 8 mA           | 50                                      | 100                                   |
|                                      | 12 mA          | 25                                      | 50                                    |
|                                      | 16 mA          | 20                                      | 40                                    |
|                                      | 24 mA          | 11                                      | 22                                    |
| 1.8 V LVCMOS                         | 2 mA           | 200                                     | 225                                   |
|                                      | 4 mA           | 100                                     | 112                                   |
|                                      | 6 mA           | 50                                      | 56                                    |
|                                      | 8 mA           | 50                                      | 56                                    |
|                                      | 12 mA          | 20                                      | 22                                    |
|                                      | 16 mA          | 20                                      | 22                                    |
| 1.5 V LVCMOS                         | 2 mA           | 200                                     | 224                                   |
|                                      | 4 mA           | 100                                     | 112                                   |
|                                      | 6 mA           | 67                                      | 75                                    |
|                                      | 8 mA           | 33                                      | 37                                    |
|                                      | 12 mA          | 33                                      | 37                                    |
| 1.2 V LVCMOS <sup>4</sup>            | 2 mA           | 158                                     | 164                                   |
| 1.2 V LVCMOS Wide Range <sup>4</sup> | 100 µA         | Same as regular<br>1.2 V LVCMOS         | Same as regular<br>1.2 V LVCMOS       |

Notes:

2. R<sub>(PULL-DOWN-MAX)</sub> = (VOLspec) / IOLspec

<sup>1.</sup> These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website at http://www.microsemi.com/soc/techdocs/models/ibis.html.

<sup>3.</sup> R<sub>(PULL-UP-MAX)</sub> = (VCCImax – VOHspec) / IOHspec

<sup>4.</sup> Applicable to IGLOOe V2 devices operating in the 1.2 V core range ONLY.

<sup>5.</sup> Output drive strength is below JEDEC specification.

## **Microsemi**.

IGLOOe DC and Switching Characteristics

#### Table 2-30 • I/O Short Currents IOSH/IOSL

|                            | Drive Strength                 | IOSH (mA)*                      | IOSL (mA)*                      |
|----------------------------|--------------------------------|---------------------------------|---------------------------------|
| 3.3 V LVTTL / 3.3 V LVCMOS | 4 mA                           | 25                              | 27                              |
|                            | 8 mA                           | 51                              | 54                              |
|                            | 12 mA                          | 103                             | 109                             |
|                            | 16 mA                          | 132                             | 127                             |
|                            | 24 mA                          | 268                             | 181                             |
| 3.3 V LVCMOS Wide Range    | 100 µA                         | Same as regular<br>3.3 V LVCMOS | Same as regular<br>3.3 V LVCMOS |
| 2.5 V LVCMOS               | 4 mA                           | 16                              | 18                              |
|                            | 8 mA                           | 32                              | 37                              |
|                            | 12 mA                          | 65                              | 74                              |
|                            | 16 mA                          | 83                              | 87                              |
|                            | 24 mA                          | 169                             | 124                             |
| 1.8 V LVCMOS               | 2 mA                           | 9                               | 11                              |
|                            | 4 mA                           | 17                              | 22                              |
|                            | 6 mA                           | 35                              | 44                              |
|                            | 8 mA                           | 45                              | 51                              |
|                            | 12 mA                          | 91                              | 74                              |
|                            | 16 mA                          | 91                              | 74                              |
| 1.5 V LVCMOS               | 2 mA                           | 13                              | 16                              |
|                            | 4 mA                           | 25                              | 33                              |
|                            | 6 mA                           | 32                              | 39                              |
|                            | 8 mA                           | 66                              | 55                              |
|                            | 12 mA                          | 66                              | 55                              |
| 1.2 V LVCMOS               | 2 mA                           | 20                              | 26                              |
| 1.2 V LVCMOS Wide Range    | 100 µA                         | 20                              | 26                              |
| 3.3 V PCI/PCIX             | Per PCI/PCI-X<br>Specification | Per PC                          | CI Curves                       |
| 3.3 V GTL                  | 25 mA                          | 268                             | 181                             |
| 2.5 V GTL                  | 25 mA                          | 169                             | 124                             |
| 3.3 V GTL+                 | 35 mA                          | 268                             | 181                             |
| 2.5 V GTL+                 | 33 mA                          | 169                             | 124                             |
| HSTL (I)                   | 8 mA                           | 32                              | 39                              |
| HSTL (II)                  | 15 mA                          | 66                              | 55                              |
| SSTL2 (I)                  | 15 mA                          | 83                              | 87                              |
| SSTL2 (II)                 | 18 mA                          | 169                             | 124                             |
| SSTL3 (I)                  | 14 mA                          | 51                              | 54                              |
| SSTL3 (II)                 | 21 mA                          | 103                             | 109                             |

