

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	13824
Total RAM Bits	110592
Number of I/O	165
Number of Gates	600000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/agle600v2-fg256

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Flash Advantages

Low Power

Flash-based IGLOOe devices exhibit power characteristics similar to those of an ASIC, making them an ideal choice for power-sensitive applications. IGLOOe devices have only a very limited power-on current surge and no high-current transition period, both of which occur on many FPGAs.

IGLOOe devices also have low dynamic power consumption to further maximize power savings; power is even further reduced by the use of a 1.2 V core voltage.

Low dynamic power consumption, combined with low static power consumption and Flash*Freeze technology, gives the IGLOOe device the lowest total system power offered by any FPGA.

Security

The nonvolatile, flash-based IGLOOe devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. IGLOOe devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.

IGLOOe devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of protection in the FPGA industry for programmed intellectual property and configuration data. In addition, all FlashROM data in IGLOOe devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. AES was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. IGLOOe devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. IGLOOe devices with AES-based security provide a high level of protection for remote field updates over public networks such as the Internet, and are designed to ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves.

Security, built into the FPGA fabric, is an inherent component of the IGLOOe family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. The IGLOOe family, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected with industry-standard security, making remote ISP possible. An IGLOOe device provides the best available security for programmable logic designs.

Single Chip

Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure, and no external configuration data needs to be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based IGLOOe FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system reliability.

Instant On

Flash-based IGLOOe devices support Level 0 of the Instant On classification standard. This feature helps in system component initialization, execution of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock generation, and bus activity management. The Instant On feature of flash-based IGLOOe devices greatly simplifies total system design and reduces total system cost, often eliminating the need for CPLDs and clock generation PLLs. In addition, glitches and brownouts in system power will not corrupt the IGLOOe device's flash configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based IGLOOe devices simplify total system design and reduce cost and design risk while increasing system reliability and improving system initialization time.

Pro I/Os with Advanced I/O Standards

The IGLOOe family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.0 V wide range, and 3.3 V). IGLOOe FPGAs support 19 different I/O standards, including single-ended, differential, and voltage-referenced. The I/Os are organized into banks, with eight banks per device (two per side). The configuration of these banks determines the I/O standards supported. Each I/O bank is subdivided into VREF minibanks, which are used by voltage-referenced I/Os. VREF minibanks contain 8 to 18 I/Os. All the I/Os in a given minibank share a common VREF line. Therefore, if any I/O in a given VREF minibank is configured as a VREF pin, the remaining I/Os in that minibank will be able to use that reference voltage.

Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the following:

- Single-Data-Rate applications (e.g., PCI 66 MHz, bidirectional SSTL 2 and 3, Class I and II)
- Double-Data-Rate applications (e.g., DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point communications, and DDR 200 MHz SRAM using bidirectional HSTL Class II).

IGLOOe banks support M-LVDS with 20 multi-drop points.

Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card in a powered-up system.

Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating.

Wide Range I/O Support

IGLOOe devices support JEDEC-defined wide range I/O operation. IGLOOe devices support both the JESD8-B specification, covering 3.0 V and 3.3 V supplies, for an effective operating range of 2.7 V to 3.6 V, and JESD8-12 with its 1.2 V nominal, supporting an effective operating range of 1.14 V to 1.575 V.

Wider I/O range means designers can eliminate power supplies or power conditioning components from the board or move to less costly components with greater tolerances. Wide range eases I/O bank management and provides enhanced protection from system voltage spikes, while providing the flexibility to easily run custom voltage applications.

Specifying I/O States During Programming

You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the *FlashPro User's Guide* for more information.

- Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only.
 - 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming.
 - From the FlashPro GUI, click PDB Configuration. A FlashPoint Programming File Generator window appears.
 - 3. Click the **Specify I/O States During Programming** button to display the Specify I/O States During Programming dialog box.
 - 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-4 on page 1-8).
 - Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings:
 - 1 I/O is set to drive out logic High
 - 0 I/O is set to drive out logic Low

Last Known State – I/O is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming

Z -Tri-State: I/O is tristated

IGLOOe Device Family Overview

m file Save to file	<u></u>		Show BSR [
Port Name	Macro Cell	Pin Number	1/O State (Output Only)
BIST	ADLIB:INBUF	T2	1
SYPASS_IO	ADLIB:INBUF	K1	1
CLK	ADLIB:INBUF	B1	1
ENOUT	ADLIB:INBUF	J16	1
_ED	ADLIB:OUTBUF	M3	0
MONITOR[0]	ADLIB:OUTBUF	B5	0
MONITOR[1]	ADLIB:OUTBUF	C7	Z
MONITOR[2]	ADLIB:OUTBUF	D9	Z
MONITOR[3]	ADLIB:OUTBUF	D7	Z
MONITOR[4]	ADLIB:OUTBUF	A11	Z
DEa	ADLIB:INBUF	E4	Z
ЭЕЬ	ADLIB:INBUF	F1	Z
DSC_EN	ADLIB:INBUF	К3	Z
PAD[10]	ADLIB:BIBUF_LVCMOS33U	M8	Z
PAD[11]	ADLIB:BIBUF_LVCMOS33D	R7	Z
PAD[12]	ADLIB:BIBUF_LVCMOS33U	D11	Z
PAD[13]	ADLIB:BIBUF_LVCMOS33D	C12	Z
PAD[14]	ADLIB:BIBUF_LVCMOS33U	R6	Z

Figure 1-4 • I/O States During Programming Window

- 6. Click OK to return to the FlashPoint Programming File Generator window.
- Note: I/O States During programming are saved to the ADB and resulting programming files after completing programming file generation.

Overview of I/O Performance

Summary of I/O DC Input and Output Levels – Default I/O Software Settings

Table 2-21 •	Summary of Maximum and Minimum DC Input and Output Levels
	Applicable to Commercial and Industrial Conditions

		Equivalent			VIL	VIH		VOL	VOH	IOL ¹	IOH ¹
I/O Standard	Drive Strength	Software Default Drive Strength ²	Slew Rate	Min. V	Max. V	Min. Max V V		Max. V	Min. V	mA	mA
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	-0.3	0.8	2	3.6	0.4	2.4	12	12
3.3 V LVCMOS Wide Range ³	100 µA	12 mA	High	-0.3	0.8	2	3.6	0.2	VCCI – 0.2	0.1	0.1
2.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.7	1.7	3.6	0.7	1.7	12	12
1.8 V LVCMOS	12 mA	12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	12	12
1.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	12	12
1.2 V LVCMOS	2 mA	2 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2
1.2 V LVCMOS Wide Range ⁴	100 µA	2 mA	High	-0.3	0.3 * VCCI	0.7 * VCCI	3.6	0.1	VCCI – 0.1	0.1	0.1
3.3 V PCI					Per P	CI Specification	n				
3.3 V PCI-X					Per PC	CI-X Specification	on				
3.3 V GTL	20 mA ⁵	20 mA ⁵	High	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	-	20	20
2.5 V GTL	20 mA ⁵	20 mA ⁵	High	-0.3	VREF – 0.05	VREF + 0.05	3.6	0.4	_	20	20
3.3 V GTL+	35 mA	35 mA	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	_	35	35
2.5 V GTL+	33 mA	33 mA	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	_	33	33
HSTL (I)	8 mA	8 mA	High	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.4	VCCI - 0.4	8	8

Notes:

1. Currents are measured at 85°C junction temperature.

 The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-12 specification.

4. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.

5. Output drive strength is below JEDEC specification.

6. Output Slew Rates can be extracted from IBIS Models, http://www.microsemi.com/soc/download/ibis/default.aspx.

Summary of I/O Timing Characteristics – Default I/O Software Settings

Standard	Input Reference Voltage (VREF_TYP)	Board Termination Voltage (VTT_REF)	Measuring Trip Point (Vtrip)
3.3 V LVTTL / 3.3 V LVCMOS	-	_	1.4 V
3.3 V LVCMOS Wide Range	-	-	1.4 V
2.5 V LVCMOS	-	_	1.2 V
1.8 V LVCMOS	-	-	0.90 V
1.5 V LVCMOS	-	_	0.75 V
1.2 V LVCMOS*	-	-	0.6 V
1.2 V LVCMOS – Wide Range*	-	_	0.6 V
3.3 V PCI	-	_	0.285 * VCCI (RR)
	-	-	0.615 * VCCI (FF))
3.3 V PCI-X	-	_	0.285 * VCCI (RR)
	-	-	0.615 * VCCI (FF)
3.3 V GTL	0.8 V	1.2 V	VREF
2.5 V GTL	0.8 V	1.2 V	VREF
3.3 V GTL+	1.0 V	1.5 V	VREF
2.5 V GTL+	1.0 V	1.5 V	VREF
HSTL (I)	0.75 V	0.75 V	VREF
HSTL (II)	0.75 V	0.75 V	VREF
SSTL2 (I)	1.25 V	1.25 V	VREF
SSTL2 (II)	1.25 V	1.25 V	VREF
SSTL3 (I)	1.5 V	1.485 V	VREF
SSTL3 (II)	1.5 V	1.485 V	VREF
LVDS	-	-	Cross point
LVPECL	-	-	Cross point