*Note:*  $T_J = 100^{\circ}C$ 

## 🌜 Microsemi.

IGLOOe DC and Switching Characteristics

#### Timing Characteristics

1.5 V DC Core Voltage

Table 2-54 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V

| Drive Strength | Speed<br>Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>PYS</sub> | t <sub>EOUT</sub> | t <sub>zL</sub> | t <sub>zH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | t <sub>zLS</sub> | t <sub>zHS</sub> | Units |
|----------------|----------------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-------|
| 2 mA           | Std.           | 0.97              | 7.33            | 0.18             | 1.27            | 1.59             | 0.66              | 7.47            | 6.18            | 2.34            | 1.18            | 11.07            | 9.77             | ns    |
| 4 mA           | Std.           | 0.97              | 6.07            | 0.18             | 1.27            | 1.59             | 0.66              | 6.20            | 5.25            | 2.69            | 2.42            | 9.79             | 8.84             | ns    |
| 6 mA           | Std.           | 0.97              | 5.18            | 0.18             | 1.27            | 1.59             | 0.66              | 5.29            | 4.61            | 2.93            | 2.88            | 8.88             | 8.21             | ns    |
| 8 mA           | Std.           | 0.97              | 4.88            | 0.18             | 1.27            | 1.59             | 0.66              | 4.98            | 4.48            | 2.99            | 3.01            | 8.58             | 8.08             | ns    |
| 12 mA          | Std.           | 0.97              | 4.80            | 0.18             | 1.27            | 1.59             | 0.66              | 4.89            | 4.49            | 3.07            | 3.47            | 8.49             | 8.09             | ns    |
| 16 mA          | Std.           | 0.97              | 4.80            | 0.18             | 1.27            | 1.59             | 0.66              | 4.89            | 4.49            | 3.07            | 3.47            | 8.49             | 8.09             | ns    |

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

### Table 2-55 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T<sub>J</sub> = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V

|                | Speed |                   |                 |                  |                 |                  |                   |                 |                 |                 |                 |                  |                  |       |
|----------------|-------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-------|
| Drive Strength | Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>PYS</sub> | t <sub>EOUT</sub> | t <sub>ZL</sub> | t <sub>ZH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | t <sub>ZLS</sub> | t <sub>zHS</sub> | Units |
| 2 mA           | Std.  | 0.97              | 3.43            | 0.18             | 1.27            | 1.59             | 0.66              | 3.51            | 3.39            | 2.33            | 1.19            | 7.10             | 6.98             | ns    |
| 4 mA           | Std.  | 0.97              | 2.83            | 0.18             | 1.27            | 1.59             | 0.66              | 2.89            | 2.59            | 2.69            | 2.49            | 6.48             | 6.18             | ns    |
| 6 mA           | Std.  | 0.97              | 2.45            | 0.18             | 1.27            | 1.59             | 0.66              | 2.51            | 2.19            | 2.93            | 2.95            | 6.10             | 5.79             | ns    |
| 8 mA           | Std.  | 0.97              | 2.38            | 0.18             | 1.27            | 1.59             | 0.66              | 2.43            | 2.12            | 2.98            | 3.08            | 6.03             | 5.71             | ns    |
| 12 mA          | Std.  | 0.97              | 2.37            | 0.18             | 1.27            | 1.59             | 0.66              | 2.42            | 2.03            | 3.07            | 3.57            | 6.02             | 5.62             | ns    |
| 16 mA          | Std.  | 0.97              | 2.37            | 0.18             | 1.27            | 1.59             | 0.66              | 2.42            | 2.03            | 3.07            | 3.57            | 6.02             | 5.62             | ns    |

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

## 🌜 Microsemi.

IGLOOe DC and Switching Characteristics

#### Timing Characteristics

#### 1.5 V DC Core Voltage

#### Table 2-71 • 3.3 V PCI/PCI-X – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T<sub>J</sub> = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

| Speed Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>PYS</sub> | t <sub>EOUT</sub> | t <sub>ZL</sub> | t <sub>ZH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | t <sub>ZLS</sub> | t <sub>zHS</sub> | Units |
|-------------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-------|
| Std.        | 0.97              | 2.38            | 0.18             | 0.96            | 1.42             | 0.66              | 2.43            | 1.80            | 2.72            | 3.08            | 6.03             | 5.39             | ns    |

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

#### 1.2 V DC Core Voltage

#### Table 2-72 • 3.3 V PCI/PCI-X – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: T<sub>J</sub> = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V

| Speed Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>PYS</sub> | t <sub>EOUT</sub> | t <sub>ZL</sub> | t <sub>zH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | t <sub>ZLS</sub> | t <sub>zHS</sub> | Units |
|-------------|-------------------|-----------------|------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-------|
| Std.        | 1.55              | 2.76            | 0.26             | 1.19            | 1.63             | 1.10              | 2.79            | 2.16            | 3.29            | 3.97            | 8.58             | 7.94             | ns    |

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

**Microsemi**.

IGLOOe DC and Switching Characteristics

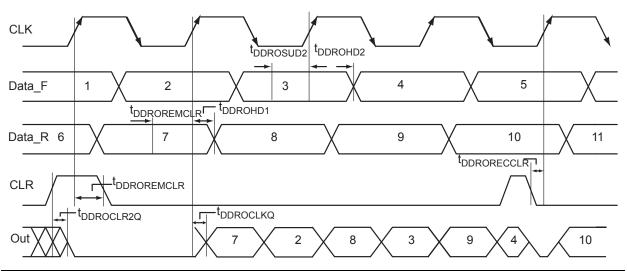



Figure 2-34 • Output DDR Timing Diagram

## static Microsemi.

IGLOOe DC and Switching Characteristics

### **Timing Characteristics**

### Applies to 1.5 V DC Core Voltage

#### Table 2-145 • RAM4K9

### Commercial-Case Conditions: T<sub>J</sub> = 70°C, Worst-Case VCC = 1.425 V

| Parameter             | Description                                                                                                         | Std. | Units |
|-----------------------|---------------------------------------------------------------------------------------------------------------------|------|-------|
| t <sub>AS</sub>       | Address Setup Time                                                                                                  | 0.83 | ns    |
| t <sub>AH</sub>       | Address Hold Time                                                                                                   | 0.16 | ns    |
| t <sub>ENS</sub>      | REN, WEN Setup Time                                                                                                 | 0.81 | ns    |
| t <sub>ENH</sub>      | REN, WEN Hold Time                                                                                                  | 0.16 | ns    |
| t <sub>BKS</sub>      | BLK Setup Time                                                                                                      | 1.65 | ns    |
| t <sub>вкн</sub>      | BLK Hold Time                                                                                                       | 0.16 | ns    |
| t <sub>DS</sub>       | Input Data (DIN) Setup Time                                                                                         | 0.71 | ns    |
| t <sub>DH</sub>       | Input Data (DIN) Hold Time                                                                                          | 0.36 | ns    |
| t <sub>CKQ1</sub>     | Clock HIGH to New Data Valid on DOUT (output retained, WMODE = 0)                                                   | 3.53 | ns    |
|                       | Clock HIGH to New Data Valid on DOUT (flow-through, WMODE = 1)                                                      | 3.06 | ns    |
| t <sub>CKQ2</sub>     | Clock HIGH to New Data Valid on DOUT (pipelined)                                                                    | 1.81 | ns    |
| t <sub>C2CWWL</sub> 1 | Address collision clk-to-clk delay for reliable write after write on same address; applicable to closing edge       | 0.23 | ns    |
| t <sub>C2CRWH</sub> 1 | Address collision clk-to-clk delay for reliable read access after write on same address; applicable to opening edge | 0.35 | ns    |
| t <sub>C2CWRH</sub> 1 | Address collision clk-to-clk delay for reliable write access after read on same address; applicable to opening edge | 0.41 | ns    |
| t <sub>RSTBQ</sub>    | RESET Low to Data Out Low on DOUT (flow-through)                                                                    | 2.06 | ns    |
|                       | RESET Low to Data Out Low on DOUT (pipelined)                                                                       | 2.06 | ns    |
| t <sub>REMRSTB</sub>  | RESET Removal                                                                                                       | 0.61 | ns    |
| t <sub>RECRSTB</sub>  | RESET Recovery                                                                                                      | 3.21 | ns    |
| t <sub>MPWRSTB</sub>  | RESET Minimum Pulse Width                                                                                           | 0.68 | ns    |
| t <sub>CYC</sub>      | Clock Cycle Time                                                                                                    | 6.24 | ns    |
| F <sub>MAX</sub>      | Maximum Frequency                                                                                                   | 160  | MHz   |

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.