Table 2-23 • Summary of AC Measuring Points

Note: *Applicable to V2 devices ONLY operating in the 1.2 V core range.

IGLOOe DC and Switching Characteristics

Parameter	Definition
t _{DP}	Data to Pad delay through the Output Buffer
t _{PY}	Pad to Data delay through the Input Buffer with Schmitt trigger disabled
t _{DOUT}	Data to Output Buffer delay through the I/O interface
t _{EOUT}	Enable to Output Buffer Tristate Control delay through the I/O interface
t _{DIN}	Input Buffer to Data delay through the I/O interface
t _{PYS}	Pad to Data delay through the Input Buffer with Schmitt trigger enabled
t _{HZ}	Enable to Pad delay through the Output Buffer—HIGH to Z
t _{zH}	Enable to Pad delay through the Output Buffer—Z to HIGH
t _{LZ}	Enable to Pad delay through the Output Buffer—LOW to Z
t _{ZL}	Enable to Pad delay through the Output Buffer—Z to LOW
t _{zHS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to HIGH
t _{ZLS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to LOW

Table 2-24 • I/O AC Parameter Definitions

IGLOOe DC and Switching Characteristics

Table 2-26 • Summary of I/O Timing Characteristics—Software Default SettingsStd. Speed Grade, Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V,Worst-Case VCCI (per standard)

		30 00				•				-								
I/O Standard	Drive Strength (mA)	Equivalent Software Default Drive Strength Option ¹ (mA)	Slew Rate	Capacitive Load (pF)	External Resistor (Ω)	t _{bout} (ns)	t _{DP} (ns)	t _{DIN} (ns)	t _{pY} (ns)	t _{PYS} (ns)	t _{Eour} (ns)	t _{ZL} (ns)	t _{ZH} (ns)	t _{LZ} (ns)	t _{HZ} (ns)	t _{ZLS} (ns)	t _{ZHS} (ns)	Units
3.3 V LVTTL / 3.3 V LVCMOS	12	12	High	5	-	1.55	2.47	0.26	1.31	1.58	1.10	2.51	2.04	3.28	3.97	8.29	7.82	ns
3.3 V LVCMOS Wide Range ^{1,2}	100 µA	12	High	35	-	1.55	3.40	0.26	1.66	2.14	1.10	3.40	2.68	4.55	5.49	9.19	8.46	ns
2.5 V LVCMOS	12	12	High	5	-	1.55	2.51	0.26	1.55	1.77	1.10	2.54	2.22	3.36	3.85	8.33	8.00	ns
1.8 V LVCMOS	12	12	High	5	-	1.55	2.75	0.26	1.53	1.96	1.10	2.78	2.40	3.68	4.56	8.57	8.19	ns
1.5 V LVCMOS	12	12	High	5	-	1.55	3.10	0.26	1.72	2.16	1.10	3.15	2.70	3.86	4.68	8.93	8.49	ns
1.2 V LVCMOS	2	2	High	5	-	1.55	4.06	0.26	2.09	2.95	1.10	3.92	3.46	4.01	3.79	9.71	9.24	ns
1.2 V LVCMOS Wide Range ^{1,3}	100 µA	2	High	5	-	1.55	4.06	0.26	2.09	2.95	1.10	3.92	3.46	4.01	3.79	9.71	9.24	ns
3.3 V PCI	Per PCI spec	-	High	10	25 ⁴	1.55	2.76	0.26	1.19	1.63	1.10	2.79	2.16	3.29	3.97	8.58	7.94	ns
3.3 V PCI-X	Per PCI-X spec	-	High	10	25 ⁴	1.55	2.76	0.25	1.22	1.58	1.10	2.79	2.16	3.29	3.97	8.58	7.94	ns
3.3 V GTL	20 ⁵	-	High	10	25	1.55	2.08	0.25	2.76	-	1.10	2.09	2.08	-	_	7.88	7.87	ns
2.5 V GTL	20 ⁵	-	High	10	25	1.55	2.17	0.25	2.35	-	1.10	2.20	2.13	-	-	7.99	7.91	ns
3.3 V GTL+	35	—	High	10	25	1.55	2.12	0.25	1.62	-	1.10	2.14	2.07	_	-	7.93	7.85	ns
2.5 V GTL+	33	-	High	10	25	1.55	2.25	0.25	1.55	-	1.10	2.27	2.10	_	1	8.06	7.89	ns
HSTL (I)	8	-	High	20	50	1.55	3.09	0.25	1.95	-	1.10	3.11	3.09	-	I	8.90	8.88	ns
HSTL (II)	15	—	High	20	25	1.55	2.94	0.25	1.95	-		2.98		-	-	8.77	8.53	ns
SSTL2 (I)	15	_	High	30	50	1.55	2.18	0.25	1.40	-	1.10	2.21	2.03	-	Ι	7.99	7.82	ns
SSTL2 (II)	18	-	High	30	25	1.55	2.21	0.25	1.40	-	1.10	2.24	1.97	-	1	8.03	7.76	ns
SSTL3 (I)	14	—	High	30	50		2.33		1.33	-		2.36		-	Ι	8.15		ns
SSTL3 (II)	21	_	High	30	25	1.55	2.13	0.25	1.33	_	1.10	2.16	1.89	_	I	7.94	7.67	ns