Pin Descriptions and Packaging

#### VCOMPLA/B/C/D/E/F PLL Ground

Ground to analog PLL power supplies. When the PLLs are not used, the place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground.

There are six VCOMPL pins (PLL ground) on IGLOOe devices.

#### VJTAG JTAG Supply Voltage

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

#### VPUMP Programming Supply Voltage

IGLOOe devices support single-voltage ISP of the configuration flash and FlashROM. For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in the datasheet.

When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01  $\mu$ F and 0.33  $\mu$ F capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

## **User-Defined Supply Pins**

#### VREF

#### I/O Voltage Reference

Reference voltage for I/O minibanks. VREF pins are configured by the user from regular I/Os, and any I/O in a bank, except JTAG I/Os, can be designated the voltage reference I/O. Only certain I/O standards require a voltage reference—HSTL (I) and (II), SSTL2 (I) and (II), SSTL3 (I) and (II), and GTL/GTL+. One VREF pin can support the number of I/Os available in its minibank.



Pin Descriptions and Packaging

Table 3-1 shows the Flash\*Freeze pin location on the available packages. The Flash\*Freeze pin location is independent of device (except for a PQ208 package), allowing migration to larger or smaller IGLOO devices while maintaining the same pin location on the board. Refer to the "Flash\*Freeze Technology and Low Power Modes" chapter of the *IGLOOe FPGA Fabric User's Guide* for more information on I/O states during Flash\*Freeze mode.

| Table 3-1 | • Flash*Freeze | Pin Locations | for IGLOOe Devices |
|-----------|----------------|---------------|--------------------|
|           |                |               |                    |

| Package | Flash*Freeze Pin |
|---------|------------------|
| FG256   | Т3               |
| FG484   | W6               |
| FG896   | AH4              |

## **JTAG Pins**

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND.

#### тск

#### **Test Clock**

Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pullup/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.

Note that to operate at all VJTAG voltages, 500  $\Omega$  to 1 k $\Omega$  will satisfy the requirements. Refer to Table 3-2 for more information.

| VJTAG          | Tie-Off Resistance <sup>1,2</sup> |
|----------------|-----------------------------------|
| VJTAG at 3.3 V | 200 $\Omega$ to 1 k $\Omega$      |
| VJTAG at 2.5 V | 200 $\Omega$ to 1 k $\Omega$      |
| VJTAG at 1.8 V | 500 $\Omega$ to 1 k $\Omega$      |
| VJTAG at 1.5 V | 500 Ω to 1 kΩ                     |

Table 3-2 • Recommended Tie-Off Values for the TCK and TRST Pins

Notes:

1. The TCK pin can be pulled-up or pulled-down.

2. The TRST pin is pulled-down.

3. Equivalent parallel resistance if more than one device is on the JTAG chain

#### Table 3-3 • TRST and TCK Pull-Down Recommendations

| VJTAG          | Tie-Off Resistance* |
|----------------|---------------------|
| VJTAG at 3.3 V | 200 Ω to 1 kΩ       |
| VJTAG at 2.5 V | 200 Ω to 1 kΩ       |
| VJTAG at 1.8 V | 500 Ω to 1 kΩ       |
| VJTAG at 1.5 V | 500 Ω to 1 kΩ       |

*Note:* Equivalent parallel resistance if more than one device is on the JTAG chain

#### TDI

#### Test Data Input

Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin.

#### TDO Test Data Output

Serial output for JTAG boundary scan, ISP, and UJTAG usage.

#### TMS Test Mode Select

The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin.

#### TRST Boundary Scan Reset Pin

The TRST pin functions as an active-low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-down resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor values must be chosen from Table 3-2 and must satisfy the parallel resistance value requirement. The values in Table 3-2 correspond to the resistor recommended when a single device is used, and the equivalent parallel resistor when multiple devices are connected via a JTAG chain.

In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin.

Note that to operate at all VJTAG voltages, 500  $\Omega$  to 1 k $\Omega$  will satisfy the requirements.