Notes:

 The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.

3. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.

4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-49 for connectivity. This resistor is not required during normal operation.

5. Output drive strength is below JEDEC specification.

6. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The reliability data below is based on a 3.3 V, 36 mA I/O setting, which is the worst case for this type of analysis.

For example, at 100°C, the short current condition would have to be sustained for more than six months to cause a reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions.

 Table 2-31 • Duration of Short Circuit Event before Failure

Temperature	Time before Failure
-40°C	> 20 years
0°C	> 20 years
25°C	> 20 years
70°C	5 years
85°C	2 years
100°C	6 months

Table 2-32 • Schmitt Trigger Input Hysteresis Hysteresis Voltage Value (Typ.) for

Hysteresis	S Voltag	je \	Value (Typ	for Schmitt Mode Input Buffers

Input Buffer Configuration	Hysteresis Value (typ.)
3.3 V LVTTL/LVCMOS/PCI/PCI-X (Schmitt trigger mode)	240 mV
2.5 V LVCMOS (Schmitt trigger mode)	140 mV
1.8 V LVCMOS (Schmitt trigger mode)	80 mV
1.5 V LVCMOS (Schmitt trigger mode)	60 mV
1.2 V LVCMOS (Schmitt trigger mode)	40 mV

Table 2-33 • I/O Input Rise Time, Fall Time, and Related I/O Reliability*

Input Buffer	Input Rise/Fall Time (min.)	Input Rise/Fall Time (max.)	Reliability
LVTTL/LVCMOS (Schmitt trigger disabled)	No requirement	10 ns*	20 years (100°C)
LVTTL/LVCMOS (Schmitt trigger enabled)		No requirement, but input noise voltage cannot exceed Schmitt hysteresis.	20 years (100°C)
HSTL/SSTL/GTL	No requirement	10 ns*	10 years (100°C)
LVDS/B-LVDS/M-LVDS/LVPECL	No requirement	10 ns*	10 years (100°C)

Note: *The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low, then the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Microsemi recommends signal integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-36 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Unit s
4 mA	Std.	0.97	4.90	0.18	1.08	1.34	0.66	5.00	3.99	2.27	2.16	8.60	7.59	ns
8 mA	Std.	0.97	4.05	0.18	1.08	1.34	0.66	4.13	3.45	2.53	2.65	7.73	7.05	ns
12 mA	Std.	0.97	3.44	0.18	1.08	1.34	0.66	3.51	3.05	2.71	2.95	7.11	6.64	ns
16 mA	Std.	0.97	3.27	0.18	1.08	1.34	0.66	3.34	2.96	2.74	3.04	6.93	6.55	ns
24 mA	Std.	0.97	3.18	0.18	1.08	1.34	0.66	3.24	2.97	2.79	3.36	6.84	6.56	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