## **Special Function Pins**

#### NC

#### No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

#### DC

#### Do Not Connect

This pin should not be connected to any signals on the PCB. These pins should be left unconnected.

## Packaging

Semiconductor technology is constantly shrinking in size while growing in capability and functional integration. To enable next-generation silicon technologies, semiconductor packages have also evolved to provide improved performance and flexibility.

Microsemi consistently delivers packages that provide the necessary mechanical and environmental protection to ensure consistent reliability and performance. Microsemi IC packaging technology efficiently supports high-density FPGAs with large-pin-count Ball Grid Arrays (BGAs), but is also flexible enough to accommodate stringent form factor requirements for Chip Scale Packaging (CSP). In addition, Microsemi offers a variety of packages designed to meet your most demanding application and economic requirements for today's embedded and mobile systems.

| FG256      |                  | FG256      |                  | FG256      |                  |
|------------|------------------|------------|------------------|------------|------------------|
| Pin Number | AGLE600 Function | Pin Number | AGLE600 Function | Pin Number | AGLE600 Function |
| G13        | GCC1/IO50PPB2V1  | K1         | GFC2/IO115PSB6V1 | M5         | VMV5             |
| G14        | IO44NDB2V1       | K2         | IO113PPB6V1      | M6         | VCCIB5           |
| G15        | IO44PDB2V1       | K3         | IO112PDB6V1      | M7         | VCCIB5           |
| G16        | IO49NSB2V1       | K4         | IO112NDB6V1      | M8         | IO84NDB5V0       |
| H1         | GFB0/IO119NPB7V0 | K5         | VCCIB6           | M9         | IO84PDB5V0       |
| H2         | GFA0/IO118NDB6V1 | K6         | VCC              | M10        | VCCIB4           |
| H3         | GFB1/IO119PPB7V0 | K7         | GND              | M11        | VCCIB4           |
| H4         | VCOMPLF          | K8         | GND              | M12        | VMV3             |
| H5         | GFC0/IO120NPB7V0 | K9         | GND              | M13        | VCCPLD           |
| H6         | VCC              | K10        | GND              | M14        | GDB1/IO66PPB3V1  |
| H7         | GND              | K11        | VCC              | M15        | GDC1/IO65PDB3V1  |
| H8         | GND              | K12        | VCCIB3           | M16        | IO61NDB3V1       |
| H9         | GND              | K13        | IO54NPB3V0       | N1         | IO105PDB6V0      |
| H10        | GND              | K14        | IO57NPB3V0       | N2         | IO105NDB6V0      |
| H11        | VCC              | K15        | IO55NPB3V0       | N3         | GEC1/IO104PPB6V0 |
| H12        | GCC0/IO50NPB2V1  | K16        | IO57PPB3V0       | N4         | VCOMPLE          |
| H13        | GCB1/IO51PPB2V1  | L1         | IO113NPB6V1      | N5         | GNDQ             |
| H14        | GCA0/IO52NPB3V0  | L2         | IO109PPB6V0      | N6         | GEA2/IO101PPB5V2 |
| H15        | VCOMPLC          | L3         | IO108PDB6V0      | N7         | IO92NDB5V1       |
| H16        | GCB0/IO51NPB2V1  | L4         | IO108NDB6V0      | N8         | IO90NDB5V1       |
| J1         | GFA2/IO117PSB6V1 | L5         | VCCIB6           | N9         | IO82NDB5V0       |
| J2         | GFA1/IO118PDB6V1 | L6         | GND              | N10        | IO74NDB4V1       |
| J3         | VCCPLF           | L7         | VCC              | N11        | IO74PDB4V1       |
| J4         | IO116NDB6V1      | L8         | VCC              | N12        | GNDQ             |
| J5         | GFB2/IO116PDB6V1 | L9         | VCC              | N13        | VCOMPLD          |
| J6         | VCC              | L10        | VCC              | N14        | VJTAG            |
| J7         | GND              | L11        | GND              | N15        | GDC0/IO65NDB3V1  |
| J8         | GND              | L12        | VCCIB3           | N16        | GDA1/IO67PDB3V1  |
| J9         | GND              | L13        | GDB0/IO66NPB3V1  | P1         | GEB1/IO103PDB6V0 |
| J10        | GND              | L14        | IO60NDB3V1       | P2         | GEB0/IO103NDB6V0 |
| J11        | VCC              | L15        | IO60PDB3V1       | P3         | VMV6             |
| J12        | GCB2/IO54PPB3V0  | L16        | IO61PDB3V1       | P4         | VCCPLE           |
| J13        | GCA1/IO52PPB3V0  | M1         | IO109NPB6V0      | P5         | IO101NPB5V2      |
| J14        | GCC2/IO55PPB3V0  | M2         | IO106NDB6V0      | P6         | IO95PPB5V1       |
| J15        | VCCPLC           | M3         | IO106PDB6V0      | P7         | IO92PDB5V1       |
| J16        | GCA2/IO53PSB3V0  | M4         | GEC0/IO104NPB6V0 | P8         | IO90PDB5V1       |



| FG484         |                   | FG484         |                   | FG484         |                   |
|---------------|-------------------|---------------|-------------------|---------------|-------------------|
| Pin<br>Number | AGLE3000 Function | Pin<br>Number | AGLE3000 Function | Pin<br>Number | AGLE3000 Function |
| A1            | GND               | AA14          | IO170NDB4V2       | B5            | IO08PDB0V0        |
| A2            | GND               | AA15          | IO170PDB4V2       | B6            | IO14NDB0V1        |
| A3            | VCCIB0            | AA16          | IO166NDB4V1       | B7            | IO14PDB0V1        |
| A4            | IO10NDB0V1        | AA17          | IO166PDB4V1       | B8            | IO18NDB0V2        |
| A5            | IO10PDB0V1        | AA18          | IO160NDB4V0       | B9            | IO24NDB0V2        |
| A6            | IO16NDB0V1        | AA19          | IO160PDB4V0       | B10           | IO34PDB0V4        |
| A7            | IO16PDB0V1        | AA20          | IO158NPB4V0       | B11           | IO40PDB0V4        |
| A8            | IO18PDB0V2        | AA21          | VCCIB3            | B12           | IO46NDB1V0        |
| A9            | IO24PDB0V2        | AA22          | GND               | B13           | IO54NDB1V1        |
| A10           | IO28NDB0V3        | AB1           | GND               | B14           | IO62NDB1V2        |
| A11           | IO28PDB0V3        | AB2           | GND               | B15           | IO62PDB1V2        |
| A12           | IO46PDB1V0        | AB3           | VCCIB5            | B16           | IO68NDB1V3        |
| A13           | IO54PDB1V1        | AB4           | IO216NDB5V2       | B17           | IO68PDB1V3        |
| A14           | IO56NDB1V1        | AB5           | IO216PDB5V2       | B18           | IO72PDB1V3        |
| A15           | IO56PDB1V1        | AB6           | IO210NDB5V2       | B19           | IO74PDB1V4        |
| A16           | IO64NDB1V2        | AB7           | IO210PDB5V2       | B20           | IO76NPB1V4        |
| A17           | IO64PDB1V2        | AB8           | IO208NDB5V1       | B21           | VCCIB2            |
| A18           | IO72NDB1V3        | AB9           | IO208PDB5V1       | B22           | GND               |
| A19           | IO74NDB1V4        | AB10          | IO197NDB5V0       | C1            | VCCIB7            |
| A20           | VCCIB1            | AB11          | IO197PDB5V0       | C2            | IO303PDB7V3       |
| A21           | GND               | AB12          | IO174NDB4V2       | C3            | IO305PDB7V3       |
| A22           | GND               | AB13          | IO174PDB4V2       | C4            | IO06NPB0V0        |
| AA1           | GND               | AB14          | IO172NDB4V2       | C5            | GND               |
| AA2           | VCCIB6            | AB15          | IO172PDB4V2       | C6            | IO12NDB0V1        |
| AA3           | IO228PDB5V4       | AB16          | IO168NDB4V1       | C7            | IO12PDB0V1        |
| AA4           | IO224PDB5V3       | AB17          | IO168PDB4V1       | C8            | VCC               |
| AA5           | IO218NDB5V3       | AB18          | IO162NDB4V1       | C9            | VCC               |
| AA6           | IO218PDB5V3       | AB19          | IO162PDB4V1       | C10           | IO34NDB0V4        |
| AA7           | IO212NDB5V2       | AB20          | VCCIB4            | C11           | IO40NDB0V4        |
| AA8           | IO212PDB5V2       | AB21          | GND               | C12           | IO48NDB1V0        |
| AA9           | IO198PDB5V0       | AB22          | GND               | C13           | IO48PDB1V0        |
| AA10          | IO198NDB5V0       | B1            | GND               | C14           | VCC               |
| AA11          | IO188PPB4V4       | B2            | VCCIB7            | C15           | VCC               |
| AA12          | IO180NDB4V3       | B3            | IO06PPB0V0        | C16           | IO70NDB1V3        |
| AA13          | IO180PDB4V3       | B4            | IO08NDB0V0        | C17           | IO70PDB1V3        |