Table 2-37 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
4 mA	Std.	0.97	2.85	0.18	1.08	1.34	0.66	2.92	2.27	2.27	2.27	6.51	5.87	ns
8 mA	Std.	0.97	2.39	0.18	1.08	1.34	0.66	2.44	1.88	2.53	2.76	6.03	5.47	ns
12 mA	Std.	0.97	2.12	0.18	1.08	1.34	0.66	2.17	1.69	2.71	3.08	5.76	5.28	ns
16 mA	Std.	0.97	2.08	0.18	1.08	1.34	0.66	2.12	1.65	2.75	3.17	5.72	5.25	ns
24 mA	Std.	0.97	2.10	0.18	1.08	1.34	0.66	2.14	1.60	2.80	3.49	5.74	5.20	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-44 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 V

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
100 µA	4 mA	Std.	1.55	8.14	0.26	1.66	2.14	1.10	8.14	6.46	3.80	3.79	13.93	12.25	ns
100 µA	8 mA	Std.	1.55	6.68	0.26	1.66	2.14	1.10	6.68	5.57	4.25	4.69	12.47	11.36	ns
100 µA	12 mA	Std.	1.55	5.65	0.26	1.66	2.14	1.10	5.65	4.91	4.55	5.25	11.44	10.69	ns
100 µA	16 mA	Std.	1.55	5.36	0.26	1.66	2.14	1.10	5.36	4.76	4.61	5.41	11.14	10.55	ns
100 µA	24 mA	Std.	1.55	5.20	0.26	1.66	2.14	1.10	5.20	4.78	4.69	6.00	10.99	10.56	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is $\pm 100 \ \mu$ A. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

Table 2-45 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 V

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{EOUT}	t _{z∟}	t _{ZH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
100 µA	4 mA	Std.	1.55	4.65	0.26	1.66	2.14	110	4.65	3.64	3.80	4.00	10.44	9.43	ns
100 µA	8 mA	Std.	1.55	3.85	0.26	1.66	2.14	1.10	3.85	2.99	4.25	4.91	9.64	8.77	ns
100 µA	12 mA	Std.	1.55	3.40	0.26	1.66	2.14	1.10	3.40	2.68	4.55	5.49	9.19	8.46	ns
100 µA	16 mA	Std.	1.55	3.33	0.26	1.66	2.14	1.10	3.33	2.62	4.62	5.65	9.11	8.41	ns
100 µA	24 mA	Std.	1.55	3.36	0.26	1.66	2.14	1.10	3.36	2.54	4.71	6.24	9.15	8.32	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

3. Software default selection highlighted in gray.

3.3 V PCI, 3.3 V PCI-X

Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus applications.

Table 2-69 •	Minimum and Maximum DC Input and Output Levels
--------------	--

3.3 V PCI/PCI-X	V	IL	v	VIH		VOH	IOL	ЮН	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min., V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
Per PCI specification					Per P	CI curve	S				10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

AC loadings are defined per the PCI/PCI-X specifications for the datapath; Microsemi loadings for enable path characterization are described in Figure 2-12.

Figure 2-12 • AC Loading

AC loadings are defined per PCI/PCI-X specifications for the datapath; Microsemi loading for tristate is described in Table 2-70.

Table 2-70 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	C _{LOAD} (pF)
0	3.3	0.285 * VCCI for t _{DP(R)}	-	10
		0.615 * VCCI for t _{DP(F)}		

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

IGLOOe DC and Switching Characteristics

SSTL2 Class I

Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). IGLOOe devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

SSTL2 Class I		VIL	VIH		VOL	VOH	IOL	юн	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
15 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.54	VCCI - 0.62	15	15	83	87	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-19 • AC Loading

Table 2-98 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.25	1.25	1.25	30

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-99 • SSTL 2 Class I – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V,

Worst-Case VCCI = 2.3 V VREF = 1.25 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	0.98	1.91	0.19	1.15	0.67	1.94	1.72			5.57	5.35	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-100 • SSTL 2 Class I – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V VREF = 1.25 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	1.55	2.17	0.26	1.39	1.10	2.21	2.04			8.02	7.84	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

IGLOOe DC and Switching Characteristics

SSTL3 Class I

Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). IGLOOe devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

SSTL3 Class I	I VIL		VIH		VOL	VOH	IOL	IOH	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
14 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.7	VCCI – 1.1	14	14	51	54	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.

- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.
- 3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.

Figure 2-21 • AC Loading

Table 2-106 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	C _{LOAD} (pF)
VREF – 0.2	VREF + 0.2	1.5	1.5	1.485	30

Note: *Measuring point = Vtrip. See Table 2-23 on page 2-23 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-107 • SSTL 3 Class I – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V VREF = 1.5 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.98	2.05	0.19	1.09	0.67	2.09	1.71			5.72	5.34	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-108 • SSTL 3 Class I – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V,

Worst-Case VCCI = 3.0 V VREF = 1.5 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{zLS}	t _{zHS}	Units
Std.	1.55	2.32	0.26	1.32	1.10	2.37	2.02			8.17	7.83	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

1.2 V DC Core Voltage

Table 2-124 • Input Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{ICLKQ}	Clock-to-Q of the Input Data Register	0.68	ns
t _{ISUD}	Data Setup Time for the Input Data Register	0.97	ns
t _{IHD}	Data Hold Time for the Input Data Register	0.00	ns
t _{ISUE}	Enable Setup Time for the Input Data Register	1.02	ns
t _{IHE}	Enable Hold Time for the Input Data Register	0.00	ns
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	1.19	ns
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	1.19	ns
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	0.00	ns
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	0.24	ns
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	0.00	ns
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	0.24	ns
t _{IWCLR}	Asynchronous Clear Minimum Pulse Width for the Input Data Register	0.19	ns
t _{IWPRE}	Asynchronous Preset Minimum Pulse Width for the Input Data Register	0.19	ns
t _{ICKMPWH}	Clock Minimum Pulse Width HIGH for the Input Data Register	0.31	ns
t _{ICKMPWL}	Clock Minimum Pulse Width LOW for the Input Data Register	0.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.

IGLOOe DC and Switching Characteristics

Output Register

Timing Characteristics

1.5 V DC Core Voltage

Table 2-125 • Output Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{OCLKQ}	Clock-to-Q of the Output Data Register	1.00	ns
t _{OSUD}	Data Setup Time for the Output Data Register	0.51	ns
t _{OHD}	Data Hold Time for the Output Data Register	0.00	ns
t _{OSUE}	Enable Setup Time for the Output Data Register	0.70	ns
t _{OHE}	Enable Hold Time for the Output Data Register	0.00	ns
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	1.34	ns
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	1.34	ns
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	0.00	ns
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	0.24	ns
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	0.00	ns
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	0.24	ns
t _{OWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Data Register	0.19	ns
t _{OWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Data Register	0.19	ns
t _{OCKMPWH}	Clock Minimum Pulse Width HIGH for the Output Data Register	0.31	ns
t _{OCKMPWL}	Clock Minimum Pulse Width LOW for the Output Data Register	0.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

VersaTile Characteristics

VersaTile Specifications as a Combinatorial Module

The IGLOOe library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the *IGLOO*, *Fusion*, and *ProASIC3 Macro Library Guide*.

Figure 2-35 • Sample of Combinatorial Cells

Timing Characteristics 1.5 V DC Core Voltage

Table 2-137 • Register Delays

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{CLKQ}	Clock-to-Q of the Core Register	0.89	ns
t _{SUD}	Data Setup Time for the Core Register	0.81	ns
t _{HD}	Data Hold Time for the Core Register	0.00	ns
t _{SUE}	Enable Setup Time for the Core Register	0.73	ns
t _{HE}	Enable Hold Time for the Core Register	0.00	ns
t _{CLR2Q}	Asynchronous Clear-to-Q of the Core Register	0.60	ns
t _{PRE2Q}	Asynchronous Preset-to-Q of the Core Register	0.62	ns
t _{REMCLR}	Asynchronous Clear Removal Time for the Core Register	0.00	ns
t _{RECCLR}	Asynchronous Clear Recovery Time for the Core Register	0.24	ns
t _{REMPRE}	Asynchronous Preset Removal Time for the Core Register	0.00	ns
t _{RECPRE}	Asynchronous Preset Recovery Time for the Core Register	0.23	ns
t _{WCLR}	Asynchronous Clear Minimum Pulse Width for the Core Register	0.30	ns
t _{WPRE}	Asynchronous Preset Minimum Pulse Width for the Core Register	0.30	ns
t _{CKMPWH}	Clock Minimum Pulse Width HIGH for the Core Register	0.56	ns
t _{CKMPWL}	Clock Minimum Pulse Width LOW for the Core Register	0.56	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.