Package Pin Assignments

| FG896      |                      | FG896      |                      | FG896      |                      |
|------------|----------------------|------------|----------------------|------------|----------------------|
| Pin Number | AGLE3000<br>Function | Pin Number | AGLE3000<br>Function | Pin Number | AGLE3000<br>Function |
| AK14       | IO197PDB5V0          | B20        | IO53PDB1V1           | C25        | IO75PDB1V4           |
| AK15       | IO191NDB4V4          | B21        | IO53NDB1V1           | C26        | VCCIB1               |
| AK16       | IO191PDB4V4          | B22        | IO61NDB1V2           | C27        | IO64PPB1V2           |
| AK17       | IO189NDB4V4          | B23        | IO61PDB1V2           | C28        | VCC                  |
| AK18       | IO189PDB4V4          | B24        | IO69NPB1V3           | C29        | GBA1/IO81PPB1V4      |
| AK19       | IO179PPB4V3          | B25        | VCC                  | C30        | GND                  |
| AK20       | IO175NDB4V2          | B26        | GBC0/IO79NPB1V4      | D1         | IO303PPB7V3          |
| AK21       | IO175PDB4V2          | B27        | VCC                  | D2         | VCC                  |
| AK22       | IO169NDB4V1          | B28        | IO64NPB1V2           | D3         | IO305NPB7V3          |
| AK23       | IO169PDB4V1          | B29        | GND                  | D4         | GND                  |
| AK24       | GND                  | B30        | GND                  | D5         | GAA1/IO00PPB0V0      |
| AK25       | IO167PPB4V1          | C1         | GND                  | D6         | GAC1/IO02PDB0V0      |
| AK26       | GND                  | C2         | IO309NPB7V4          | D7         | IO06NPB0V0           |
| AK27       | GDC2/IO156PPB4V0     | C3         | VCC                  | D8         | GAB0/IO01NDB0V0      |
| AK28       | GND                  | C4         | GAA0/IO00NPB0V0      | D9         | IO05NDB0V0           |
| AK29       | GND                  | C5         | VCCIB0               | D10        | IO11NDB0V1           |
| B1         | GND                  | C6         | IO03PDB0V0           | D11        | IO11PDB0V1           |
| B2         | GND                  | C7         | IO03NDB0V0           | D12        | IO23NDB0V2           |
| B3         | GAA2/IO309PPB7V4     | C8         | GAB1/IO01PDB0V0      | D13        | IO23PDB0V2           |
| B4         | VCC                  | C9         | IO05PDB0V0           | D14        | IO27PDB0V3           |
| B5         | IO14PPB0V1           | C10        | IO15NPB0V1           | D15        | IO40PDB0V4           |
| B6         | VCC                  | C11        | IO25NDB0V3           | D16        | IO47NDB1V0           |
| B7         | IO07PPB0V0           | C12        | IO25PDB0V3           | D17        | IO47PDB1V0           |
| B8         | IO09PDB0V1           | C13        | IO31NPB0V3           | D18        | IO55NPB1V1           |
| B9         | IO15PPB0V1           | C14        | IO27NDB0V3           | D19        | IO65NDB1V3           |
| B10        | IO19NDB0V2           | C15        | IO39NDB0V4           | D20        | IO65PDB1V3           |
| B11        | IO19PDB0V2           | C16        | IO39PDB0V4           | D21        | IO71NDB1V3           |
| B12        | IO29NDB0V3           | C17        | IO55PPB1V1           | D22        | IO71PDB1V3           |
| B13        | IO29PDB0V3           | C18        | IO51PDB1V1           | D23        | IO73NDB1V4           |
| B14        | IO31PPB0V3           | C19        | IO59NDB1V2           | D24        | IO73PDB1V4           |
| B15        | IO37NDB0V4           | C20        | IO63NDB1V2           | D25        | IO74NDB1V4           |
| B16        | IO37PDB0V4           | C21        | IO63PDB1V2           | D26        | GBB0/IO80NPB1V4      |
| B17        | IO41PDB1V0           | C22        | IO67NDB1V3           | D27        | GND                  |
| B18        | IO51NDB1V1           | C23        | IO67PDB1V3           | D28        | GBA0/IO81NPB1V4      |
| B19        | IO59PDB1V2           | C24        | IO75NDB1V4           | D29        | VCC                  |