	FG896		FG896		FG896			
Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function			
D30	GBA2/IO82PPB2V0	F5	VMV7	G7	VCC			
E1	GND	F5	VMV7	G8	VMV0			
E2	IO303NPB7V3	F6	GND	G9	VCCIB0			
E3	VCCIB7	F7	GNDQ	G10	IO10NDB0V1			
E4	IO305PPB7V3	F8	IO12NDB0V1	G11	IO16NDB0V1			
E5	VCC	F9	IO12PDB0V1	G12	IO22PDB0V2			
E6	GAC0/IO02NDB0V0	F10	IO10PDB0V1	G13	IO26PPB0V3			
E7	VCCIB0	F11	IO16PDB0V1	G14	IO38NPB0V4			
E8	IO06PPB0V0	F12	IO22NDB0V2	G15	IO36NDB0V4			
E9	IO24NDB0V2	F13	IO30NDB0V3	G16	IO46NDB1V0			
E10	IO24PDB0V2	F14	IO30PDB0V3	G17	IO46PDB1V0			
E11	IO13NDB0V1	F15	IO36PDB0V4	G18	IO56NDB1V1			
E12	IO13PDB0V1	F16	IO48NDB1V0	G19	IO56PDB1V1			
E13	IO34NDB0V4	F17	IO48PDB1V0	G20	IO66NDB1V3			
E14	IO34PDB0V4	F18	IO50NDB1V1	G21	IO66PDB1V3			
E15	IO40NDB0V4	F19	IO58NDB1V2	G22	VCCIB1			
E16	IO49NDB1V1	F20	IO60PDB1V2	G23	VMV1			
E17	IO49PDB1V1	F21	IO77NDB1V4	G24	VCC			
E18	IO50PDB1V1	F22	IO72NDB1V3	G25	GNDQ			
E19	IO58PDB1V2	F23	IO72PDB1V3	G25	GNDQ			
E20	IO60NDB1V2	F24	GNDQ	G26	VCCIB2			
E21	IO77PDB1V4	F25	GND	G27	IO86NDB2V0			
E22	IO68NDB1V3	F26	VMV2	G28	IO92NDB2V1			
E23	IO68PDB1V3	F26	VMV2	G29	IO100PPB2V2			
E24	VCCIB1	F27	IO86PDB2V0	G30	GND			
E25	IO74PDB1V4	F28	IO92PDB2V1	H1	IO294PDB7V2			
E26	VCC	F29	VCC	H2	IO294NDB7V2			
E27	GBB1/IO80PPB1V4	F30	IO100NPB2V2	H3	IO300NDB7V3			
E28	VCCIB2	G1	GND	H4	IO300PDB7V3			
E29	IO82NPB2V0	G2	IO296NPB7V2	H5	IO295PDB7V2			
E30	GND	G3	IO306NDB7V4	H6	IO299PDB7V3			
F1	IO296PPB7V2	G4	IO297NDB7V2	H7	VCOMPLA			
F2	VCC	G5	VCCIB7	H8	GND			
F3	IO306PDB7V4	G6	GNDQ	H9	IO08NDB0V0			
F4	IO297PDB7V2	G6	GNDQ	H10	IO08PDB0V0			

	FG896] []	FG896		FG896
Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function	Pin Number	AGLE3000 Function
L26	IO87NDB2V0	N1	IO276PDB7V0	P6	GFC1/IO275PDB7V0
L27	IO97PDB2V1	N2	IO278PDB7V0	P7	GFC0/IO275NDB7V0
L28	IO101PDB2V2	N3	IO280PDB7V0	P8	IO277PDB7V0
L29	IO103PDB2V2	N4	IO284PDB7V1	P9	IO277NDB7V0
L30	IO119NDB3V0	N5	IO279PDB7V0	P10	VCCIB7
M1	IO282NDB7V1	N6	IO285NDB7V1	P11	VCC
M2	IO282PDB7V1	N7	IO287NDB7V1	P12	GND
M3	IO292NDB7V2	N8	IO281NDB7V0	P13	GND
M4	IO292PDB7V2	N9	IO281PDB7V0	P14	GND
M5	IO283NDB7V1	N10	VCCIB7	P15	GND
M6	IO285PDB7V1	N11	VCC	P16	GND
M7	IO287PDB7V1	N12	GND	P17	GND
M8	IO289PDB7V1	N13	GND	P18	GND
M9	IO289NDB7V1	N14	GND	P19	GND
M10	VCCIB7	N15	GND	P20	VCC
M11	VCC	N16	GND	P21	VCCIB2
M12	GND	N17	GND	P22	GCC1/IO112PDB2V3
M13	GND	N18	GND	P23	IO110PDB2V3
M14	GND	N19	GND	P24	IO110NDB2V3
M15	GND	N20	VCC	P25	IO109PPB2V3
M16	GND	N21	VCCIB2	P26	IO111NPB2V3
M17	GND	N22	IO106NDB2V3	P27	IO105PDB2V2
M18	GND	N23	IO106PDB2V3	P28	IO105NDB2V2
M19	GND	N24	IO108PDB2V3	P29	GCC2/IO117PDB3V0
M20	VCC	N25	IO108NDB2V3	P30	IO117NDB3V0
M21	VCCIB2	N26	IO95NDB2V1	R1	GFC2/IO270PDB6V4
M22	NC	N27	IO99NDB2V2	R2	GFB1/IO274PPB7V0
M23	IO104PPB2V2	N28	IO99PDB2V2	R3	VCOMPLF
M24	IO102PDB2V2	N29	IO107PDB2V3	R4	GFA0/IO273NDB6V4
M25	IO102NDB2V2	N30	IO107NDB2V3	R5	GFB0/IO274NPB7V0
M26	IO95PDB2V1	P1	IO276NDB7V0	R6	IO271NDB6V4
M27	IO97NDB2V1	P2	IO278NDB7V0	R7	GFB2/IO271PDB6V4
M28	IO101NDB2V2	P3	IO280NDB7V0	R8	IO269PDB6V4
M29	IO103NDB2V2	P4	IO284NDB7V1	R9	IO269NDB6V4
M30	IO119PDB3V0	P5	IO279NDB7V0	R10	VCCIB7

Revision	Changes	Page				
Revision 9 (continued)	The example in the paragraph above Table 2-31 • Duration of Short Circuit Event before Failure was revised to change the maximum temperature from 110°C to 100°C, with an example of six months instead of three months (SAR 32287).	2-31				
	The notes regarding drive strength in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section, "3.3 V LVCMOS Wide Range" section and "1.2 V LVCMOS Wide Range" section tables were revised for clarification. They now state that the minimum drive strength for the default software configuration when run in wide range is $\pm 100 \mu$ A. The drive strength displayed in software is supported in normal range only. For a detailed I/V curve, refer to the IBIS models (SAR 34766).	2-23, 2-35, 2-48				
	The AC Loading figures in the "Single-Ended I/O Characteristics" section were updated to match tables in the "Summary of I/O Timing Characteristics – Default I/O Software Settings" section (SAR 34886).					
	The following sentence was deleted from the "2.5 V LVCMOS" section (SAR 34793): "It uses a 5 V–tolerant input buffer and push-pull output buffer."					
	Table 2-143 • IGLOOe CCC/PLL Specification and Table 2-144 • IGLOOe CCC/PLL Specification were updated. A note was added to both tables indicating that when the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available (SAR 34818).	2-91, 2-92				
	The following figures were deleted. Reference was made to a new application note, <i>Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs</i> , which covers these cases in detail (SAR 34869).					
	Figure 2-46 • Write Access after Write onto Same Address					
	Figure 2-47 • Read Access after Write onto Same Address					
	Figure 2-48 • Write Access after Read onto Same Address The port names in the SRAM "Timing Waveforms", SRAM "Timing Characteristics" tables, Figure 2-50 • FIFO Reset, and the FIFO "Timing Characteristics" tables were revised to ensure consistency with the software names (SAR 35749).	2-95, 2-98, 2-104, 2-106				
	The "Pin Descriptions and Packaging" chapter is new (SAR 34768).	3-1				
	Package names used in the "Package Pin Assignments" section were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 34768)	4-1				
July 2010	The versioning system for datasheets has been changed. Datasheets are assigned a revision number that increments each time the datasheet is revised. The "IGLOOe Device Status" table on page II indicates the status for each device in the device family.	N/A				