Datasheet Information

| Revision                                                                                                  | Changes                                                                                                                                                                                                                                                                                             | Page                |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Revision 8 (Nov 2009)                                                                                     | The version changed to v2.0 for IGLOOe datasheet chapters, indicating the datasheet contains information based on final characterization.                                                                                                                                                           | N/A                 |
| Product Brief v2.0                                                                                        | The "Pro (Professional) I/O" section was revised to add "Hot-swappable and cold-sparing I/Os."                                                                                                                                                                                                      |                     |
|                                                                                                           | The "Reprogrammable Flash Technology" section was revised to add "250 MHz (1.5 V systems) and 160 MHz (1.2 V systems) System Performance."                                                                                                                                                          | I                   |
|                                                                                                           | Definitions of hot-swap and cold-sparing were added to the "Pro I/Os with Advanced I/O Standards" section.                                                                                                                                                                                          | 1-7                 |
| DC and Switching<br>Characteristics v2.0                                                                  | $3.3~\rm V$ LVCMOS and $1.2~\rm V$ LVCMOS Wide Range support was added to the datasheet. This affects all tables that contained $3.3~\rm V$ LVCMOS and $1.2~\rm V$ LVCMOS data.                                                                                                                     | N/A                 |
|                                                                                                           | IIL and IIH input leakage current information was added to all "Minimum and Maximum DC Input and Output Levels" tables.                                                                                                                                                                             | N/A                 |
|                                                                                                           | Values for 1.2 V wide range DC core supply voltage were added to Table 2-2 • Recommended Operating Conditions 1. Table notes regarding 3.3 V wide range and the core voltage required for programming were added to the table.                                                                      | 2-2                 |
|                                                                                                           | The data in Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays (1.5 V DC core supply voltage) and Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (1.2 V DC core supply voltage) was revised.                                                            | 2-6                 |
|                                                                                                           | 3.3 V LVCMOS wide range data was included in Table 2-13 • Summary of I/O<br>Input Buffer Power (per pin) – Default I/O Software Settings and Table 2-14 •<br>Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1.<br>Table notes were added in connection with this data. | 2-9, 2-10           |
|                                                                                                           | The temperature was revised from 110°C to 100°C in Table 2-31 • Duration of Short Circuit Event before Failure and Table 2-33 • I/O Input Rise Time, Fall Time, and Related I/O Reliability*.                                                                                                       | 2-31, 2-31          |
|                                                                                                           | The tables in the "Overview of I/O Performance" section and "Detailed I/O DC Characteristics" sectionwere revised to include $3.3$ V LVCMOS and $1.2$ V LVCMOS wide range.                                                                                                                          | 2-20, 2-28          |
|                                                                                                           | Most tables were updated in the following sections, revising existing values and<br>adding information for 3.3 V and 1.2 V wide range:<br>"Single-Ended I/O Characteristics"<br>"Voltage-Referenced I/O Characteristics"<br>"Differential I/O Characteristics"                                      | 2-32,<br>2-51, 2-62 |
|                                                                                                           | The value for "Delay range in block: fixed delay" was revised in Table 2-143 • IGLOOe CCC/PLL Specification and Table 2-144 • IGLOOe CCC/PLL Specification.                                                                                                                                         | 2-91, 2-92          |
|                                                                                                           | The timing characteristics tables for RAM4K9 and RAM512X18 were updated, including renaming of the address collision parameters.                                                                                                                                                                    | 2-98 –<br>2-101     |
| <b>Revision 7 (Apr 2009)</b><br>Product Brief v1.4<br>DC and Switching<br>Characteristics<br>Advance v0.4 | The –F speed grade is no longer offered for IGLOOe devices and was removed from the documentation. The speed grade column and note regarding –F speed grade were removed from "IGLOOe Ordering Information". The "Speed Grade and Temperature Grade Matrix" section was removed.                    | III, IV             |